
A Two-phase Feature Selection Method using both Filter and Wrapper

Huang Yuan* Shian-Shyong Tseng**
Wu Gangshan* Zhang Fuyan*
*State Key Laboratory for Novel1 Software Technology
Department of Computer Science and Technology, Nanjing Univ.
Nanjing, Jiangsu 210093, China
hy@graphics.nju.edu.cn,{gswuIfyzhang}@netra.nju.edu.cn
**Department of Computer and Information Science
National Chiao Tung Univ., Hsinchu,Taiwan
sstseng@cis.nctu.edu.tw

ABSRACT

Feature selection is an integral step of data mining process to

find an optimal subset of features. After examine the problems

with both the filter and wrapper approach to feature selection, we

propose a two-phase feature selection algorithm of filter and

wrapper that can take advantage of both approaches. It begins by

running GFSIC(fi1ter approach) to remove irrelevant features,

then it runs SBFCV(wrapper approach) to remove redundant or

useless features. Analysis and experimental studies show that the

effectiveness and scalability of the proposed algorithm. The

generalization of neural network is improved when the algorithm

is used to preprocess the training data by eliminating the

irrelevant and useless features from neural network’s

consideration.

Keyword: feature selection, feedforward neural network, filter,

wrapper, genetic algorithms

1. INTRODUCTION

An abundance of unnecessary features can increase the size of

search space and the time needed for inductive algorithms. On

the other side, most practical inductive algorithms in data mining

generalize worse given too many attributes than if given a good

subset of those attributes. For example, if neural network has

fewer input neurons than necessary, the inductive algorithm will

fail to find the desired classification function. If neural network

has far more input neurons than necessary, it can result in

overfitting of the data leading to poor generalization, wasting

0-7803-5731-0/?W$10.00 01999 IEEE

resources by measuring irrelevant variables and a model which is

difficult to understand. In a classification task, features can be

redundant or irrelevant. Irrelevant features does not affect the

underlying structure of the data in any way while redundant

features does not provide anything new in describing the

underlying structure. Feature selection is a process to select an

optimal subset of features from a large set of mutually redundant,

possibly irrelevant original features. After feature selection,

induction algorithm can run on data only containing features

relevant for classification with maximal accuracy. The

generalization of induction algorithm is improved, resources are

saved and the resulting architecture is easier to interpret. Many

publications have reported performance improvements when

feature selection algorithms are used [1,2,3].

2. PREVIOUS APPROACHES AND THEIR
PROBLEMS

In general, two categories of algorithms have been proposed to

solve feature selection problem. The difference of these

algorithms is whether or not the feature selection is done

independently of the induction algorithm. The first category is

filter approach that is independent of an induction algorithm and

serves as a filter to sieve the irrelevant features. The second

category is wrapper approach that uses the induction algorithm

itself as part of the function evaluating feature subsets. The

shortcoming of filter approach is that it totally ignores the biases

of the induction algorithms and the effect of selected feature

subset on the performance of the induction algorithm [4]. So it

can not efficiently remove the redundant features or features

II - 132

useless or even harmful for generalization. In most cases, the

optimal selection of features may not be independent of the

inductive and representational biases of the inductive algorithm.

The major drawback of wrapper approach is time consuming and

costly especially for computationally intensive induction

algorithms such as neural networks. If the size of dataset and the

minimal feature set is even moderately large, wrapper will take a

long time. This paper explores a two-phase algorithm mixing

both filter and wrapper approaches for neural network feature

selection to reduce time complexity and improve classification

accuracy.

3. TWO PHASE FEATURE SELECTION METHOD

3.1 The GFSIC algorithm

The first phase GFSIC (Genetic Feature Selection with

Inconsistency Criterion) uses genetic algorithm to search optimal

subset of features with low inconsistency. There are several

search algorithms used to search the space of feature subsets.

