
A Two-phase Feature Selection Method using both Filter and Wrapper 

Huang Yuan* Shian-Shyong Tseng** 
Wu Gangshan* Zhang Fuyan* 
*State Key Laboratory for Novel1 Software Technology 
Department of Computer Science and Technology, Nanjing Univ. 
Nanjing, Jiangsu 210093, China 
hy@graphics.nju.edu.cn,{gswuIfyzhang}@netra.nju.edu.cn 
**Department of Computer and Information Science 
National Chiao Tung Univ., Hsinchu,Taiwan 
sstseng@cis.nctu.edu.tw 

ABSRACT 

Feature selection is an integral step of data mining process to 

find an optimal subset of features. After examine the problems 

with both the filter and wrapper approach to feature selection, we 

propose a two-phase feature selection algorithm of filter and 

wrapper that can take advantage of both approaches. It begins by 

running GFSIC(fi1ter approach) to remove irrelevant features, 

then it runs SBFCV(wrapper approach) to remove redundant or 

useless features. Analysis and experimental studies show that the 

effectiveness and scalability of the proposed algorithm. The 

generalization of neural network is improved when the algorithm 

is used to preprocess the training data by eliminating the 

irrelevant and useless features from neural network’s 

consideration. 

Keyword: feature selection, feedforward neural network, filter, 

wrapper, genetic algorithms 

1. INTRODUCTION 

An abundance of unnecessary features can increase the size of 

search space and the time needed for inductive algorithms. On 

the other side, most practical inductive algorithms in data mining 

generalize worse given too many attributes than if given a good 

subset of those attributes. For example, if neural network has 

fewer input neurons than necessary, the inductive algorithm will 

fail to find the desired classification function. If neural network 

has far more input neurons than necessary, it can result in 

overfitting of the data leading to poor generalization, wasting 
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resources by measuring irrelevant variables and a model which is 

difficult to understand. In a classification task, features can be 

redundant or irrelevant. Irrelevant features does not affect the 

underlying structure of the data in any way while redundant 

features does not provide anything new in describing the 

underlying structure. Feature selection is a process to select an 

optimal subset of features from a large set of mutually redundant, 

possibly irrelevant original features. After feature selection, 

induction algorithm can run on data only containing features 

relevant for classification with maximal accuracy. The 

generalization of induction algorithm is improved, resources are 

saved and the resulting architecture is easier to interpret. Many 

publications have reported performance improvements when 

feature selection algorithms are used [ 1,2,3]. 

2. PREVIOUS APPROACHES AND THEIR 
PROBLEMS 

In general, two categories of algorithms have been proposed to 

solve feature selection problem. The difference of these 

algorithms is whether or not the feature selection is done 

independently of the induction algorithm. The first category is 

filter approach that is independent of an induction algorithm and 

serves as a filter to sieve the irrelevant features. The second 

category is wrapper approach that uses the induction algorithm 

itself as part of the function evaluating feature subsets. The 

shortcoming of filter approach is that it totally ignores the biases 

of the induction algorithms and the effect of selected feature 

subset on the performance of the induction algorithm [4]. So it 

can not efficiently remove the redundant features or features 
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useless or even harmful for generalization. In most cases, the 

optimal selection of features may not be independent of the 

inductive and representational biases of the inductive algorithm. 

The major drawback of wrapper approach is time consuming and 

costly especially for computationally intensive induction 

algorithms such as neural networks. If the size of dataset and the 

minimal feature set is even moderately large, wrapper will take a 

long time. This paper explores a two-phase algorithm mixing 

both filter and wrapper approaches for neural network feature 

selection to reduce time complexity and improve classification 

accuracy. 

3. TWO PHASE FEATURE SELECTION METHOD 

3.1 The GFSIC algorithm 

The first phase GFSIC (Genetic Feature Selection with 

Inconsistency Criterion) uses genetic algorithm to search optimal 

subset of features with low inconsistency. There are several 

search algorithms used to search the space of feature subsets. 

