任意网格模型的相似度评估

唐杰，张福炎
（南京大学计算机科学与技术系，南京 210093）

摘要：提出了一种任意网格模型相似度评估机制及其实现方法。该算法以对称 Hausdorff 距离为基础，综合考虑了网格模型的几何相似性与外观相似性。在相似度计算过程中，采用平均单元格数据结构管理网格模型中的三角片，并根据三角片的大小自适应选择单元格的大小，保证了算法具有较快的运行速度。

关键词：三角网格。多分辨率模型。几何造型。网格简化

文章编号：1004-731X (2005) 01-0016-04 中图分类号：TP391 文献标识码：A

Evaluation of Similarity between Arbitrary Meshes

TANG Jie, ZHANG Fu-Yan

(Department of Computer Science and Technology, Nanjing University, Nanjing Jiangsu 210093, China)

Abstract: An algorithm to evaluate similarity between arbitrary meshes is presented. Based on symmetric Hausdorff distance, the algorithm calculates both geometric similarity and appearance similarity. Uniform grid is adopted to manage triangles of each mesh, and the size of grid cell is adjusted adaptively according to the average triangle size, so high computing speed is ensured.

Key words: triangle mesh; multi-resolution; geometric modeling; mesh simplification

引言

网格模型具有简单的数学描述，较好的通用性和灵活性，且可以实现硬件设备加速，因而广泛适用于真实感图形显示，如数控加工刀具轨迹计算和干涉检查、快速原型制造 (RPM)、医用图像、地理地形绘制、计算机游戏等许多应用领域。尤其是近年来，随着逆向工程技术的发展，高精度的坐标测量机的不断普及，为了加快产品开发速度，降低开发成本，越来越多的复杂模型是由立体测量机输出的散乱点集重构的三维网格模型来描述。许多网格模型不仅具有几何属性，还具有颜色、纹理等其它属性。

综上所述，虽然目前国内外学者对网格模型的相似度进行了许多研究，但这些研究大多集中于网格模型的几何相似性上，因而仍然缺乏一个有效的可以综合考虑网络模型几何相似性和外观相似性的评估机制和评估方法。本文提出一种任意网络模型相似度评估机制及其实现方法。该算法以对称Hausdorff距离为基础，综合了考虑网络模型的几何相似性和外观相似性。在相似度计算过程中，采用平均单元格数据结构管理网格模型中的三角片，并根据三角片的大小自适应选择单元格的大小，保证了算法具有较快的运行速度。

1 网格模型相似度

为了能够量化地评估两个网格模型之间的相似程度，有必要建立一种衡量两个网格模型之间差异的误差评估机制，也就是说，给定两个网格模型 M 和 M’，我们需要建立一个映射 E: M × M’ → R，而 E(M, M’)能够量化地评估 M 与 M’之间的相似程度。E(M, M’)越小，表明 M 与 M’越接近。

1.1 三角网格模型的几何相似性评估

目前常用对称 Hausdorff 距离来评估两个网格模型之间的几何相似度。

定义 1：三维空间中一点 x 到网格模型 M 的距离 d_e 定义为：

\[d_e(x, M) = \min_{y \in M} d(x, y) \] \hspace{2cm} (1)

其中 d(x,y)为点 x 和点 y 的欧氏距离。
定义2：网格M到M'的单向Hausdorff距离d_h定义为：
$$d_h(M, M') = \max_{x \in M} d_h(x, M')$$

定义3：网格M_0到M的对称Hausdorff距离d_s定义为：
$$d_s(M, M_0) = \max(d_h(M, M_0), d_h(M_0, M))$$

如果两个网格模型M和M'之间的对称Hausdorff距离小于t，则M上的任意点x，必有一点$y \in M'$使得$\forall (x, y) \in M'$，使得$d(x, y) < t$。对于M到y的欧氏距离；对于M_0到y的欧氏距离；对于y到M的欧氏距离，使得$\forall (y, x) \in M_0$，因而两个网格模型之间的Hausdorff距离实际上就是两个网格模型之间的最大误差L_2。

1.2 三角网格模型的外观相似度评估

网格模型M也可能仅仅包含几何形状信息，还包含其它附属信息，如颜色，纹理等。因此仍然用1.1节中的方法来评估与附属信息的网格模型之间的相似度，则虽然较好地反映其几何形状上的相似度，但不能真实地反映其附属信息之间的相似度。因而，有必要建立一种能够正确评估带附属信息的三角网格模型之间相似度的方法。