The simplest search algorithm, called gradient-descent search,

starts at an arbitrary point in the fitness landscape, and attempts

to make small changes that improve the solution, but doesn’t

necessarily find the optimal solution. If the landscape is
complicated, it may end up in a local minimal. An alternative is

stochastic gradient-descent, which makes some small random

changes in search process. Initially the technique can escape

from local minimal and find globally good areas of the fitness

landscape. It then gradually settles into a good solution. Genetic

algorithms are based on an analogy with biology in which a

group solution evolves via natural selection [5]. They sometimes

also behave like a stochastic gradient-descent algorithm,

although they have the distinction of exploring a large number of

possible solutions simultaneously. Genetic algorithms also can’t

always find the global optimum, but they would be more robust

than gradient-descent algorithms when there are strong

interdependencies among features. They make relatively few

assumptions about the shape of the search space, and are

generally quite effective for rapid global search of large search

spaces in optimization problems. Genetic algorithms have

demonstrated substantial improvement over a variety of random

and local search methods [6].

each possible feature. Each individual chromosome in the

population represents a candidate solution to the feature subset

selection problem. Let N be the total number of features

available to be chosen to represent the patterns (Note that there

exist 2N possible feature subsets. Thus, exhaustive search is
impractical unless N is very small). The chromosome is

represented by a binary string of n bits (where n is the total

number of features). If a bit is a 1, it means that the

corresponding feature is selected. A value of 0 indicates that the

corresponding feature is not selected. The fitness of an

individual is determined by evaluating the inconsistency of a

training set whose pattern are represented using only the selected

subset of features. If an individual chromosome has m bits

turned on, the corresponding feature set has m input features.

The individual chromosomes in the population are then

evaluated via a fitness function, and then the less fit individuals

are eliminated. Combining two different criteria - the

inconsistency of the selected feature subset and the cost of

perform classification, we define the fitness function as follows

to find reasonable solutions that yield low inconsistency at a

moderate size of feature subset:

(1)
A . c o s t (x) $tness(x) = consistency(x) -

(consistency(x) + 1)‘cost
max

where fitness (x) is the fitness of the feature subset represented

by chromosome x, and consistency(x) is the consistency rate of

the selected feature subset. In our experiment, to keep things

simple, cost(x) is simply represented by the number of selected

features. cost,,, is the total number of features under

consideration. A nonnegative complexity penalty factor A is
added to the evaluation function, penalizing feature subsets with

many features. R also represents the crossing point of feature

subsets where SBFCV takes over from GFSIC. In our

experiment, we set /z = 0.08 . If there are still too many features

found after the first phase, A can be adjusted optimally for the

specific datasets. But if A is too high, the small sized subsets

generated by GFSIC might not contain any minimal size subset.

The inconsistency criterion suggests using feature good for

discrimination with compact descriptions and maximally distinct

[l]. That is, feature selection is formalized as finding the

smallest set of features that is “consistent” in describing class

with the full set. Given a set of training example X and a set of

features Q , let c, and c2 denote two class labels, for a pair of

We use a binary string to represent the presence or absence of

II -133

examples < XI ;cl > and < X 2 ; c 2 > , an inconsistency is

generated if X, and X , have the same values for all the

features in Q. The inconsistency rate of a dataset can be

calculated as follows: (1) two instances are considered

inconsistent if they match except for their class labels: (2) for all

the matched instances, the inconsistency count is the number of

the instances minus the largest number of instances of class

labels. (3) The inconsistency rate is the sum of all the

inconsistency counts divided by the total number of instance [7].

To describe inconsistency criterion simply, we use consistency

rate in fitness function. The consistency rate is defined as

follows:

consistency(x) = 1 - inconsistency(x) (2)

subsets according to the consistency and cost criterion. The

process of creating new generations can be terminated when a

predefined number of generations is achieved or when the

overall fitness value of the population is not increased during the

last generations. After the last generation of GA, the feature

subsets of highest ranked individual are extracted for the next

phase.

Although the first phase dramatically reduces the feature number

and the search complexity, there are maybe still many redundant

features after this phase. Practical induction algorithms that

generate classifiers may benefit from the omission of these

features, including some strongly relevant features. Relevance of

a feature does not imply that it must be in the optimal feature

subset [3].

Algorithm: GFSIC(Samp1e datasets)
I . Create the initial pool with random population of feature subsets
2. Repeat until stopcriteria0

2. I . Apply genetic operators such as selection, crossover and

2.2. for every chromosome in pool
mutation generates new population of feature subsets.

