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Abstract 

We present an anisotropic 3D mesh smoothing 

method which is effective and feature-preserving. The 

algorithm is originated from bilateral mesh denoising 

and improved in two aspects. Firstly, the geodesic 

distance, instead of Euclidean distance, is adopted for 

the selection of neighboring vertices. Secondly, the 

way to calculate smoothing offsets is adjusted and a 

normal weight is introduced. Compared with previous 

smoothing methods, our method doesn’t need to repeat 

the smoothing operations and could preserve the 

features of original model with relatively faster speed. 

Finally, we provide a series of examples to graphically 

and numerically demonstrate the quality of our results.  

1. Introduction 

In many computer graphics applications, polygonal 

meshes, especially triangle meshes, deliver a simple 

and flexible way to represent and handle complex 

geometric objects. Dense triangle meshes are often 

obtained from points sampled over real world objects. 

With the advent and advances in 3D scanning and 

acquisition technology, models obtained this way are 

becoming widely available. But due to the inevitable 

physical noise added by a scanning device, points 

sampled from a 3D object often do not reflect their 

correct locations, resulting in meshes containing 

undesirable rough features. Thus, mesh smoothing, or 

denoising, is utilized to improve mesh quality by 

adjusting the locations of grid points in the mesh 

without changing the mesh topology. The ultimate goal 

of mesh smoothing is to produce highly smooth 

meshes efficiently, for rendering, modeling, and 

visualization, while still preserving the basic overall 

shape and important features of the original model. 

The most commonly used smoothing technique is 

Laplacian smoothing, which moves a given node to the 

geometric center of its incident nodes. Various 

weighted Laplacian smoothing algorithms have been 

developed to improve the performance of the original 

smoothing technique. Laplacian smoothing is 

computationally inexpensive but does not guarantee 

improvement in mesh quality. The recent development 

in mesh smoothing shows that the feature-preserving 

smoothing methods are getting more and more 

attentions. 

The bilateral mesh denoising (BMD), introduced by 

Fleishman [1], is a nonlinear filter derived from 

Gaussian blur, with a feature preservation term that 

operates on the geometric component of the mesh. The 

algorithm is practical, clear, simple and can deals with 

irregular meshes. Furthermore, since the algorithm 

only modifies vertices in the normal direction, thus no 

reparameterization is performed.

However, during implementing BMD method, we 

found that it has some disadvantages: 

It uses Euclidean distance to measure the 

distance between two points on the mesh, 

which could introduce distortion where the 

model is thin.  

Distortion appears at areas with sharp features.  

BMD implement the smoothing identically 

over the whole mesh surface, no matter the 

local shape is flat or steepy. 

In this paper, we present an anisotropic 3D mesh 

smoothing method which is effective and feature-

preserving. The algorithm is originated from BMD 

method and improved in two aspects. Firstly, the 

geodesic distance, instead of Euclidian distance, is 

adopted for the selection of neighboring vertices. 

Secondly, the way to calculate smoothing offsets is 

adjusted and a normal weight is introduced. Compared 

with previous smoothing methods, our method doesn’t 

need to repeat the smoothing operations and could 

preserve the features of original model with relatively 

faster speed. 

The rest of this paper is organized as follows: 

Section 2 will present a brief overview of related work 

in the literature. Section 3 describes the bilateral mesh 
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denoising algorithm briefly. In Section 4, we introduce 

our improvement of neighboring vertices selection. 

The process to calculate smoothing offsets is described 

in Section 5. In Section 6, a normal weight function is 

introduced. We compare the smoothing results of our method 

to several other methods in Section 7. And we draw a 

conclusion in section 8. 

2. Related work 

The most common approaches of mesh smoothing 

are variants on Laplacian smoothing [2]. Laplacian 

smoothing usually leads to shrinkage and visible shape 

distortion. Taubin [3] remedied this problem using -

filter, where pass-band frequencies can be retained, 

but they are also amplified slowly as the degree of the 

- polynomial increases. Vollmer et al. [4] tackled 

the shrinkage problem in the spatial domain. Using 

their HC algorithm, each vertex is moved back towards 

a weighted average of its original position and its 

previous position, after each step of Laplacian 

smoothing. A common drawback of HC algorithm and 

- filtering is their slow smoothing speed for large 

mesh models. A further development of Laplacian 

smoothing method, mesh smoothing by mean 

curvature flow was introduced by Desbrun et al. [5], 

they observed that fairing surfaces can be performed in 

the normal direction. Zhang [6] and Yagou [7] made 

further improvement on Laplacican smoothing.  

