
Anisotropic Feature-Preserving Smoothing of 3D Mesh

Tang Jie, Zhang Fuyan

State Key Laboratory for Novel Software Technology, Nanjing University,

Department of computer science and technology, Nanjing University, Nanjing 210093

jietang@graphics.nju.edu.cn, fyzhang@graphics.nju.edu.cn

Abstract

We present an anisotropic 3D mesh smoothing

method which is effective and feature-preserving. The

algorithm is originated from bilateral mesh denoising

and improved in two aspects. Firstly, the geodesic

distance, instead of Euclidean distance, is adopted for

the selection of neighboring vertices. Secondly, the

way to calculate smoothing offsets is adjusted and a

normal weight is introduced. Compared with previous

smoothing methods, our method doesn’t need to repeat

the smoothing operations and could preserve the

features of original model with relatively faster speed.

Finally, we provide a series of examples to graphically

and numerically demonstrate the quality of our results.

1. Introduction

In many computer graphics applications, polygonal

meshes, especially triangle meshes, deliver a simple

and flexible way to represent and handle complex

geometric objects. Dense triangle meshes are often

obtained from points sampled over real world objects.

With the advent and advances in 3D scanning and

acquisition technology, models obtained this way are

becoming widely available. But due to the inevitable

physical noise added by a scanning device, points

sampled from a 3D object often do not reflect their

correct locations, resulting in meshes containing

undesirable rough features. Thus, mesh smoothing, or

denoising, is utilized to improve mesh quality by

adjusting the locations of grid points in the mesh

without changing the mesh topology. The ultimate goal

of mesh smoothing is to produce highly smooth

meshes efficiently, for rendering, modeling, and

visualization, while still preserving the basic overall

shape and important features of the original model.

The most commonly used smoothing technique is

Laplacian smoothing, which moves a given node to the

geometric center of its incident nodes. Various

weighted Laplacian smoothing algorithms have been

developed to improve the performance of the original

smoothing technique. Laplacian smoothing is

computationally inexpensive but does not guarantee

improvement in mesh quality. The recent development

in mesh smoothing shows that the feature-preserving

smoothing methods are getting more and more

attentions.

The bilateral mesh denoising (BMD), introduced by

Fleishman [1], is a nonlinear filter derived from

Gaussian blur, with a feature preservation term that

operates on the geometric component of the mesh. The

algorithm is practical, clear, simple and can deals with

irregular meshes. Furthermore, since the algorithm

only modifies vertices in the normal direction, thus no

reparameterization is performed.

However, during implementing BMD method, we

found that it has some disadvantages:

It uses Euclidean distance to measure the

distance between two points on the mesh,

which could introduce distortion where the

model is thin.

Distortion appears at areas with sharp features.

BMD implement the smoothing identically

over the whole mesh surface, no matter the

local shape is flat or steepy.

In this paper, we present an anisotropic 3D mesh

smoothing method which is effective and feature-

preserving. The algorithm is originated from BMD

method and improved in two aspects. Firstly, the

geodesic distance, instead of Euclidian distance, is

adopted for the selection of neighboring vertices.

Secondly, the way to calculate smoothing offsets is

adjusted and a normal weight is introduced. Compared

with previous smoothing methods, our method doesn’t

need to repeat the smoothing operations and could

preserve the features of original model with relatively

faster speed.

The rest of this paper is organized as follows:

Section 2 will present a brief overview of related work

in the literature. Section 3 describes the bilateral mesh

Proceedings of the Computer Graphics, Imaging and Vision: New Trends (CGIV’05)

0-7695-2392-7/05 $20.00 © 2005 IEEE

denoising algorithm briefly. In Section 4, we introduce

our improvement of neighboring vertices selection.

The process to calculate smoothing offsets is described

in Section 5. In Section 6, a normal weight function is

introduced. We compare the smoothing results of our method

to several other methods in Section 7. And we draw a

conclusion in section 8.

2. Related work

The most common approaches of mesh smoothing

are variants on Laplacian smoothing [2]. Laplacian

smoothing usually leads to shrinkage and visible shape

distortion. Taubin [3] remedied this problem using -

filter, where pass-band frequencies can be retained,

but they are also amplified slowly as the degree of the

- polynomial increases. Vollmer et al. [4] tackled

the shrinkage problem in the spatial domain. Using

their HC algorithm, each vertex is moved back towards

a weighted average of its original position and its

previous position, after each step of Laplacian

smoothing. A common drawback of HC algorithm and

- filtering is their slow smoothing speed for large

mesh models. A further development of Laplacian

smoothing method, mesh smoothing by mean

curvature flow was introduced by Desbrun et al. [5],

they observed that fairing surfaces can be performed in

the normal direction. Zhang [6] and Yagou [7] made

further improvement on Laplacican smoothing.

