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 Abstract 
 
Some applications in 3D mesh surface modeling, 

e.g. geologic surface reconstruction, require linear 
discontinuous mesh pieces reconstructed from input 
point cloud. Unfortunately as far as we know, those 
previously developed approaches failed in 
reconstructing such mesh directly from point cloud. 
This paper presents a new method which using mesh 
fitting to create discontinuity during geologic surface 
reconstruction. After improved Hoppe’s reconstruction 
method, each vertex located at discontinuous area is 
adjusted to a new position based on quadric error 
metrics. Experiment results show that our method 
could generate high quality surfaces which satisfy both 
geometric and geologic constraints. 
Keyword: surface reconstruction; mesh fitting; 
quadric error metrics (QEM) 
 
 
1. Introduction 
 

Surface reconstruction from point cloud is a well 
studied problem in computer graphics. And in 
particular on an abstract problem defined by Hoppe 
et.al[1], the input is a point cloud X in the Euclidean 
space R3, without any additional structure or other 
information, and the desired output is an initial 
triangular surface M0 which approximates the unknown 
surface represented by X . In practice, point cloud for 
surface reconstruction come from a variety of sources: 
laser range scanners, contact probe digitizers, seismic 
prospecting method or medical imagery.  

In 3D geology modeling, surface reconstruction 
also is a prominent problem. There are two basic 
surfaces, horizon and fault. Horizon is a mesh surface 
composed of several linear discontinuous pieces. And 
the discontinuities are the outstanding feature and often 
occur in geology[2]. Better approximation should be 
obtained near the discontinuous area. Some important 
geologic elements, e.g. geology fracture, block and 
strata are generated from the discontinuities. 

Consequently, to some degree surface reconstruction in 
3D geology modeling is different from other mesh 
surface applications. Unfortunately as far as we know, 
those previously developed approaches failed in 
reconstructing such horizon surface directly from point 
cloud. According to our approach presented in this 
paper, firstly initial mesh surface is reconstructed from 
X using our improved Hoppe’s method, and then 
discontinuous horizon pieces are generated from fault 
constraints. In order to better approximate the unknown 
surface represented by X, fitting process is applied to 
the initial discontinuous pieces based on fault 
constraints using QEM. 

The input to the surface reconstruction problem is 
a point cloud X in the Euclidean space R3 from the 
surface W of a 3D object, and the output surface M0 
should be a piecewise-linear approximation of W. 

The mesh fitting problem considered in this paper 
can be roughly stated as follows: After surface 
reconstruction which results in M0, find a mesh M of 
the same topological type as M0 that better fits the 
unknown surface W near the discontinuous area and 
based on fault constraints.  

In a nutshell the principal contributions of our 
reconstruction method are the following: 

1. Improving Hoppe’s algorithm on normal 
computing and triangle extraction 

2. Optimizing horizon pieces based on fault 
constraints using QEM 

The remainder of this paper is organized as 
follows: In Section 2 we review related work in surface 
reconstruction and fitting approaches. Improvements to 
Hoppe’s algorithm are presented in Section3. We 
introduce QEM and our fitting approach in Section 4 
and Section 5. And provide approximation error 
evaluation and results in Section 6 and Section 7 
respectively. Finally we conclude in Section 8 by 
summarizing our approach and future research. 

 
2. Related Work 
 

Surface reconstruction from unorganized point 
cloud is a wide research topic, and it has motivated a 
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large body of research in computer graphics and 
previous approaches can be broadly grouped into three 
categories[3]:  

(1) Address the surface reconstruction problem 
through the use of computational geometry techniques[4] 

[5]. These methods proceed by computing either the 
Delaunay triangulation of the point cloud or the dual 
Voronoi diagram and using the cells of these structures 
to define the topological connectivity between the 
points. 

(2) Address the surface reconstruction problem by 
directly fitting a surface to the point cloud[6] [7]. These 
approaches represent the base shape as a collection of 
points with springs between them and adapt the shape 
by adjusting either the spring stiffness or the point 
position as a function of the surface information. 