A disadvantage of isotropic smoothing method is 

that sharp features such as creases and corners are 

usually diffused and lost after isotropic smoothing. To 

preserve sharp features, anistropic smoothing schemes 

have been proposed recently. The main idea of 

anistropic smoothing consists of non-uniform 

smoothing in different directions. The first anisotropic 

smoothing scheme for height fields was introduced by 

Desbrun et al. [8]. Peng et al. [9] applied locally 

adaptive Wiener filtering to meshes. Clarenz et al. [10] 

formulated and discretized anisotropic diffusion for 

meshes. A principle curvature threshold is used to 

detect edges explicitly and locally. Recently, Bajaj and 

Xu [11] achieved impressive results by combining the 

limit function of loop subdivision scheme with 

anisotropic diffusion. Tasdizen et al. [12] applied 

anisotropic diffusion to normals of the level-set 

representation of the surface, and in the final step, the 

level-set is converted to a mesh representation. 

Another impressive smoothing method was put 

forward by Jones et al. [13]. It is non-iterative and 

feature preserving, but it contains both geometric and 

parameter smoothing. 

3. Bilateral Mesh Denoising 

BMD filters a mesh using local neighborhoods. For 

a mesh with m vertices, the main idea of BMD is to 

shift each vertex vi an offset di along its normal 

direction ni, which is described as follows: 

iiii dnvv '
      i 0, 1, …, n-1 

The offset di is calculated using local 

neighborhoods as follows: 
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where N(vi) is the neighborhood of vi. The closeness 

smoothing filter is a standard Gaussian filter with 

parameter c:
22 /

)( cx

c exW , and a feature-

preserving weight function, which they refer to as a 

similarity weight function, with parameter s that 

penalizes large variation in intensity, is: 
22 /

)( sx

s exW . In practice, N(vi) is defined by the 

set of points { vk }, where || vi - vk || <  = 2 c, which is 

the Euclidean distance of two vertices. The parameters, 

c and s, are specified by the user. Larger s means 

more neighborhood vertices, and larger s means 

bigger offset.  

The geometrical explanation of BMD is shown in 

figure 1, which is a 2D analog. t is the tangent plane at 

vertex vi, { vi-2, vi-1, vi+1, vi+2} is the neighborhood of vi.

ni·(vi+1 - vi ) is the projection of vector (vi+1 - vi ) onto 

the normal vector ni, which is represented by a dash 

line in the figure. Therefore we could see that the 

offset of vertex vi is actually the weighted summation 

of the lengths of those dash lines. 

Figure 1. Geometric explanation of BMD 

BMD method is simple, effective, and since the 

vertices are moved along its normal direction, thus no 

vertex-drifting or re-parameterization happens. 

However, during the implementation, we find that it 

still contains some drawbacks. First, it uses Euclidian 

distance to measure the distance between two points on 

the mesh, which could introduce distortion at the sharp 
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features, since vertices that happen to be geodesicaly 

far from the smoothed vertex may be geometrically 

close. Furthermore, the assumption from differential 

geometry that a neighborhood of a point on a surface 

can be evaluated by a function over the tangent plane 

to that point may not be satisfied. Secondly, distortion 

appears at areas with sharp features. Thirdly, BMD 

implement the smoothing uniformly over the whole 

mesh surface, no matter the local shape is flat or steepy. 

For example, in those areas that are relatively flat, 

more neighborhood vertices could be selected, and in 

those steepy areas, less vertices should be selected. 

Also, as shown in figure 2, when we want to smooth 

the vertex vi, we should adopt more vertices along the 

direction n1, less vertices along the direction n2.

Figure 2. Anisotropic smoothing

4. Neighborhood 
4.1. Geodesic distance 

Geodesic distance between two points on a mesh is 

the shortest distance along the surface of the mesh. 

Many mesh processing algorithms require geodesic 

distances between vertices in a triangular mesh. 

However, the algorithms to find an exact shortest path 

on a mesh (including the non-convex case) usually 

involve high time and space costs. The time 

complexity is usually O(n2) [14]or O(nlog2n) [15]. 

Therefore, it is not practical to apply these algorithms 

to a dense triangle mesh in most cases. Approximate 

geodesic’s computing is much faster and if the error is 

under control, it is a good substitute.  