The simplest search algorithm, called gradient-descent search, 

starts at an arbitrary point in the fitness landscape, and attempts 

to make small changes that improve the solution, but doesn’t 

necessarily find the optimal solution. If the landscape is 
complicated, it may end up in a local minimal. An alternative is 

stochastic gradient-descent, which makes some small random 

changes in search process. Initially the technique can escape 

from local minimal and find globally good areas of the fitness 

landscape. It then gradually settles into a good solution. Genetic 

algorithms are based on an analogy with biology in which a 

group solution evolves via natural selection [5]. They sometimes 

also behave like a stochastic gradient-descent algorithm, 

although they have the distinction of exploring a large number of 

possible solutions simultaneously. Genetic algorithms also can’t 

always find the global optimum, but they would be more robust 

than gradient-descent algorithms when there are strong 

interdependencies among features. They make relatively few 

assumptions about the shape of the search space, and are 

generally quite effective for rapid global search of large search 

spaces in optimization problems. Genetic algorithms have 

demonstrated substantial improvement over a variety of random 

and local search methods [6]. 

each possible feature. Each individual chromosome in the 

population represents a candidate solution to the feature subset 

selection problem. Let N be the total number of features 

available to be chosen to represent the patterns (Note that there 

exist 2N possible feature subsets. Thus, exhaustive search is 
impractical unless N is very small). The chromosome is 

represented by a binary string of n bits (where n is the total 

number of features). If a bit is a 1, it means that the 

corresponding feature is selected. A value of 0 indicates that the 

corresponding feature is not selected. The fitness of an 

individual is determined by evaluating the inconsistency of a 

training set whose pattern are represented using only the selected 

subset of features. If an individual chromosome has m bits 

turned on, the corresponding feature set has m input features. 

The individual chromosomes in the population are then 

evaluated via a fitness function, and then the less fit individuals 

are eliminated. Combining two different criteria - the 

inconsistency of the selected feature subset and the cost of 

perform classification, we define the fitness function as follows 

to find reasonable solutions that yield low inconsistency at a 

moderate size of feature subset: 

(1) 
A . c o s t ( x )  $tness(x) = consistency(x) - 

(consistency(x) + 1)‘cost 
max 

where fitness (x) is the fitness of the feature subset represented 

by chromosome x, and consistency(x) is the consistency rate of 

the selected feature subset. In our experiment, to keep things 

simple, cost(x) is simply represented by the number of selected 

features. cost,,, is the total number of features under 

consideration. A nonnegative complexity penalty factor A is 
added to the evaluation function, penalizing feature subsets with 

many features. R also represents the crossing point of feature 

subsets where SBFCV takes over from GFSIC. In our 

experiment, we set /z = 0.08 . If there are still too many features 

found after the first phase, A can be adjusted optimally for the 

specific datasets. But if A is too high, the small sized subsets 

generated by GFSIC might not contain any minimal size subset. 

The inconsistency criterion suggests using feature good for 

discrimination with compact descriptions and maximally distinct 

[l]. That is, feature selection is formalized as finding the 

smallest set of features that is “consistent” in describing class 

with the full set. Given a set of training example X and a set of 

features Q , let c, and c2 denote two class labels, for a pair of 

We use a binary string to represent the presence or absence of 
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examples < XI ;cl > and < X 2 ; c 2  > , an inconsistency is 

generated if X, and X ,  have the same values for all the 

features in Q. The inconsistency rate of a dataset can be 

calculated as follows: (1) two instances are considered 

inconsistent if they match except for their class labels: ( 2 )  for all 

the matched instances, the inconsistency count is the number of 

the instances minus the largest number of instances of class 

labels. (3) The inconsistency rate is the sum of all the 

inconsistency counts divided by the total number of instance [7]. 

To describe inconsistency criterion simply, we use consistency 

rate in fitness function. The consistency rate is defined as 

follows: 

consistency(x) = 1 - inconsistency(x) ( 2 )  

subsets according to the consistency and cost criterion. The 

process of creating new generations can be terminated when a 

predefined number of generations is achieved or when the 

overall fitness value of the population is not increased during the 

last generations. After the last generation of GA, the feature 

subsets of highest ranked individual are extracted for the next 

phase. 