(3) Address the surface reconstruction problem by 
defining an implicit function to the point cloud and 
then extracting the reconstructed surface as an 
isosurface of the function[1] [8]. 

In brief, there is no clear recipe how to proceed 
for obtaining the best mesh surface reconstructed from 
point cloud X for all applications. It is relatively easy to 
check whether the surface M is within a tolerance or 
not, it is more difficult to decide whether it is 
reconstructed well enough. 

In general, our surface reconstruction approach 
belongs to the third category, and has following 
advantage. First, the approach can process unorganized 
and unevenly distributed point cloud, and return a 
model with hole which is water-tight or not. And 
second, the use of implicit function does not place any 
restrictions on the topological complexity of the 
extracted isosurface, so it can be applied to many 

different 3D models. 
 

3. Improvements to Hoppe’s Algorithm 
 
According to Hoppe’s algorithm[1], the fist step 

toward defining the implicit function is to compute an 
oriented tangent plane for each sample point. And the 
tangent plane for point p is determined by its 
k-neighborhood. Here k-neighborhood means k points 
of X which have nearest Euclidean distance to p. But in 
3D geology modeling, as Figure 1(a) shows, point 
cloud is often separated into several discontinuous 
parts by faults which are not included in Figure 1(a). If 
we find k-neighborhood of each sample point without 
constraint as Hoppe algorithm did, some points’ 
normals will be incorrect, as shown in Figure 
1(b)(inside the rectangles). The reason is that those 
points’ k-neighborhood crossed a fault. Figure 2 shows 
the detail. p2 is one of p1’s k-neighborhood. The solid 
line indicates a fault. Therefore, p2 and p1 are located 
across the fault. Using p2 to compute the normal of p1 
will lead to an incorrect result. Here we have to find a 
way to improve it. 

In our proposed method, since X is assumed to be 
a ρ–dense, δ-noise sample of W, we make a rule that 
d(q, N)< ρ+δ, where q is the candidate neighbor point 
of p, N is neighbor point set of p which has been 
searched, and d means minimum distance between q 
and N. So each neighbor point of p will not cross 
fracture or hole, and the normal will be more precise. 
Figure 1(c) demonstrates the normal computing result 
using our improvement. 

   
(a)original point cloud    (b)normals computed    (c)normals computed 

using Hoppe’s method    using our method 
Figure 1. Comparison of two normal computing methods 

 
Figure 2. Imprecise k-neighborhood search 

fault 

p1 

p2 

sample point 
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 Marching Cubes (MC) algorithm[9] is the most 
popular and classical isosurface extraction algorithm. 
During the implementation we found that if some 
points of X distribute as Figure 3 shows, some triangles 
will be wrongly extracted. Figure 4(a) shows the wrong 
surface extraction result, and Figure 3 demonstrates the 
reason. Signed distances of cube vertices c1 and c2 are 
positive while c3 and c4 are negative. So there should 
be two interpolate points between c1c3 and c2c4, and 
then two obviously wrong triangles will be extracted 
from this cube. In Figure 3, the red line is a line 
wrongly extracted from the one of cube’s six faces. In 
order to avoid this, we introduce a user-specified 
parameter-flip angle f. According to each cube vertex v, 
if the found tangent plane whose center is closest to v 

doesn’t intersect with the cube, we label v 
semi-undefined. During the extraction process, if any 
one of eight cube vertices is labeled semi-undefined, a 
mean tangent plane normal np is computed in terms of 
those vertices which are not label semi-undefined. The 
extracted triangle’s normal nt is evaluated. If the angle 
between np and nt is greater than f, in inequality np·nt >f, 
where np and nt has been unitized, none triangle will be 
extracted from this cube. We make such improvement 
based on the assume, that in terms of local shape, the 
extracted triangle will not flip too much against 
unknown surface W, and the tangent plane is a local 
linear approximation of W. Figure 4(b) demonstrates 
the improved result. 