Novotni [16] proposed an approximation method to 

compute geodesic distances on triangulated domains in 

the three dimensional space. Their particular approach 

is based on the Fast Marching Method for solving the 

Eikonal equation on triangular meshes. When 

computing the geodesic distance between two points, 

the algorithm proceeds by propagating a wavefront 

outwards from the start points. The advancing front 

can be thought of as a brush-fire advancing with 

constant velocity in all directions in which the mesh 

has not yet been ”burnt”. This is accomplished in a 

fashion very similar to the well known Dijkstra 

algorithm [17] for computation of shortest paths in a 

graph. The geodesic distances of vertices are 

calculated propagatedly until the target vertex is met or 

all vertices of the mesh have their own geodesic 

distances. When computing the geodesic distance of a 

vertex vi from the start point, if the other two vertices 

of the triangle in which vi lies both have effective 

geodesic distances, the geodesic distance of vi is 

computed using virtual start point (as shown in figure 

3), which is implemented as follows: Given a triangle 

vivi 1vi 2, if the geodesic distances of vi 1 and vi 2 are 

already calculated, say d i 1 and d i 2 respectively, we 

could compose two circles using vi 1 and vi 2 as center, 

d i 1 and d i 2 as radii respectively. Denoting the 

intersect point far off from the vi as vs, the geodesic 

distance of vi is the distance between vi and vs, which is 

||vivs||. 

Figure 3. Virtual start point

Novotni’s method is fast and effective, but 

sometimes, the error is too big to accept. We find that 

the algorithm ignored two other cases when calculating 

the distance from virtual start point. As shown in 

figure 4, Novotni’s method only considered the case of 

figure 3, while missing the two cases of figure 4a and 

figure 4b. Therefore, we improve the method as 

follows: 

When the intersect falls in between and vi+2,

the geodesic distance is ||vivs||

When the intersect falls left to vi+1, the 

geodesic distance is d i+1 + ||vivi+1||

When the intersect falls right to vi+2, the 

geodesic distance is d i+2 + ||vivi+2||. 

(a)                                   (b) 

Figure 4. Virtual start point
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Figure 5 to 7 are some experiment results of our 

improved algorithm to calculate the geodesic distance 

on meshes. Figure 5 is a dense planar rectangle mesh, 

which has 10000 vertices and the edge length of the 

rectangle is 1. We calculated all geodesic distances 

from the left bottom vertex to others. Since the 

geodesic distance on a plane is just its Euclidean 

distance, we could easily find out the error of the 

algorithm. The result shows that the maximum error is 

10
-15

, the root mean square error is 10
-31

, which is quite 

precise. Figure 5a is the iso-distance line from the left 

bottom vertex and figure 5b is the colorful result. 

                (a)                                          (b)

Figure 5. Geodesic distance on a planar mesh

Figure 6 shows another more complicated result of 

our algorithm, in which we calculated all geodesic 

distance from the top vertex on the nose of the horse to 

all other vertices. Again figure 6a shows the iso-

distance line and figure 6b shows the colorful result. 

(a)                                      (b)
Figure 6. Geodesic distance on a horse

4.2. Neighborhood decision 

Based on the algorithm of calculating geodesic 

distance on meshes, we improve the BMD algorithm as 

follows: when selecting the neighborhood of vi, we no 

longer select all vertices the Euclidean distance of 

which to vi is greater than , but select all vertices the 

geodesic distance of which to vi is greater than .

N(vi) {vj| d(vj, vi ) < }

Where d(vj, vi ) is the function to calculate the geodesic 

distance between two vertices on a mesh. 

5. Offsets computing 

From the section 3, we know that the BMD 

algorithm computes an offset for each vertex vi using 

its neighborhood information, which is calculated as 

the weighted summation of the lengths of those dash 

lines in figure 1. However, we find that when 

calculating the offsets of those vertices on sharp 

features, the resultant offsets are usually over big, 

which leads to a recess. In order to avoid this flaw, we 

adjust the projecting direction. Instead of project the 

vector vj-vi to the normal vector of vi, i.e. ni, we project 

vj-vi to the normal vector of vj, which is explained 

graphically in figure 7. The adjusted offset is the 

weighted summation of those thickened lines, while 

BMD uses those dash lines. Once again, t is the 

tangent plane at vi. From the figure, we could see that 

the offset computed by our method is much smaller 

than that computed by BMD method, which is much 

more reasonable and verified by the experimental 

results. 