Although the first phase dramatically reduces the feature number 

and the search complexity, there are maybe still many redundant 

features after this phase. Practical induction algorithms that 

generate classifiers may benefit from the omission of these 

features, including some strongly relevant features. Relevance of 

a feature does not imply that it must be in the optimal feature 

subset [3]. 

Algorithm: GFSIC(Samp1e datasets) 
I .  Create the initial pool with random population of feature subsets 
2. Repeat until stopcriteria0 

2. I .  Apply genetic operators such as selection, crossover and 

2.2. for every chromosome in pool 
mutation generates new population of feature subsets. 

Evaluate the chromosome according to two criteria: the 
inconsistency and the cost of the selected feature subset. 
2.3. Rank the population in pool by fitness function 
end; 

3. S = bestOf(pool); 
4. Output the selected feature subset S io next phase. 

Figure 1 : A framework of GFSIC 

Figure 1 describes the framework of GFSIC, which starts from 

the pool of random feature subset candidates. An initial 

population is generated at random to be the basis of the next 

generation. Good feature subsets are more likely to be chosen 

than bad ones. Applying standard genetic operators such as 

selection, crossover and mutation generates new pool of feature 

subset. The crossover operator works by taking two 

chromosomes and combing them somehow to produce one or 

two offspring. This is done by randomly selecting a point in the 

coded chromosome and then appending the part of the second 

chromosome after that point to chromosome one up to that point 

and vice versa. The mutation operator is only applied to one 

chromosome at a time and involves the random variation of one 

particular feature subset. This adds a limited random element 

into the search and may reintroduce potentially useful material 

that has been lost earlier in the search. Then we rank feature 

Algorithm: SBFCV(Samp1e datasets) 
1. let S be the feature subset afrer the3rstphase. Let N is the number 
of features in S. Divide the data set into training set D, and cross- 
validation test set D, . 
2. Train network to minimize the classijication errorfunction of D, 
with the feature subset S as input nodes, let R be the classification 
accuracy of D, . 
3. for ( i= l ,  i C N, i++) 

replacement the value of input node S, by its average value. 

calculate sensitivity measure E, with dataset D, , 

4. According to E, rank all input nodes. Let S, be the head of 

queue, delete the input node S, andget the network N ,  . 
5. Retrain the Network N ,  , let R, be the classlfication accuracy of 
D, with network N ,  . 
6.lfR- RA 5 6 ,then { 

S : = S - ( S , ) ,  N:=N-I, R:=max{R,R,} 

go to step 3 

I 
7. output selected feature subset S. 

Figure 2:  A framework of SBFCV 

3.2 The SBFCV algorithm 

The second phase SBFCV (Sensitivity-based Feature selection 

with v-fold Cross Validation) starts with a feedforward neural 

network whose input nodes are features of optimal feature subset 

in the first phase. Key steps in SBFCV are shown in Figure 2. 

The networks used consist of 3 layers trained using back- 

propagation. We use sensitivity of the network to estimate the 

relationship of input features with network performance [SI. The 
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Table 1 : Results of runs of GFSIC and SBFCV on the datasets with one example of the selected feature subset 

Table 2: Comparison of neural network classification accuracy using all original features 

against those using the optimal feature subset selected by two-phase algorithm 

sensitivity of the network to feature S, is defined as: 

E, =-CE, 1 E, =SE(?,,w,)-SE(S,,o,) with j ,  =-CS, l N  (3). 
N I  N I 4  

Sensitivity measure assumes that replacement of a variable by its 

average value removes its influence on the network output. So if 

we want to delete feature S, , the influence to classification 

accurate is estimated by computing E, which replaces the value 

of feature S, by its average $ for all training exemplars. It is not 

necessary retrain the network in evaluating E, . Network 

removes the least relevant features one at a time. Then we use 

neural network performance on the cross-validation dataset, as the 

criterion to determine whether the input node should be excluded 

from the network. V-fold cross validation is used to check 

performance of the resulting neural networks on an independent 

test set that was not used during the search. In our experiment, we 

use 5-fold cross-validation. It means the resampling method 

removes 20% of the available data for testing a network generated 

with the remaining 80%. With the difference in performance 

between two networks with different sets of input features, 

SBFCV also decides whether to continue or to stop removing 

more features. SBFCV stops if the performance of network drops 

below a given threshold 6 by removal the least relevant feature. 