A disadvantage of isotropic smoothing method is

that sharp features such as creases and corners are

usually diffused and lost after isotropic smoothing. To

preserve sharp features, anistropic smoothing schemes

have been proposed recently. The main idea of

anistropic smoothing consists of non-uniform

smoothing in different directions. The first anisotropic

smoothing scheme for height fields was introduced by

Desbrun et al. [8]. Peng et al. [9] applied locally

adaptive Wiener filtering to meshes. Clarenz et al. [10]

formulated and discretized anisotropic diffusion for

meshes. A principle curvature threshold is used to

detect edges explicitly and locally. Recently, Bajaj and

Xu [11] achieved impressive results by combining the

limit function of loop subdivision scheme with

anisotropic diffusion. Tasdizen et al. [12] applied

anisotropic diffusion to normals of the level-set

representation of the surface, and in the final step, the

level-set is converted to a mesh representation.

Another impressive smoothing method was put

forward by Jones et al. [13]. It is non-iterative and

feature preserving, but it contains both geometric and

parameter smoothing.

3. Bilateral Mesh Denoising

BMD filters a mesh using local neighborhoods. For

a mesh with m vertices, the main idea of BMD is to

shift each vertex vi an offset di along its normal

direction ni, which is described as follows:

iiii dnvv '
 i 0, 1, …, n-1

The offset di is calculated using local

neighborhoods as follows:

)(

)(

))((||)(||

))((||)(||)(

ij

ij

vNv

jiisjic

vNv

jiisjicjii

i
vvnWvvW

vvnWvvWvvn

d

where N(vi) is the neighborhood of vi. The closeness

smoothing filter is a standard Gaussian filter with

parameter c:
22 /

)(cx

c exW , and a feature-

preserving weight function, which they refer to as a

similarity weight function, with parameter s that

penalizes large variation in intensity, is:
22 /

)(sx

s exW . In practice, N(vi) is defined by the

set of points { vk }, where || vi - vk || < = 2 c, which is

the Euclidean distance of two vertices. The parameters,

c and s, are specified by the user. Larger s means

more neighborhood vertices, and larger s means

bigger offset.

The geometrical explanation of BMD is shown in

figure 1, which is a 2D analog. t is the tangent plane at

vertex vi, { vi-2, vi-1, vi+1, vi+2} is the neighborhood of vi.

ni·(vi+1 - vi) is the projection of vector (vi+1 - vi) onto

the normal vector ni, which is represented by a dash

line in the figure. Therefore we could see that the

offset of vertex vi is actually the weighted summation

of the lengths of those dash lines.

Figure 1. Geometric explanation of BMD

BMD method is simple, effective, and since the

vertices are moved along its normal direction, thus no

vertex-drifting or re-parameterization happens.

However, during the implementation, we find that it

still contains some drawbacks. First, it uses Euclidian

distance to measure the distance between two points on

the mesh, which could introduce distortion at the sharp

ni

vi
t

vi+2

vi+1

vi-1

vi-2

Proceedings of the Computer Graphics, Imaging and Vision: New Trends (CGIV’05)

0-7695-2392-7/05 $20.00 © 2005 IEEE

features, since vertices that happen to be geodesicaly

far from the smoothed vertex may be geometrically

close. Furthermore, the assumption from differential

geometry that a neighborhood of a point on a surface

can be evaluated by a function over the tangent plane

to that point may not be satisfied. Secondly, distortion

appears at areas with sharp features. Thirdly, BMD

implement the smoothing uniformly over the whole

mesh surface, no matter the local shape is flat or steepy.

For example, in those areas that are relatively flat,

more neighborhood vertices could be selected, and in

those steepy areas, less vertices should be selected.

Also, as shown in figure 2, when we want to smooth

the vertex vi, we should adopt more vertices along the

direction n1, less vertices along the direction n2.

Figure 2. Anisotropic smoothing

4. Neighborhood
4.1. Geodesic distance

Geodesic distance between two points on a mesh is

the shortest distance along the surface of the mesh.

Many mesh processing algorithms require geodesic

distances between vertices in a triangular mesh.

However, the algorithms to find an exact shortest path

on a mesh (including the non-convex case) usually

involve high time and space costs. The time

complexity is usually O(n2) [14]or O(nlog2n) [15].

