
Interective Point Clouds Fairing on Many-Core System

Tang Jie
Department of Computer
Science and Technology

Nanjing University
Nanjing, China

tangjie@nju.edu.cn

Wu Gangshan
Department of Computer
Science and Technology

Nanjing University
Nanjing, China

gswu@nju.edu.cn

Xu Bo
Department of Computer
Science and Technology

Nanjing University
Nanjing, China

xubo@graphics.nju.edu.cn

Gong Zhongliang
Department of Computer
Science and Technology

Nanjing University
Nanjing, China

gzl@graphics.nju.edu.cn

Abstract—This Paper proposes an interactive point clouds
fairing algorithm running on many-core system. The algorithm
is composed of four steps. Firstly, a k nearest neighbor
searching method was designed which could fully utilize the
computing ability of GPU. Secondly, a parallel Gaussian
weighted normal estimation was put forward. Thirdly, a
weighted fairing method was proposed to get better result
especially for the unevenly distributed point clouds. The whole
algorithm was implemented on NVIDIA GPU using CUDA.
Experimental results show that the algorithm could achieve
interactive fairing of large size point clouds with good quality.

Keywords- point clouds; fairing; CUDA; GPU

I. INTRODUCTION
Point clouds have become increasingly popular in

modeling. Due to improved graphics hardware and
technologies for the acquisition of point geometry, point
clouds are getting larger and larger. Point clouds has simple
data description and easy to get. Therefore, it is widely used
in many fields. However, there usually exist some noise in
point clouds due to the fluctuation during the measure
course. Hence, it is critical to erase the noise as much as
possible. Otherwise, it will influence the quality of
following processing.

 Fairing is used to eliminate or alleviate the noise 3d
model. So fairing effect is an important feature of fairing
algorithm. Unlike meshes, there is no explicit connection
information in point clouds. Furthermore, it is very easy to
mistake the connection status nearby sharp features such as
thin parts, which will further influence the effect of fairing.
Running speed is an important feature of fairing algorithm.
Real time or interactive fairing is the most favorable.
Unfortunately, with the growth of data size of point clouds,
traditional fairing methods such as Laplace filtering etc,
which perform fairing iteratively, usually cost several
minutes or more on a model with 100,000 points. This is
unacceptable in interactive modeling system. So we have to
find a better solution.

Modern graphics processing units(GPUs) have been at
the leading edge of increasing chip-level parallelism for
some time. Current NVIDIA GPUs are many-core processor
chips, scaling from 8 to 240 cores. Increasing parallelism,
rather than increasing clock rate, has become the primary
engine of processor performance growth. This degree of

hardware parallelism reflects the fact that GPU architectures
evolved to fit the needs of those problems with tremendous
inherent parallelism, such as point clouds fairing. However,
this also raised many important questions about how to
productively develop efficient parallel programs. Exist point
fairing methods cannot be shifted to many-core system
directly.

In this paper, we extent the bilateral mesh denoising
method proposed by Fleishman[1] to point clouds. The
fairing process is divided into 4 steps: uniform grid
construction, k-neighbor search, normal estimation and
fairing. Each step is converted into a kernel function which
could be executed paralleledly on GPU. Our contributions
are as follows:

 Extract the parallelism in bilateral point denoising
algorithm, execute it on a many-core system and
achieve interactive point fairing.

 Propose a new parallel k nearest neighbour searching
algorithm with good quality and fast speed.

 Improve the normal estimation method to deal with
unevenly distributed points.

 Proposed a weighted bilateral denoising method to
cope with unevenly distribute points.

Our fairing algorithm has been implemented on a
graphics card using CUDA[2] for a significant speedup over
the CPU implementation.

II. RELATED WORK
According to the diffusion type, point clouds fairing

could be categorized into two types: isotropic method and
anisotropic method. According to fairing evenly or not,
point clouds fairing could be categorized into linear fairing
and non-linear fairing. According to the filter type, point
cloud fairing could be categorized into the following
groups: Laplace fairing, Wiener filtering, bilateral
denoising, and Moving Least squares method.