Evaluate the chromosome according to two criteria: the
inconsistency and the cost of the selected feature subset.
2.3. Rank the population in pool by fitness function
end;

3. S = bestOf(pool);
4. Output the selected feature subset S io next phase.

Figure 1 : A framework of GFSIC

Figure 1 describes the framework of GFSIC, which starts from

the pool of random feature subset candidates. An initial

population is generated at random to be the basis of the next

generation. Good feature subsets are more likely to be chosen

than bad ones. Applying standard genetic operators such as

selection, crossover and mutation generates new pool of feature

subset. The crossover operator works by taking two

chromosomes and combing them somehow to produce one or

two offspring. This is done by randomly selecting a point in the

coded chromosome and then appending the part of the second

chromosome after that point to chromosome one up to that point

and vice versa. The mutation operator is only applied to one

chromosome at a time and involves the random variation of one

particular feature subset. This adds a limited random element

into the search and may reintroduce potentially useful material

that has been lost earlier in the search. Then we rank feature

Algorithm: SBFCV(Samp1e datasets)
1. let S be the feature subset afrer the3rstphase. Let N is the number
of features in S. Divide the data set into training set D, and cross-
validation test set D, .
2. Train network to minimize the classijication errorfunction of D,
with the feature subset S as input nodes, let R be the classification
accuracy of D, .
3. for (i= l , i C N, i++)

replacement the value of input node S, by its average value.

calculate sensitivity measure E, with dataset D, ,

4. According to E, rank all input nodes. Let S, be the head of

queue, delete the input node S, andget the network N , .
5. Retrain the Network N , , let R, be the classlfication accuracy of
D, with network N , .
6.lfR- RA 5 6 ,then {

S : = S - (S ,) , N:=N-I, R:=max{R,R,}

go to step 3

I
7. output selected feature subset S.

Figure 2: A framework of SBFCV

3.2 The SBFCV algorithm

The second phase SBFCV (Sensitivity-based Feature selection

with v-fold Cross Validation) starts with a feedforward neural

network whose input nodes are features of optimal feature subset

in the first phase. Key steps in SBFCV are shown in Figure 2.

The networks used consist of 3 layers trained using back-

propagation. We use sensitivity of the network to estimate the

relationship of input features with network performance [SI. The

II -134

Table 1 : Results of runs of GFSIC and SBFCV on the datasets with one example of the selected feature subset

Table 2: Comparison of neural network classification accuracy using all original features

against those using the optimal feature subset selected by two-phase algorithm

sensitivity of the network to feature S, is defined as:

E, =-CE, 1 E, =SE(?,,w,)-SE(S,,o,) with j , =-CS, l N (3).
N I N I 4

Sensitivity measure assumes that replacement of a variable by its

average value removes its influence on the network output. So if

we want to delete feature S, , the influence to classification

accurate is estimated by computing E, which replaces the value

of feature S, by its average $ for all training exemplars. It is not

necessary retrain the network in evaluating E, . Network

removes the least relevant features one at a time. Then we use

neural network performance on the cross-validation dataset, as the

criterion to determine whether the input node should be excluded

from the network. V-fold cross validation is used to check

performance of the resulting neural networks on an independent

test set that was not used during the search. In our experiment, we

use 5-fold cross-validation. It means the resampling method

removes 20% of the available data for testing a network generated

with the remaining 80%. With the difference in performance

between two networks with different sets of input features,

SBFCV also decides whether to continue or to stop removing

more features. SBFCV stops if the performance of network drops

below a given threshold 6 by removal the least relevant feature.

We assume that the performance on a classification task is

measured by the classification accuracy on the unseen test set. On

a regression task, the performance can be measured by the mean

squared error of the test set:

1 (4)
1 “I E = -Z (p -0”

2m

Where T p and 0” is the target and output of example p in

test set, m is the number of exemplars in test set. In our

experiment, we set the threshold 6 = 0 . Then the best feature

subset is obtained by the highest cross-validation average network

performances. SBFCV guarantees good generalization, but its

time performance can deteriorate if the selected feature number M

is not large with respect to total feature number N. It is due to

every time we removing a node, the neural network should be

retrained. Because GFSIC dramatically reduce the number of

features during the first phase, so N-M is always small. We can

see this in following experiments.