Therefore, it is not practical to apply these algorithms

to a dense triangle mesh in most cases. Approximate

geodesic’s computing is much faster and if the error is

under control, it is a good substitute.

Novotni [16] proposed an approximation method to

compute geodesic distances on triangulated domains in

the three dimensional space. Their particular approach

is based on the Fast Marching Method for solving the

Eikonal equation on triangular meshes. When

computing the geodesic distance between two points,

the algorithm proceeds by propagating a wavefront

outwards from the start points. The advancing front

can be thought of as a brush-fire advancing with

constant velocity in all directions in which the mesh

has not yet been ”burnt”. This is accomplished in a

fashion very similar to the well known Dijkstra

algorithm [17] for computation of shortest paths in a

graph. The geodesic distances of vertices are

calculated propagatedly until the target vertex is met or

all vertices of the mesh have their own geodesic

distances. When computing the geodesic distance of a

vertex vi from the start point, if the other two vertices

of the triangle in which vi lies both have effective

geodesic distances, the geodesic distance of vi is

computed using virtual start point (as shown in figure

3), which is implemented as follows: Given a triangle

vivi 1vi 2, if the geodesic distances of vi 1 and vi 2 are

already calculated, say d i 1 and d i 2 respectively, we

could compose two circles using vi 1 and vi 2 as center,

d i 1 and d i 2 as radii respectively. Denoting the

intersect point far off from the vi as vs, the geodesic

distance of vi is the distance between vi and vs, which is

||vivs||.

Figure 3. Virtual start point

Novotni’s method is fast and effective, but

sometimes, the error is too big to accept. We find that

the algorithm ignored two other cases when calculating

the distance from virtual start point. As shown in

figure 4, Novotni’s method only considered the case of

figure 3, while missing the two cases of figure 4a and

figure 4b. Therefore, we improve the method as

follows:

When the intersect falls in between and vi+2,

the geodesic distance is ||vivs||

When the intersect falls left to vi+1, the

geodesic distance is d i+1 + ||vivi+1||

When the intersect falls right to vi+2, the

geodesic distance is d i+2 + ||vivi+2||.

(a) (b)

Figure 4. Virtual start point

n1

vi

vi

vi 1 vi 2

vs

vi

vi 1 vi 2

vs

vi

vi 1
vi 2

vs

Proceedings of the Computer Graphics, Imaging and Vision: New Trends (CGIV’05)

0-7695-2392-7/05 $20.00 © 2005 IEEE

Figure 5 to 7 are some experiment results of our

improved algorithm to calculate the geodesic distance

on meshes. Figure 5 is a dense planar rectangle mesh,

which has 10000 vertices and the edge length of the

rectangle is 1. We calculated all geodesic distances

from the left bottom vertex to others. Since the

geodesic distance on a plane is just its Euclidean

distance, we could easily find out the error of the

algorithm. The result shows that the maximum error is

10
-15

, the root mean square error is 10
-31

, which is quite

precise. Figure 5a is the iso-distance line from the left

bottom vertex and figure 5b is the colorful result.

 (a) (b)

Figure 5. Geodesic distance on a planar mesh

Figure 6 shows another more complicated result of

our algorithm, in which we calculated all geodesic

distance from the top vertex on the nose of the horse to

all other vertices. Again figure 6a shows the iso-

distance line and figure 6b shows the colorful result.

(a) (b)
Figure 6. Geodesic distance on a horse

4.2. Neighborhood decision

Based on the algorithm of calculating geodesic

distance on meshes, we improve the BMD algorithm as

follows: when selecting the neighborhood of vi, we no

longer select all vertices the Euclidean distance of

which to vi is greater than , but select all vertices the

geodesic distance of which to vi is greater than .

N(vi) {vj| d(vj, vi) < }

Where d(vj, vi) is the function to calculate the geodesic

distance between two vertices on a mesh.

5. Offsets computing

From the section 3, we know that the BMD

algorithm computes an offset for each vertex vi using

its neighborhood information, which is calculated as

the weighted summation of the lengths of those dash

lines in figure 1. However, we find that when

calculating the offsets of those vertices on sharp

features, the resultant offsets are usually over big,

which leads to a recess. In order to avoid this flaw, we

adjust the projecting direction. Instead of project the

vector vj-vi to the normal vector of vi, i.e. ni, we project

vj-vi to the normal vector of vj, which is explained

graphically in figure 7. The adjusted offset is the

weighted summation of those thickened lines, while

BMD uses those dash lines. Once again, t is the

tangent plane at vi. From the figure, we could see that

the offset computed by our method is much smaller

than that computed by BMD method, which is much

more reasonable and verified by the experimental

results.