 
Figure 3. Wrong extraction of MC algorithm 

  
(a)  f=180º     (b)  f=30º 

Figure 4. Comparison of two different triangle extraction results
 

4. QEM 
4.1. QEM Introduction[10] 

 
Garland and Heckbert first proposed 

QEM(Quadric Error Metrics) which was originally 
used in mesh simplification based on the iterative 
contraction of vertex pairs. Each vertex in mesh is the 
solution of the intersection of a set of planes—namely, 
the planes of the triangles that meet at the vertex.  

The standard representation of a plane is the set of 
all points for which 0=+++ dczbyax  where 

Tcba ),,(=n is a unit normal and d is a scalar constant. 
So the squared distance of a vertex Tzyx ),,(=v  from 
the plane is given by the equation 

222 )()()( dczbyaxdD T +++=+= vnv  
For a vertex p with an associated set of triangle 

planes, the error metric at that vertex can be defined to 
be the sum of squared distance of the vertex to all the 

planes in the corresponding set 
22 )()( i

T
iiiip dDQEM +== ∑∑ vnv  

And )(2 viD  can be rewrited as follows. 
22 )(2)()( ddD TTT ++= vnvnnvv  

where nnT is the outer product matrix 
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A triple is defined as ),,( cbAQ =  where A=nnT 
is a 3×3matrix, b= dn is a 3-vector, and c=d2 is a 
scalar. 

The triple Q is called a quadric error 
metrics(QEM) or quadric matrix. Given a vertex 

Tzyx ),,(=v  

cbD TT ++== vAvvvvQ 2)()( 2  

Q(v) is also called quadric error, and it represents 

sample point 
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c3 c4 

n 

n is normal direction 
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the squared distance of vertex v to a particular plane. 
The QEM can provide a useful characterization of 

local surface shape. And it requires only modest 
storage space and computation time. This is because:  

))(()()( vQQvQvQ jiji +=+  

),,( jijijiji cc +++=+ bbAAQQ  

Some QEMs is added, but storage space doesn’t 
increase.  

 
4.2. Geometric Interpretation of QEM 

 
In this section the geometric interpretation of 

QEM will be discussed. Given a set of k planes defined 
by equations of the form 0=+ i

T
i dvn (i=1,…,k). Let 

N be the k×3 matrix of normals.  
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And let d be the corresponding k-vector of offsets 
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Suppose that a point Tzyx ),,(=v is to be located 
which lies at the intersection of these planes. Such a 
point would satisfy equation 0=+ dNv  

In general if k>3 this system of equation will be 
over-constrained. It is impossible that all the planes 
will intersect at a single point. In order to find the point 
which best fits this set of planes, the least squares 
method is applied. So the essence of QEM is to find the 
optimal approximation point by applying the least 
squares method. 

 

5. Mesh Fitting Based on QEM  
5.1. Basic Conception 

 
Our fitting algorithm is based on QEM, which is 

introduced in Section 4.1. For the sake of convenience, 
each sample point in point cloud is associated with a 
symmetric 4×4 matrix Q instead of the triple QEM. If a 
point’s coordinate is Tzyx ),,(=v and its tangent 

plane’s unit normal is Tcba ),,(=n  which can be 
evaluated by Principle Component Analysis method[1], 
then 

Q=
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where d can be evaluated from the equation 
0=+++ dczbyax . To find an optimized position 

according to k points’ Q matrices, we simply sum up 
these matrices (Qsum=Q1+Q2+…+Qk), then get the 
optimized position from Qsum by using least square 
method. If Qsum is not invertible, the optimized position 
is one of the k points with the least error. 

In order to make horizon pieces better 
approximate the unknown surface W featured by X near 
discontinuous area, some vertices in horizon are 
located and adjusted. During the adjusting procedure, 
firstly the Q matrix of each sample point is computed, 
and then the neighbor points of each vertex in 
discontinuous area are located with fault constraints. 
The optimized adjust position is evaluated according to 
the neighbor points’ Q matrices. Finally each vertex is 
assigned the optimized coordinate. 

Figure 5 illustrates one vertex adjust procedure. A 
new position is evaluated based on the five points’ Q 
matrices, then the vertex is updated to the new position. 