We assume that the performance on a classification task is 

measured by the classification accuracy on the unseen test set. On 

a regression task, the performance can be measured by the mean 

squared error of the test set: 

1 (4) 
1 “I E = -Z (p  -0” 

2m 

Where T p  and 0” is the target and output of example p in 

test set, m is the number of exemplars in test set. In our 

experiment, we set the threshold 6 = 0 . Then the best feature 

subset is obtained by the highest cross-validation average network 

performances. SBFCV guarantees good generalization, but its 

time performance can deteriorate if the selected feature number M 

is not large with respect to total feature number N. It is due to 

every time we removing a node, the neural network should be 

retrained. Because GFSIC dramatically reduce the number of 

features during the first phase, so N-M is always small. We can 

see this in following experiments. 

4. Experiments 

In this section we report our experimental results to select features for 

classification problems. The classification problems reported here include 

real-world problems as well as artificial problems. Artificial problems 

include Monks1 and Monks3 where the relevant features are known 

before feature subset selection is conducted. Three real-world problems 

were also tested, including DNA Promoters Gene Sequences, Michalski‘s 

Soybean Dataset and Congressional Voting Records. All datasets were 

obtained via anonymous Ap from the University of California at Imine 

repository [9], from which full documentation for all datasets can be 

obtained. Table 1 summarizes the characteristics of the data sets. In this 

experiment we report all averages for cross-validation classification 
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Figure 3: 
Selected after GFSIC and selected after SBFCV. 

Number of Features in original dataset, 

accuracy before and after feature selection, size of selected feature subset 

after each phase and number of datasets evaluated. 

The number of those features selected after first phase and second 

phase are reported in Table 1. For the Monkl and Monk3 datasets, 

the relevant features are always selected. As shown in Figure 3, 

the numbers of selected features are small compared to the 

original datasets. The effectiveness the feature selection algorithm 

is shown by the small number of features selected. Also the 

numbers of features removed during the second phase are always 

rather small. So the time complexity of wrapper approach is 

dramatically reduced after the first filter phase. In some simple 

artificial datasets such as Monkl and Monk3, GFSIC is enough to 

get the optimal feature subsets. There is not always necessary for 

SBFCV to remove redundant features. Table 1 also shows some 

samples of small selected feature subsets in the last column. As 

can be seen in Table 2 the performance of the networks has 

improved in general after our feature selection process. The 

average accuracy significantly increases from 91.35 to 96.73, 

while the average features number decrease from 24 to 12. This 

indicates that our algorithm has successfully removed superfluous 

features, which are very noisy or contain only small amounts of 

information from these datasets. Feature subset selection 

resulted in significant improvement in generalization. 

5. CONCLUSION 

Neural network feature selection is a fairly hard problem. 

Because of the time complexity of retraining the network, 

wrapper methods are infeasible. On the other hand, filter 

approach is not always enough to get good classification accuracy. 

In most cases, humans currently do the feature selections to 

neural network classifiers. Because we still do not have a good 

understanding of how neural networks work, it is unlikely that the 

optimal feature subsets available are actually selected. In this 

paper we have proposed a novel approach for neural network 

feature selection by mixing filter and wrapper approach that 

attempts to solve their problems. The algorithm is effective in 

eliminating unimportant and redundant features while reducing 

cross-validation error. Because most of irrelevant features are 

deleted after the first phase of filter approach, it avoids the 

exponential computation problem of wrapper approach in the 

second phase. Our experimental results suggest that the proposed 

algorithm work well on a wide variety of problems. 
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