Figure 7. Offsets computing

6. Normal weight function

When smoothing a vertex vi, most algorithms deal

with it isotropiclly, which means that the calculation of

offset is carried out uniformly in all directions.

However, this kind of processing ignores the fact that

the shape varies in different directions, therefore the

contributions to the offset should also very with the

direction. For example, as shown in figure 2, when we

smooth the vertex vi, we should adopt more vertices

along the direction n1, less vertices along the direction

n2. In such way, we smooth the vertex vi anisotropcally.

Another problem is that most algorithms carry out

the smoothing uniformly over the whole mesh, which

means the same method to calculate offset and select

neighborhood vertices. But the geometrical shape is

various over a mesh. The ideally way is to select more

neighborhood vertices in those areas that are relatively

flat (figure 8a) and less neighborhood vertices in those

steepy areas (figure 8b). To implement this target, the

smoothing algorithm should adjust the cut-off distance

adaptively according to the local shape. But this is

1.414

0

ni

vi

t

vi+2

vi+1
vi-1

vi-2

ni 2

ni 1 ni 1

ni 2

Proceedings of the Computer Graphics, Imaging and Vision: New Trends (CGIV’05)

0-7695-2392-7/05 $20.00 © 2005 IEEE

too hard to realize. Therefore we find a substitute by

adding one more weight function to the equation to

calculating offset. The new weight function, Wn, is also

a Gaussian filter, which punishes the angle between

the normal of vi and that of its neighborhood vertex vj.

Thus modified offset calculating method is as follows:

(a) (b)

Figure 8. Different shape of a mesh

)(

)(

)*1())((||)(||

)*1())((||)(||)(

ij

ij

vNv

jinjijsjic

vNv

jinjijsjicjij

i
nnWvvnWvvW

nnWvvnWvvWvvn

d

Where Wc and Ws are defined in section 3 and
22 2/ nx

n eW

7. Results

We have implemented the our smoothing algorithm

as described in the previous sections and compared our

results to the results of Laplacian smoothing[2], the

signal processing of Taubin [3], improved Laplacian

smoothing [4], Jones et al. [13], and the BMD

algorithm [1].

The parameters of the algorithm are: c, s, n and .
is the cut-off distance of selecting the neighborhood

vertices, and usually is set to be 2 c. c is the standard

deviation of the closeness smoothing filter Wc. Greater

c means more neighborhood vertices and greater

contribution of vertices to the offset at same geodesic

distance. Another shortcoming of too great c value is

the computing time. Usually we set c = 2-6 average

edge length of the mesh. s is the standard deviation of

similarity weight function Ws. Greater s leads to

greater offset under the same circumstance. Usually we

set s = 0.5-2 average edge length. n is the standard

deviation of normal weight function Wn. when the

angle between two normals is the same, the smaller the

n is, the smaller the contribution to the offset is. Since

the parameter is between 0 and 1, we set s = 0.1-0.3.

The normals are first-order properties of the mesh,

and they are more sensitive to noise than vertex

positions. Fleishman [1] computes the normals using 2 or 3-

ring of a vertex. Jones [13] improves the stability by first

performing a normal filtering. Since our method has a normal

weight function, it is less sensitive to the noise, and thus only

the 1-ring face are used to compute the normal and no other

processing is needed.

Figure 9 is the graphical results of the comparing of

our method with other algorithms. The parameters

used are listed in table 1. From the figure, we could see

that: Laplacian smoothing preserves sharp features the

worst. Improved Laplacian and Taubin’s smoothing

have improved feature preserving ability. Fleishman’s

smoothing generates concaves at sharp edges. Jones’s

approach preserves features much better, but it has the

problem of vertex drifting, which is apparent nearby

sharp edges. Our approach preserves sharp features the

best and since our approach move the vertex along its

normal direction, no vertex drifting happens.

Table 1. Smoothing parameters
algorithm parameters

Laplacian Iterations: 20;

Improved

Laplacian
Iterations: 20; : 0; : 0.5;

Taubin Iterations: 20; : 0.6307; µ: -0.6732;

Jones Iterations: 1: f/||e||: 2; g/||e||: 1;

Fleishman Iterations: 1; c/||e||: 2; s/||e||: 1;

Ours
Iterations: 1; c/||e||: 2; s/||e||: 1;

f/||e||: 0.3;

 *||e||=average edge length of the mesh

8. Conclusions

We present a mesh smoothing algorithm based on

bilateral mesh denoising. The algorithm modifies a

vertices in its normal direction. Geodesic distance,

instead of Euclidian distance, is adopted for the

selection of neighboring vertices. To compute offsets,

a new projection direction is used and a normal weight

is introduced. Compared with previous smoothing

methods, our method has some advantages: first it

doesn’t need to repeat the smoothing operations;

second it could preserve the features of original model

with relatively faster speed; and thirdly it has no vertex

drifting problem.