 
 

5.2. Summary of Algorithm 
 
The algorithm can be quickly summarized as 

follows: 

1. Compute the Q matrices for all the sample 
points in X 

2. Get an unprocessed vertex vi in discontinuous 
area 

3. Get neighbor sample points of vi with fault 

(a) before (b) after 

mesh vertex sample point 

Figure 5. Vertex adjust
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constraints 
4. Compute optimized position according to 

neighbor points’ Q matrices, and assign the 
optimized position to vi 

5. If all vertices in discontinuous area have been 
processed, algorithm exists successfully. Else 
return to Step 2. 

It should be noted that since the point cloud 
maybe not evenly distributed, it may be better if vertex 
only be adjusted along its normal direction. 

 
6. Approximation Error Evaluation 

 
As stated earlier, the primary aim of mesh fitting 

is to produce a surface approximation which should be 
as same as possible to the unknown surface represented 
by point cloud. In order to evaluate the quality of 
approximation produced by the introduced algorithm, 
we need an error measurement. We have chosen a 
metric which measures the average squared distance 
between the approximation surface and the original 
point cloud. This is very similar to the Edist energy term 
used by Hoppe[11]. We define the approximation error 
E=E(M,X) as: 

∑
∈

=
sXp

Mpd
sX

E ),(1 2  

where M and X are approximation surface and point 
cloud respectively, and Xs is sets of point which are the 
neighbor points of discontinuous area in M. The 
distance fpMpd Mf −= ∈min),(  is the minimum 
Euclidean distance from p to the closest face of M. 
 According to Figure 7 (b) and (c), E(M,X) is 
35.6473 and 22.0067 before and after fitting 

respectively. E(M,X) is reduced by about 38%. 
 
7. Experiment Results 

 
This section provides some examples to 

demonstrate the proposed approach. A prototype 
system has been developed for evaluating and testing 
the approach described in this article. The system is 
implemented on a DELL workstation with 2.0G MHz 
CPU and 1G RAM under a RedHat Enterprise 
operating system. Figure 6-8 illustrate some examples. 

All surfaces and blocks in Figure 6-8 are rendered 
in flat shading. 

Figure 6 demonstrates our improvements to 
Hoppe’s algorithm. The point cloud is shown in Figure 
6(a), the reconstructed horizon with Hoppe’s algorithm 
is shown in Figure 6(b), and the reconstructed horizon 
with our improvements is shown in Figure 6(c). 

Figure 7 shows another reconstruction example of 
a typical horizon. Figure 7(a) is input point cloud, and 
(b) and (c) are corresponding reconstruction horizons. 
Compared with (b), there are two discontinuous 
horizon pieces in (c) because of the introduced fitting 
algorithm. It is obvious that (c) approximates point 
cloud better than (b). 

Figure 8 also shows other examples for our 
reconstruction approach application. These geologic 
blocks are made up of geologic surfaces which are not 
fitted in (a) and (c) and which are fitted in (b) and (d). 
In light of (b) and (d) there are fractures between two 
blocks and fracture is a very important feature in 
geology. Especially as to (d), it is a cross-section and 
the two top horizon pieces in block are discontinuous. 

  
(a)       (b)       (c) 

Figure 6. Point cloud and two different reconstruction horizons 

   
(a)       (b)       (c) 

Figure 7. Point cloud(a), reconstruction horizons without fitting (b) and with our fitting method(c) 
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(a)         (b) 

    
(c)         (d) 

Figure 8. Blocks made up of mesh surfaces and its’ cross-sections 
 
8. Conclusions 
 

In this paper we have presented a novel method 
for surface reconstruction in 3D geology modeling. 
Firstly we make some improvements to Hoppe’s 
algorithm on normal computing and triangle extraction 
because of fault constraints. Fitting algorithm using 
QEM is introduced in order to make better 
approximation near discontinuous area. Experiment 
results show that our method is capable of generating 
geologic surface which satisfy the requirements of 3D 
geology modeling. 

Future work may concern about how to avoid 
possibly producing sliver triangles during fitting 
process, which can result in poor approximations[12] 
and lead to instability during later process. And 
additional constraints like orientation data will be 
included into the developed surface reconstruction 
approach. 
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