Laplace fairing diffuses high frequency noise to achieve
filtering[3][4]. In fact, Laplace filtering is the minimization of
energy of a surface. With the increase of iterations, the
shrinking and distortion are inevitable. To overcome this
problem, Vollmer[5] adjust the vertex’s position along its
normal with a little offset after it has been faired. But
distortion nearby sharp features still exists. Those methods
belong to isometric linear fairing, in which denoising and
feature keeping are contradictive.

International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4190-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ISPA.2010.49

557

Peng[6] apply the local adaptive filtering to the mesh and
point denoising, but the local connectivity should be aware
of before fairing. Alexa[7] proposed a Wiener filter utilized
in mesh denoising. Similar to Laplace filter, the method also
diffuses the high frequency noise into local neighbor and
has to know the local connectivity.

Moving Least squares(MLS)[8] belongs to surface fitting
method based on iteration. For the input point clouds,
firstly, an approximating hyperplane has to be determined
for points p near the (d -1)-dimensional hypersurface S
which is sampled by {pi}. This is done by solving a non-
linear minimization problem. Then the hypersurface is
interpolated locally by polynomials that have the hyperplane
defined in the first step as domain. The non-linear
minimization problem is reformulated as an eigenvalue
problem of an associated weighted covariance matrix. The
second step is a system of linear equations whose size
depends on the degree of the approximating polynomials.
The main idea of this method is to implicitly define an
approximating surface. MLS perform well on denoising, but
acted bad where the shape is sharp.

Different from Laplace filtering, bilateral filtering use
weighted summation of neighbor sample points to adjust the
fairing point, which could preserve the feature very well.
Fleishmann[1], Jones[9] utilize it to achieve mesh denoising.
The method does not need iterations, and could keep the
sharp feature pretty well.

Actually, the fairing of large point clouds runs very slow.
And the fairing could be done parallelly. Jalba[10] proposed a
mesh smoothing method using GPU, which runs pretty fast.
Ni[11] gave a quadrangle mesh fairing method. These
methods are both cope with meshes which have explicit
connectivity.

Bilateral denoising does not need iteration and could
keep sharp feature while eliminate the noise. However,
existed method could only process meshes which have
explicit neighbor connectivity. Also while processing
unevenly mesh fairing, it is straightforwardly to use the area
of triangle as weights. But pointset does not have such
attribute to use. Bilateral denoising method does fairing
point by point. Hence the method possesses high
parallelism. However, the sub-process, such as k-neighbour
searching is time consuming with less apparent parallelism.
This section will introduce our interactive point clouds
fairing method suitable for many-core system. The
experimental results will be discussed in next section.

III. EASE OF USE

A. Bilateral mesh denoising
Bilateral mesh denoising[1] is a diffusion method, which

move each vertex of a mesh along its normal for an offset.
The offset is calculated from the vertex’s neighbor geometry,
as follows:

 iiii dnvv ⋅−=' (1)

∑
∑

∈

∈

−⋅−

−⋅−⋅−⋅

=

)(

)(

))(()(

))(()()(

ij

ij

vNv
jiisjic

vNv
jiisjicjii

i vvnWvvW

vvnWvvWvvn

d (2)

Where ni is the normal of vi, N(vi) is the neighborhood
of vi. In practice, N(vi) is defined by a set of points }{ iq ,

where cii rqv σ2=<− . The closeness smoothing filter
is the standard Gaussian filter with parameter σc:

)2/(22

)(cx
c exW σ−= , and a feature-preserving weight

function, which refered to as a similarity weight function,
with parameter σs that penalizes large variation in intensity,

is:)2/(22

)(sx
s exW σ−= .

Unfortunately, there is no explicit connectivity
information in point clouds. Therefore, we have to compute
it from the local area of each point. To best utilize the
computing ability of many-core system, the whole fairing
process is divided into 4 sub processes with great
parallelism as follows:

 Constructing fast space indexing data structure for point
clouds

 K-neighbour searching
 Normal estimation
 Bilateral denoising

B. Construction of Uniform Grid
Uniform grid is used for fast indexing of space point.

First the bounding box of all points is divided into cells with
equal size, and the index of each cell could be calculated by
its position. During the initializing period, each point is
allocated into a cell according to its position. After that, we
could fast retrieve all points from a given cell.