When dealing with irregular mesh, especially when

the edge length varies too much, our method seems to

be ineffective. This is caused by the fixed

neighborhood selection policy and should be improved

in the future. Another future development is the

smoothing with texture and color information, not just

geometrical information.

9. References

[1] Fleishman S, Drori I, Cohen-Or D. Bilateral Mesh

Denoising. Proceedings of ACM SIGGRAPH 2003 ,

950 – 953.

vi

vi

ni

Proceedings of the Computer Graphics, Imaging and Vision: New Trends (CGIV’05)

0-7695-2392-7/05 $20.00 © 2005 IEEE

[2] Field D. Laplaceian smoothing and Delaunay

triangulations. Communications in Numerical Methods

in Engineering, 1988, 4: 709-712.

[3] Taubin G. A signal processing approach to fair surface

design. In Computer Graphics Proceedings Annual

Conference Series, ACM SIGGRAPH Los Angeles

California, 1995, 351-358.

[4] Vollmer J, Mencl R, Muller H. Improved Laplacian

smoothing of noisy surface meshes. In:

EUROGRAPHICS 99 Conference Proceedings, 1999,

pp. 131-138.

[5] M Desbrun M Meyer P Schröder et al Implicit

Fairing of Irregular Meshes using Diffusion and

Curvature Flow. In Computer Graphics Proceedings

Annual Conference Series, ACM SIGGRAPH Los

Angeles California, 1999, 317-324

[6] Zhang H, Fiume E. Mesh smoothing with shape or

feature preservation. In: Proceedings of Computer

Graphics International 2002 (June 2002), published as

Advances in Modeling, Animation, and Rendering, J.

Vince and R. Earnshaw, editors, Springer-Verlag, June

2002, 167-182.

[7] Yagou H, Ohtake Y, Belyaev A. Mesh Smoothing via

Mean and Median Filtering Applied to Face Normals.

Geometric Modeling and Processing, RIKEN, Saitama,

Japan, 10-12 July 2002, pp. 124-131.

[8] Desbrun M, Meyer M, Schroder P, Barr AH.

Anisortopic feature-preserving denoising of height fields

and bivariate data. In: Graphics Interface 2000, May,

2000. 145-152.

[9] Peng J Strela V Zorin D. A simple algorithm for

surface denoising. In: Proceedings of the conference on

Visualization '01, San Diego, California, October,

2001,107 – 112.

[10] Clarenz U, Diewald U, Rumpf M. Nonlinear

Anisotropic Geometric Diffusion in Surface Processing.

In: Proc. IEEE Visualization 2000, pages 397-405, 2000.

[11] Bajaj C L, Xu Guoliang. Adaptive Fairing of Surface

Meshes by Geometric Diffusion. In: Fifth International

Conference on Information Visualisation (IV'01),

London, England 2001. 731-737.

[12] Tasdizen T, Whitaker R, Burchard P, Osher S.

Geometric Surface Smoothing via Anisotropic Diffusion

of Normals. In Proceedings of IEEE Visualization 2002,

Boston, MA. 125–132.

[13] Jones T R, Durand F, Desbrun M. Non-Iterative,

Feature-Preserving Mesh Smoothing. In: SIGGRAPH

2003. 943-949.

[14] Chen J, Han Y. Shortest paths on a polyhedron; part i:

computing shortest paths. Int. J. Comput. Geom. & Appl.

1996, 6(2): 127–144.

[15] Kapoor S. Efficient computation of geodesic shortest

paths. In Proc. 32nd Annu. ACM Sympos. Theory

Comput. 1999, 770–779.

[16] M. Novotni and R. Klein. Computing geodesic distances

on triangular meshes. In The 10-th International

Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision (WSCG), pages

341--347, 2002.

[17] Dijkstra E W. A note on two problems in connection

with graphics. Numerische Mathematik 1, 1959, 1: 269–

271.

 (a) initial mesh (b) noisy mesh (c) Laplacian’s (d) improved

Laplacian’s

 (e) Taubin’s (f) Jones’ (g) Fleishman’s (h) our method

Figure 9. Comparison of smoothing methods

Proceedings of the Computer Graphics, Imaging and Vision: New Trends (CGIV’05)

0-7695-2392-7/05 $20.00 © 2005 IEEE