4. Experiments

In this section we report our experimental results to select features for

classification problems. The classification problems reported here include

real-world problems as well as artificial problems. Artificial problems

include Monks1 and Monks3 where the relevant features are known

before feature subset selection is conducted. Three real-world problems

were also tested, including DNA Promoters Gene Sequences, Michalski‘s

Soybean Dataset and Congressional Voting Records. All datasets were

obtained via anonymous Ap from the University of California at Imine

repository [9], from which full documentation for all datasets can be

obtained. Table 1 summarizes the characteristics of the data sets. In this

experiment we report all averages for cross-validation classification

JI -135

60

30

40

30

20

10

A

Number

Selected Features
Number afler
GFSIC

Number afler
0 Selected Features

Monk1 Monk1 DNA Soykan w l r ~

Figure 3:
Selected after GFSIC and selected after SBFCV.

Number of Features in original dataset,

accuracy before and after feature selection, size of selected feature subset

after each phase and number of datasets evaluated.

The number of those features selected after first phase and second

phase are reported in Table 1. For the Monkl and Monk3 datasets,

the relevant features are always selected. As shown in Figure 3,

the numbers of selected features are small compared to the

original datasets. The effectiveness the feature selection algorithm

is shown by the small number of features selected. Also the

numbers of features removed during the second phase are always

rather small. So the time complexity of wrapper approach is

dramatically reduced after the first filter phase. In some simple

artificial datasets such as Monkl and Monk3, GFSIC is enough to

get the optimal feature subsets. There is not always necessary for

SBFCV to remove redundant features. Table 1 also shows some

samples of small selected feature subsets in the last column. As

can be seen in Table 2 the performance of the networks has

improved in general after our feature selection process. The

average accuracy significantly increases from 91.35 to 96.73,

while the average features number decrease from 24 to 12. This

indicates that our algorithm has successfully removed superfluous

features, which are very noisy or contain only small amounts of

information from these datasets. Feature subset selection

resulted in significant improvement in generalization.

5. CONCLUSION

Neural network feature selection is a fairly hard problem.

Because of the time complexity of retraining the network,

wrapper methods are infeasible. On the other hand, filter

approach is not always enough to get good classification accuracy.

In most cases, humans currently do the feature selections to

neural network classifiers. Because we still do not have a good

understanding of how neural networks work, it is unlikely that the

optimal feature subsets available are actually selected. In this

paper we have proposed a novel approach for neural network

feature selection by mixing filter and wrapper approach that

attempts to solve their problems. The algorithm is effective in

eliminating unimportant and redundant features while reducing

cross-validation error. Because most of irrelevant features are

deleted after the first phase of filter approach, it avoids the

exponential computation problem of wrapper approach in the

second phase. Our experimental results suggest that the proposed

algorithm work well on a wide variety of problems.

REFERENCES

[11 Almuallim, H., and Dietterich, T.G., “Efficient algorithms
for identifying relevant features” In Proceedings of the Ninth
Canadian Conference on Artificial Intelligence, Vancouver, BC:
Morgan Kaufmann , 1 9 9 2 , ~ ~ . 38-45.

[2] Aha, D.W., and Bankert, R. L., “ A comparative evaluation
of sequential feature selection algorithms. ” In D. Fisher &

J.-H. Lenz (Eds.), Artificial Intelligence and Statistics V. New
York: Springer-Verlag. 1996

[3] W Siedlecki and J. Skalansky, “On automatic feature
selection,” Int. J. Pattern Recog. Art. Intell. vol. 2,
no.2.p~. 197-220. 1988.

[4] Kohavi, R., and John, G. “Wrappers for feature subset
selection. Technical Report.” Computer Science Department,
Stanford University. 1995

and Machine Learning.” Reading, MA. Addison-Wesley, 1989

Reinhold. 1991

[SI D.E.Goldberg. “Genetic Algorithm as Search Optimization

[6] Davis L. “Handbook of Genetic Algorithms” Van Nostrand

[7] Liu and R.Setiono. “Feature selection and classification - a
probabilistic wrapper approach”, in proceedings of the 9~
International Conferences on Industrial and Engineering
Applications of AI and ES, 1996.

[8] Moody,J.E. and Utans,J. “Principled architecture selection
for neural networks.”.Morgan Kaufmann Publishers, San
Mateo, CA, pp.683-690.

[9] UCI Machine Learning Repository
http://www.ics.uci.edu/-mlearn/MLRepository. html

II - 136

http://www.ics.uci.edu/-mlearn/MLRepository

