
International Journal of Automation and Computing 04(1), January 2007, 8-13

DOI: 10.1007/s11633-007-0008-5
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Abstract: We present a new algorithm to compute a geodesic path over a triangle mesh. Based on Novotni′s propagating wavefront
method which is similar to the well known Dijkstra algorithm, we made some improvements which Novotni had missed and we also
gave the method to find out the geodesic path which Novotni had not. It can handle both convex and non-convex surfaces or even
with boundaries. Experiment results show that our method works very well both in efficiency and precision.
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1 Introduction

Geodesic curves are useful in many areas of mesh
processing, such as segmentation[1], terrain navigation,
parameterization[2], remeshing[3] and skeleton generation[4].
The increasing development of discrete surface models de-
manded the definition of geodesic curves for polyhedral
surfaces[5], and hence the study of efficient algorithms to
compute them. Such curves are called Discrete Geodesics
and there exist some different definitions for them, mostly
depending on the application in which they are used. Usu-
ally, we consider a geodesic as a shortest path between two
points on the surface. In most applications, the efficiency
of computations is preferred over accuracy. Instead of op-
timal solutions efficiently computable high quality approx-
imations are called for.

There are two kinds of geodesic computing problems.
One is the single source shortest path problem, in which
one wishes to find a shortest path between a source point
and any other point on the surface. The other, more com-
plex, version of the problem asks for a subdivision on the
surface such that a shortest path between any pair of points
in the surface can be found quickly; this is known as the all
pairs shortest path problem.

In this paper we present a new algorithm to compute
a geodesic path over a triangle mesh. Based on Novot-
nis propagating wavefront method which is similar to the
well known Dijkstra algorithm, we made some improve-
ments which Novotni had missed and we also proposed a
method to find out the geodesic path while Novotni had
not. It can handle both convex and non-convex surfaces or
even with boundaries. Experiment results show that our
method works very well both in efficiency and precision.

In Section 2, we do a quick review of the related work.
Section 3 presents the algorithm, which is the main con-
tribution of this paper. We begin with an approximate
geodesic distance field and then give the method to find out
the geodesic path. In Section 4 we show some experimental
results and finally in Section 5, we make a conclusion.
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2 Related work

Most of the algorithms use front propagation or some
other kind of Dijkstras-like algorithm. In 1987 Mitchell
et al.[6] provided an exact solution for the “single source,
all destination” shortest path problem on a triangle mesh.
Their algorithm partitions each mesh edge into a set of
intervals (windows) over which the exact distance compu-
tation can be performed atomically. These windows are
propagated in a “continuous Dijkstra”-like manner. They
proved that the worst case running time is of O(n2logn)
and requires O(n2) space, where n is the number of mesh
edges. Surazhsky[7] implemented the algorithm and prove
that the algorithm runs in sub-quadratic time. Chen and
Han[8] proposed an exact geodesic algorithm with worst
case time complexity of O(n2). Kaneva and ORourke[9] par-
tially implemented this algorithm. Another exact geodesic
algorithm with worst case time complexity of O(nlog2n)
was described by Kapoor[10]. This is a very complicated al-
gorithm which calls as subroutines many other complicated
computational geometry algorithms. It is not clear if this
algorithm will ever be implemented.

Exact geodesic computing costs too much resources and
sometimes approximate geodesic is enough. Approximate
geodesic again can be categorized generally into two groups.
The first kind obtains the geodesics by adding extra edges
into the mesh and running Dijsktra on the one-skeleton
of this augmented mesh[11,12]. These algorithms require
the addition of numerous extra edges to obtain accurate
geodesics. The algorithm described in [11] relies on the
selective refinement, and therefore significantly depends on
the first approximation path found. If this approximation is
far from the actual solution, the subdivision method might
converge to the local minimal path (instead of the global
geodesic one), or it might take a very large number of it-
erations until the refinement area moves to the vicinity of
the actual geodesic and the process converges. Reference
[12] presented an iterative algorithm to compute a shortest
geodesic between two points over a mesh. At each step it
computes a new curve with smaller length. This is done
by reducing locally the curve length at each vertex. It ex-
plores the fact that the intersection of a mesh face with a
shortest geodesic is a line segment, and hence its vertices
lie on mesh vertices or edges. However, iteration is not
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a good choice because it consumes more time and is dif-
ficult to end up. The second kind of methods define the
approximate geodesic distance field over the whole mesh
and then find out the required geodesics. The difference
among these methods is the way they build the distance
field. Surazhsky[7] defined the distance filed over the inter-
val of edges, and this costs relatively more space and is dif-
ficult to manage. Novotni method[13] defined the geodesic
distance field over the vertices which is efficient both in
time and space. However, during the distance field gener-
ation, Novotni missed some cases which affect the output
greatly. Other approximate geodesics include: Kimmel and
Sethian[14] proposed an algorithm that runs in O(nlogn)
time. The approximate geodesics found by this method
can be quite inaccurate, even for planar meshes. Polthier
and Schmies[5] described a different definition of a geodesic
path on meshes using a notion of “straightest” instead of
“shortest”. This notion may be inappropriate for some ap-
plications of geodesics.