Paul S.Heckbert和对两个$m \times n$像素的位图I与I'之间的误差给出了如下的评估方法：
$$\|I - I'\| = \frac{1}{m \times n} \sum_{u \times v = 0}^{m \times n} \|I(u, v) - I'(u, v)\|^2$$

式中(u, v)为位图中(u, v)处的RGB向量(r, g, b)，$I(u, v) - I'(u, v)\|^2$为向量$I(u, v)$与$I'(u, v)$之间的欧氏距离。

Hugues Hoppe等在研究带纹理网格模型简化时，将网格模型所包含的信息分为几何信息和纹理信息。在评估网格差异时，先分别考虑几何形状和纹理信息的误差，再将这两种误差综合起来作为网格模型的整体误差。本文作者提出了一种网格模型外观相似度评估方法，定义如下：

定义4：给定两个网格模型M，M'，则M到M'的外相似度定义为：
$$\|M - M'\| = \frac{1}{n} \sum_{j=0}^{n-1} \|I_j - I_j'\|^2$$

式中I_j为M上第j个采样点处的RGB向量(r, g, b)，$I_j' = M'$上距离采样点j最近的点处的RGB向量(r, g, b)，$\|I_j - I_j'\|^2$为向量I_j与I_j'之间的欧氏距离，n为采样点的个数，该相似度是单向的。

定义5：给定两个网格模型M，M'，则M与M'之间的外观相似度定义为：
$$S = \max \{ \|M - M'\|, \|M' - M\| \}$$

2 网格模型相似度计算

有了网格模型相似度的定义后，本节讨论如何快速、准确地计算网格模型相似度。

2.1 算法概述

算法的主要步骤是：

1. **读入三角网格模型M和M'**。
2. **建立平均单元格，并将M和M'中的三角片分配至每个单元格**。
3. **在M上抽取采样点集S**。
4. **对每个$v \in S$，计算其到M'的最小距离d_v**。
5. **若有颜色或纹理属性，计算每个采样点的属性差s_v**。
6. **对每M'中单个三角片Hausdorff距离为max(d_v)：M'到M的单向外观相似度n度化**。
7. **类似地，重复Step3到Step6计算M'到M的单向Hausdorff距离和单向外观相似度**。
8. **计算网格模型几何相似度和外观相似度**。

2.2 平均单元格

为了描述物体更多的细节，目前的网格模型一般比较庞大，三角片的数量一般也比较多。在这些数据处理中，关键是迅速算法的效率。为了分析两个网格模型之间的相似度，就要计算每个采样点到三角网格模型的最近距离。如果直接计算，则其计算的复杂度为$O(n^2)$，其中n_v为一个网格模型的采样点个数，n_t为另一个网格模型的三角片个数。这种效率是非常低的。为此本文采用平均单元格法以提高算法的效率。

平均单元格的构造过程如下：首先确定M和M'的外接包围盒的范围，根据三角片的数量和模型的形状将长方体包围盒划分为$m \times n$个小立方体单元格，最后根据每个三角片的位置和M'中的三角片分配给一个立方体单元格，并将该三角片的序号添加到该立方体单元格对应的存放三角片的线性链表中。分配三角片的依据是若该三角片与一个单元格相交，则将该三角片分配给该单元格。需要注意的是当计算M到M'的相似度时，平均单元格中存放M'中的三角片；而当计算M'到M的相似度时，平均单元格中存放M中的三角片。

2.3 点到三角形的相似度

给定空间中一点v，以及一个三角片三个顶点p_1, p_2, p_3，根据点v在该三角片所在平面上的投影的位置，v到该三角片的距离d_v定义为如下三种情况（如图1所示，圆中的6条虚线分别垂直于三角片的三条边）：

a) 当v的投影落在区域1中时，d_v为到该三角片所处平面的距离；

b) 当v最近的点为v在该平面上的投影；
b) 当 r 的投影落在区域 2 中时，d₁ 为点到相应的边的距离；到 r 距离最近的点为 r 在该边上的投影；
c) 当 r 的投影落在区域 3 中时，d₂ 为点到相应的顶点的距离。到 r 距离最近的点为相应的顶点。

![图 1 点到三角片的距离](image)

2.4 点到网格模型的距离

点到网格模型的距离是计算网格模型相似度的关键步骤，它的计算准确性和效率直接影响整个算法的准确性和效率。本文利用平均单元格和点到三角片的距离实现了一种快速、准确的点到三角片的计算方法。