Figure 7. Offsets computing

6. Normal weight function 

When smoothing a vertex vi, most algorithms deal 

with it isotropiclly, which means that the calculation of 

offset is carried out uniformly in all directions. 

However, this kind of processing ignores the fact that 

the shape varies in different directions, therefore the 

contributions to the offset should also very with the 

direction.  For example, as shown in figure 2, when we 

smooth the vertex vi, we should adopt more vertices 

along the direction n1, less vertices along the direction 

n2. In such way, we smooth the vertex vi anisotropcally. 

Another problem is that most algorithms carry out 

the smoothing uniformly over the whole mesh, which 

means the same method to calculate offset and select 

neighborhood vertices. But the geometrical shape is 

various over a mesh. The ideally way is to select more 

neighborhood vertices in those areas that are relatively 

flat (figure 8a) and less neighborhood vertices in those 

steepy areas (figure 8b). To implement this target, the 

smoothing algorithm should adjust the cut-off distance 

adaptively according to the local shape. But this is 
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too hard to realize. Therefore we find a substitute by 

adding one more weight function to the equation to 

calculating offset. The new weight function, Wn, is also 

a Gaussian filter, which punishes the angle between 

the normal of vi and that of its neighborhood vertex vj.

Thus modified offset calculating method is as follows: 

(a)                              (b) 

Figure 8. Different shape of a mesh
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Where Wc and Ws are defined in section 3 and 
22 2/ nx

n eW

7. Results 

We have implemented the our smoothing algorithm 

as described in the previous sections and compared our 

results to the results of Laplacian smoothing[2], the 

signal processing of Taubin [3], improved Laplacian 

smoothing [4], Jones et al. [13], and the BMD

algorithm [1].  

The parameters of the algorithm are: c, s, n and .
is the cut-off distance of selecting the neighborhood 

vertices, and usually is set to be 2 c. c is the standard 

deviation of the closeness smoothing filter Wc. Greater 

c means more neighborhood vertices and greater 

contribution of vertices to the offset at same geodesic 

distance. Another shortcoming of too great c value is 

the computing time. Usually we set c = 2-6 average 

edge length of the mesh. s is the standard deviation of 

similarity weight function Ws. Greater s leads to 

greater offset under the same circumstance. Usually we 

set s = 0.5-2 average edge length. n is the standard 

deviation of normal weight function Wn. when the 

angle between two normals is the same, the smaller the 

n is, the smaller the contribution to the offset is. Since 

the parameter is between 0 and 1, we set s = 0.1-0.3.  

The normals are first-order properties of the mesh, 

and they are more sensitive to noise than vertex 

positions. Fleishman [1] computes the normals using 2 or 3-

ring of a vertex. Jones [13] improves the stability by first 

performing a normal filtering. Since our method has a normal 

weight function, it is less sensitive to the noise, and thus only 

the 1-ring face are used to compute the normal and no other 

processing is needed.

Figure 9 is the graphical results of the comparing of 

our method with other algorithms. The parameters 

used are listed in table 1. From the figure, we could see 

that: Laplacian smoothing preserves sharp features the 

worst. Improved Laplacian and Taubin’s smoothing 

have improved feature preserving ability. Fleishman’s 

smoothing generates concaves at sharp edges. Jones’s 

approach preserves features much better, but it has the 

problem of vertex drifting, which is apparent nearby 

sharp edges. Our approach preserves sharp features the 

best and since our approach move the vertex along its 

normal direction, no vertex drifting happens. 

Table 1. Smoothing parameters 
algorithm parameters 

Laplacian Iterations: 20; 

Improved 

Laplacian
Iterations: 20; : 0; : 0.5; 

Taubin Iterations: 20; : 0.6307; µ: -0.6732;  

Jones Iterations: 1: f/||e||: 2; g/||e||: 1; 

Fleishman Iterations: 1; c/||e||: 2; s/||e||: 1; 

Ours 
Iterations: 1; c/||e||: 2; s/||e||: 1; 

f/||e||: 0.3; 

 *||e||=average edge length of the mesh 

8. Conclusions 

We present a mesh smoothing algorithm based on 

bilateral mesh denoising. The algorithm modifies a 

vertices in its normal direction. Geodesic distance, 

instead of Euclidian distance, is adopted for the 

selection of neighboring vertices. To compute offsets, 

a new projection direction is used and a normal weight 

is introduced. Compared with previous smoothing 

methods, our method has some advantages: first it 

doesn’t need to repeat the smoothing operations; 

second it could preserve the features of original model 

with relatively faster speed; and thirdly it has no vertex 

drifting problem.  