3 Algorithm

3.1 Geodesic distance field

Novotni[13] proposed an approximation method to com-
pute geodesic distances on triangulated domains in the
three dimensional space. The particular approach is based
on the Fast Marching Method for solving the Eikonal equa-
tion on triangular meshes. When computing the geodesic
distance between two point, the algorithm proceeds by
propagating a wavefront outwards from the start points.
The advancing front can be thought of as a brush-fire ad-
vancing with constant velocity in all directions in which the
mesh has not yet been “burnt”. This is accomplished in a
fashion very similar to the well known Dijkstra algorithm
for computation of shortest paths in a graph. The geodesic
distances of vertices are calculated propagatedly until the
target vertex is met or all vertices of the mesh have their
own geodesic distances.

The scenario is that given a start point and an end point
on a mesh, compute the geodesic distance between these
two points. The overall algorithm could be separated into
initialization and computing courses. The initialization is
as follows (see Fig. 1):

1) All vertices are initialized with the prescribed values,
e.g. a zero.

2) All vertices are categorized into 3 groups: fixed, com-
puted and unprocessed. If the start point is one of the
vertices of the mesh, its 1-ring vertices and itself are cat-
egorized into fixed group because the geodesic distance of
these vertices to the start point is definitely fixed. If the
start point lies on the plane of a triangle, the vertices of
this triangle are categorized into fixed.

3) Then the according distance values for all the vertices
which are incident to triangles containing exactly two fixed
vertices are computed (this will be discussed in the next
section), and those vertices are included into the computed
set indicating that the values of these vertices may change.

4) All the remaining vertices are included to the Unpro-
cessed set.

The vertices of computed set are stored in a heap and

Fig. 1 Initialization course. The center vertex is the start

point. Therefore the 1-ring vertices and the center vertex are

fixed, and the square vertices lying on the 2-ring of the center

vertex are computed, other vertices are unprocessed

sorted according to the geodesic distance. Thus the com-
puting course proceeds as follows (see Fig. 2):

1) Pop up the vertex v with the smallest geodesic distance
value. Add this vertex to the fixed set.

2) For each vertex in the 1-ring vertices of v, if it belongs
to unprocessed and can be compute now (which means that
it is incident to a triangle containing exactly two fixed ver-
tices), remove it from unprocessed set and insert it to the
computed set. If it belongs to the computed set and can be
computed and the computed geodesic distance is less than
its original value, then updating its geodesic value. Finally,
resort the vertices in the computed set.

3) Return to 1) until the computed set is null or the end
point is matched.

In the algorithm, the newly computed distance values
cannot be smaller than the values supporting this compu-
tation. This monotonicity property ensures that the solu-
tion is always propagated outwards by selecting the vertex
with smallest geodesic distance value. In other words, no
values corresponding to vertices in the fixed set will have
to be recomputed. Eventually, every non-fixed vertex will
have to be chosen as the one with smallest geodesic distance
value in the computed set, the complexity of the algorithm
is therefore mainly influenced by this operation. In our im-
plementation, we applied a pairing heap for this purpose,
the above vertex location procedure took O(logn) time us-
ing this technique. Since all vertices in the domain have to
be processed, the overall time complexity of the algorithm
is O(nlogn). Since the number of vertices in the heap at
the same time is far less than the mesh vertice number, the
algorithm runs fairly fast, which will be verified by experi-
ments.

3.2 Virtual start point

When computing the geodesic distance of a vertex vi

from the start point, if the other two vertices of the triangle
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Fig. 2 Propagation course. Let us say vvvk has the least geodesic

distance from center point. Thus we add it into the fixed set.

vvvl originally belongs to the unprocessed set, but now its

geodesic distance could be computed and we add it into the

computed set. vvvk originally belongs to computed, now we can

compute its geodesic distance from a different direction, thus

we update its geodesic distance value with the less one

in which vi lies both have effective geodesic distances, the
geodesic distance of vi is computed using the virtual start
point (as shown in Fig. 3), which is implemented as follows:
Given a triangle vivi+1vi+2, if the geodesic distances of vi+1

and vi+2 are already calculated, say di+1 and di+2, respec-
tively, we could compose two circles using vi+1 and vi+2

as centers, di+1 and di+2 as radii, respectively. Denoting
the intersect point far off from the vi as vs, the geodesic
distance of vi is the distance between vi and vs , which is
‖vivs‖.

If we locate the vivi+1vi+2 as in Fig. 3, the coordinates
of vs could be decided by

Fig. 3 The virtual start point

vsx
2 + vsy

2 = di+1
2

(vsx − v(i+2)x)2 + vsy
2 = di+2

2.

The solution of the above equations is

vsx =
v2
(i+2)x + di+1

2 − di+2
2

2v(i+2)x

vsy = ±
q

di+1
2 − vsx

2.

From the definition we know that the vsy which is less
than 0 is the right solution. And thus we could calculate the
distance between vi and vs, as well as the intersect point of
vivs and the x axis, which is used to find out the geodesic
path.