给定一个采样点和已划分好的平均单元格结构，确定好该采样点所在单元格后，设单元格边长为 size，计算点到网格模型的距离算法如下：

1. Level ← 0；
2. 依次计算该点到其所在单元格的所有三角片的距离，记其中最小的一个为 d_min；
3. Level ← 0；
4. 依次计算该点到其所属单元格外面第 Level 层的单元格所包含的所有三角片的距离 d，若 d < d_min，则 d_min ← d；
5. 若 d_min > Level × size，则转至 3；
6. 直到 d_min < Level × size

则 d_min 为点到该网格模型的距离，同时还可确定网格模型上距离该点最近的点的位置。

步骤 5 是为了防止图 2 所示的情况发生。图 2 中 T₁ 和 T₂ 为两个三角片，T₁ 属于第 1 层单元格，T₂ 属于第 2 层单元格，d₁ 和 d₂ 分别是采样点 r 到 T₁ 和 T₂ 的最小距离，且 d₁ > d₂。当计算完 r 到第一层单元格所含的三角片后，得到最小距离为 d₁，若此时终止计算，显然得到的结果并不准确，因为还存在 T₂，使得 r 到 T₂ 的距离 d_2 < d₁。因此，必须继续计算下去，直到计算出的最小距离小于 Level × size。这样才能确保结果的正确性。

![图 2 平均单元格](image)

3 实验结果

本文算法已用 C++ 语言实现。为验证算法的有效性，我们测试了许多模型，做了大量实验。图 3 和图 4 为其中两例。图 3a 所示为一简单的网格模型，拥有 45,478 个三角片。图 3b 为有 22,000 个三角片的简化模型。图 3c 为有 4,000 个三角片的简化模型。图 3d 为选择细化的网格模型。它们与初始网格模型的几何相似度测量结果分别如图 3e、图 3f、图 3g 所示。

图 4 为一球体网格模型的相似度测量结果，图 4a 为有 73728 个三角片的原始网格模型，图 4b 为线框图，图 4c 为一简化模型，图 4d 为线框图，图 4e 为几何相似度的分布图，图 4f 为外观相似度的分布图。

我们在 Intel Pentium IV 1.6 GHz, 256M RAM 的机上对图 3、图 4 中的模型进行了计算。结果如表 1 所示，由表中可以看出，我们的算法与 metro 相比，在时间上具有一定的优越性，且解决了 metro 不能反映外观相似性的问题。

![图 3 实验结果](image)
4 结论

网格模型相似度评估广泛应用于简化网格模型与原始网格模型之间误差的评估，网格模型的搜索匹配、网格模型的识别等领域。网格模型的相似度不仅仅是网格模型之间的几何误差，还包括网格模型的外观相似度，如颜色、纹理分布的相似度。本文提出一个有效的可以综合考虑网格几何相似性和外观相似性的评估机制和实现算法。该算法以对称Hausdorff 距离为基础，综合了考虑网格模型的几何相似性和外观详细性。在相似度计算过程中，采用平均单元格数据结构管理网格模型中的三角片，并根据三角片的大小自适应选择单元格的大小，保证了算法具有较快的运算速度。实验证明了本文算法的有效性和结果的正确性。

（下转第 24 页）
4 数值结果分析

通过数值模拟结果可以看出，温度在填埋场气体运移中有重要作用，主要体现在以下几个方面：

（1）本文基于流体动力学及传热学基本理论，通过垃圾填埋场中温度场和传热场耦合机理的研究，建立了可压缩垃圾填埋场气体运移耦合的数学模型，并采用有限元格式对该耦合模型进行数值求解，利用编制的有限元程序进行动态可视化模拟。

（2）从污染气体运移分布可以看出，考虑温度的气体压力的变化条件未考虑温度条件下的气体运移变化，即气体压力梯度变化加快，增大了填埋场内气体的对流，气体的排华速度增加，这与气体流速分布（图5）相吻合，因此，在填埋场的气体控制系统优化设计及环境影响预测和评价时，需考虑温度对气体运移的影响。

（3）由气体压力等直观分布可以看出，填埋场气体压力随深度的增加而增大，且随着时间的增长，其压力变化相对减小，气体压力扩散程度增大，从而表明耦合模型的非线性程度降低，而经耦合温度的孔隙压力变化大于非耦合模型孔隙压力，从而改变了多孔介质孔隙性，致使气体渗透率增大，因此必须考虑温度对垃圾气体运移的影响。

（4）总之，温度对垃圾气体的运移产生很大的影响，考虑温度作用下的耦合动力学模型较以前未耦合温度时模型更为切合实际，可为准确预测和预报填埋气在土壤中的扩散情况以及气体的收集和排放，防止二次污染提供了可靠的理论依据。

参考文献：