When dealing with irregular mesh, especially when 

the edge length varies too much, our method seems to 

be ineffective. This is caused by the fixed 

neighborhood selection policy and should be improved 

in the future. Another future development is the 

smoothing with texture and color information, not just 

geometrical information. 

9. References 

[1] Fleishman S, Drori I, Cohen-Or D. Bilateral Mesh 

Denoising. Proceedings of ACM SIGGRAPH 2003 , 

950 – 953. 

vi

vi

ni

Proceedings of the Computer Graphics, Imaging and Vision: New Trends (CGIV’05) 

0-7695-2392-7/05 $20.00 © 2005 IEEE



[2] Field D. Laplaceian smoothing and Delaunay 

triangulations. Communications in Numerical Methods 

in Engineering, 1988, 4: 709-712.

[3] Taubin G. A signal processing approach to fair surface 

design. In Computer Graphics Proceedings Annual

Conference Series, ACM SIGGRAPH Los Angeles

California, 1995, 351-358. 

[4] Vollmer J, Mencl R, Muller H. Improved Laplacian 

smoothing of noisy surface meshes. In: 

EUROGRAPHICS 99 Conference Proceedings, 1999, 

pp. 131-138. 

[5] M Desbrun M Meyer P Schröder et al Implicit 

Fairing of Irregular Meshes using Diffusion and 

Curvature Flow. In Computer Graphics Proceedings

Annual Conference Series, ACM SIGGRAPH Los 

Angeles California, 1999, 317-324 

[6] Zhang H, Fiume E. Mesh smoothing with shape or 

feature preservation. In: Proceedings of Computer 

Graphics International 2002 (June 2002), published as 

Advances in Modeling, Animation, and Rendering, J. 

Vince and R. Earnshaw, editors, Springer-Verlag, June 

2002, 167-182. 

[7] Yagou H, Ohtake Y, Belyaev A. Mesh Smoothing via 

Mean and Median Filtering Applied to Face Normals. 

Geometric Modeling and Processing, RIKEN, Saitama, 

Japan, 10-12 July 2002, pp. 124-131. 

[8] Desbrun M, Meyer M, Schroder P, Barr AH. 

Anisortopic feature-preserving denoising of height fields 

and bivariate data. In: Graphics Interface 2000, May, 

2000. 145-152. 

[9] Peng J Strela V Zorin D. A simple algorithm for 

surface denoising. In: Proceedings of the conference on 

Visualization '01, San Diego, California, October, 

2001,107 – 112.  

[10] Clarenz U, Diewald U, Rumpf M. Nonlinear 

Anisotropic Geometric Diffusion in Surface Processing. 

In: Proc. IEEE Visualization 2000, pages 397-405, 2000. 

[11] Bajaj C L, Xu Guoliang. Adaptive Fairing of Surface 

Meshes by Geometric Diffusion. In: Fifth International 

Conference on Information Visualisation (IV'01), 

London, England 2001. 731-737. 

[12] Tasdizen T, Whitaker R, Burchard P, Osher S. 

Geometric Surface Smoothing via Anisotropic Diffusion 

of Normals. In Proceedings of IEEE Visualization 2002, 

Boston, MA. 125–132.  

[13] Jones T R, Durand F, Desbrun M. Non-Iterative, 

Feature-Preserving Mesh Smoothing. In: SIGGRAPH 

2003. 943-949. 

[14] Chen J, Han Y. Shortest paths on a polyhedron; part i: 

computing shortest paths. Int. J. Comput. Geom. & Appl. 

1996, 6(2): 127–144.

[15] Kapoor S. Efficient computation of geodesic shortest 

paths. In Proc. 32nd Annu. ACM Sympos. Theory 

Comput. 1999, 770–779. 

[16] M. Novotni and R. Klein. Computing geodesic distances 

on triangular meshes. In The 10-th International 

Conference in Central Europe on Computer Graphics, 

Visualization and Computer Vision (WSCG), pages 

341--347, 2002.

[17] Dijkstra E W. A note on two problems in connection 

with graphics. Numerische Mathematik 1, 1959, 1: 269–

271.

                             
       (a) initial mesh             (b) noisy mesh                   (c) Laplacian’s        (d) improved 

Laplacian’s  

                                  
           (e) Taubin’s                      (f) Jones’                          (g) Fleishman’s          (h) our method 

Figure 9. Comparison of smoothing methods
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