Novotni′s method is fast and effective, but sometimes,
the error is too big to accept. We find that the algo-
rithm ignored two other cases when calculating the distance
from the virtual start point. As shown in Fig. 4, Novotni′s
method only considered the case of Fig. 4 (a), while miss-
ing the two cases of Fig. 4 (b) and Fig. 4 (c). Therefore, we
improve the method as follows:

1) When the intersect falls in between vi+1 and vi+2, the
geodesic distance is ‖vivs‖ (see Fig. 4 (a))

2) When the intersect falls left to vi+1, the geodesic dis-
tance is di+1+‖vivi+1‖ (see Fig. 4 (b))

3) When the intersect falls right to vi+2, the geodesic
distance is di+2+‖vivi+2‖ (see Fig. 4 (c))

3.3 Geodesic path

Novotni did not give how to find the geodesic path; but in
some application such as tool path generation and remesh-
ing, we need to find the explicit geodesic path. Hence, we
propose a method to find the geodesic path based on the
geodesic distance field generated in the last section.

During the building of geodesic distance field, for each
fixed vertex, we store the two vertices ID on which the
vertexs geodesic distance is computed and we call them the
parents of the vertex. When creating geodesic path, like
many other algorithms, we adopt a back-tracing method
which starts form the end point and processes as follows:

Step 1. If the end point is one of the vertices of the
mesh, find its parents. If the end point lies inside a triangle,
calculate its geodesic distance on each two vertices of the
triangle respectively, find out the shortest one.

Step 2. Calculate the intersect point of the current point
and its virtual start point.

Step 3. If the intersect point lies in between the two ver-
tices (see Fig. 4 (a)), add it to the geodesic path list, find out
the vertex opposite the edge, calculate the geodesic distance
of the intersect point using two pairs of the vertices respec-
tively, find the shortest one. Replace the current point with
the intersect point.

Step 4. If the intersect point lies outside the two vertices
(see Fig. 4 (b) and Fig. 4 (c)), add the relevant vertex to
the geodesic path list and replace the current point with
the relevant vertex.

Step 5. Goto step 2 until 1) if the intersect point lies in
between the two vertices and the vertex opposite the edge
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(a)

(b)

(c)

Fig. 4 Three cases of virtual start point

(a) (b)

(c)

Fig. 5 Geodesic distance on a planar mesh

is the start point or 2) if the intersect point lies outside the
two vertices and the parent vertices contain the start point.

Through the above method we could construct the
geodesic path quickly.

4 Results

In order to test our method, we did lots of experiments.
Fig. 5 (a) is a dense planar rectangle mesh, which has

10 000 vertices and the edge length of the rectangle is 1.
We calculated all geodesic distances from the left bottom
vertex to others. Since the geodesic distance on a plane
is just the Euclidean distance, we could easily find out the
error of the algorithm. The result shows that the maximum
error is 10∼15, the root mean square error is 10∼31, which
is quite precise. Fig. 5 (b) is the iso-distance line from the
left bottom vertex and Fig. 5 (c) is the colorful result.

Fig. 6 (a) is a dense planar rectangle mesh similar to
Fig. 5 (a) but with a square hole in the center. The geodesic
distance therefore is different. But since we considered the
two cases in Fig. 4, our method could handle such a prob-
lem. Fig. 6 (b) is the colorful result and the geodesic path
from the left bottom point to the up right point.

Fig. 7 explains the geodesic path more detailedly. In
Fig. 7 (a), there are two holes and the result shows the
geodesic path. In Fig. 7 (b), one more hole is added, thus
the former path apparently is not the shortest one, there-
fore, the algorithm chooses the shortest path automatically.

Fig. 8 shows another more complicated result of our al-
gorithm, in which we calculated all geodesic distances from
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(a) (b)

Fig. 6 Geodesic distance on a planar mesh with a hole

(a)

(b)

Fig. 7 Geodesic path on a planar mesh with more than one

hole

(a)

(b)

Fig. 8 Geodesic distance on a horse

the top vertex on the nose of the horse to all other vertices.
Our method runs fast. We tested our method on a com-

puter with 2.4 GHz CPU, 512 M RAM. For a mesh with
nearly 20 000 vertices, we computed the geodesic distances
from all other vertices to a start point in less than 5 s,
while Novotni′s method processed a similar size problem on
a 1 200 MHz AMD Athlon PC with 256 MB RAM in 7.5 s.
Other method ran relatively slow. Another advantage of
our method is that it costs less space. In fact, for each ver-
tex, it just needs a float to store the geodesic and two ints
to store parents ID, while Surazhskys method needs extra
space to store the intervals.

5 Conclusions

In this paper we analyzed and improved the marching
front method for geodesic distance computation proposed
by Novotni. Especially, in the case of mesh with holes our
results are better than the ones produced by the original
algorithm. Also, we give a fast method to find the geodesic
path. Experiments verify the effect and efficiency of our
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method. It is difficult to analyze the error bound of our
method theoretically, so we test it by experiments, which
we want to improve it in the future.
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