We have implemented our algorithm on NVIDIA GPU
using CUDA technology. CUDA does not support
dynamically allocate memories in kernel function. However
the number of points in each cell is variable. Hence we have
to design a flexible data structure to solve the problem. Fig.
1 is the data structure of point clouds on device end.

Figure 1. Data structure of point clouds on CUDA

Fig. 2 shows an example of uniform grid with 4 cells. 8
points are distributed into the grid (Fig. 2b). d_vertex stores
the position information of 8 points. d_grid_head stores the
indices of head points in each cell. d_vertex_link stores the
indics of other points in each cell until the index is -1.

float3 * d_vertex; //original point clouds
int * d_grid_head; //the index of the first point in each cell

of //uniform grid
int* d_vertex_link; //the list of the other points in each cell

558

0 1 2 3 4 5 6 7

0 1 3 6

4 5 2 7

0 1 4 2

-1 3 7 6 5 -1 -1 -1

gri d 0 gri d 1

gri d 2 gri d 3

d_vertex

d_gri d_head

d_vertex_l i nk

(a) (b)

Figure 2. Sample of Data structure of point clouds on CUDA

Algorithm 1 shows the pseudo code of kernel function
which is executed in device end. Because some threads may
write the same data in d_grid_head simultaneously, antomic
operation atomicExch() is used to exchange two items.

C. k Nearest Neighbour Searching
Computation of k Nearest Neighbour forms a basic

building block in solving many important problems
including normal estimation, surface simplification, finite
element modeling, shape modeling and surface
reconstruction. With the growing sizes of point clouds, the
emergence of many-core processors in mainstream
computing and the increasing disparity between processor
and memory speed, it is natural to ask if one can gain from
the use of parallelism for the k-Nearest Neighbour
construction problem.

K Nearest Neighbour searching has great parallelism,
very suitable for GPU computing. Garcia[12] and Liang[13]
proposed algorithms using GPU to accelerate the computing
of KNN. However, both of them belong to naive approach
and run slower when dealing with large datasets with high
dimension. We have implemented a KNN searching method
based on uniform grid, which running fast on GPU.
Algorithm 2 shows the pseudo code of its kernel function.

While searching k nearest neighbor for point v, the
method acts as follows: Starting from the cell where the
point v lies, the distances between v and all other points lie
in the cell are computed and sorted. If the number of the
nearest neighbor is less than k, the searching range will
increase in three directions by one cell. Compute the
distances from v to six bounding planes. If one of the
distances is less than the distance from v to found neighbor,
increase the searching range in this direction by one cell.
Figure 3 illustrate the circumstance. Cell B is the current
searching range, s is one of the nearest neighbor of v.

However, the distance from v to the left plane of B is less
than that from v to s. So there exists the possibility that
some point in cell A is nearer to v than s is. Hence the
method increases the searching range in that direction by
one cell.

Figure 3. k Nearest Neighbour searching

Using Euclidean distance to sort the neighbor points
sometime will lead to incorrect results near sharp features.
Fig. 4 gives an example. There are two lines of sample
points. When we compute k nearest neighbor points of v1,
we will find that v2 is nearer than v3. But using v2 to
compute the normal of v1 will lead to an incorrect result. So
we have to find a way to improve it. If the point clouds is
assumed to be a ρ-dense, δ-noise, when we add a new point
q into the found nearest neighbor point set, we make a rule
that d(q, N)< ρ+δ, where N is neighbor point set of v which
has been searched, and d is minimum distance between q
and N. So each neighbor point of v will not cross the sharp
fearture, and the normal will be more precise.

Figure 4. Constrained k Nearest Neighbour searching

D. Normal Estimation
Bilateral denoising method moves the point along its

normal direction for a small offset, which will only fair the
geometry of the point cloud and keep the parameterization
unchanged. The correctness of normal direction is critical to
bilateral denoising. Hoppe[14] computed the least squares
plane of a point and use the normal of that plane as the
normal of the point. Alexa[8] adopted the moving least
squares method, which is more precise but need too much
computation.

Hoppe’s method runs fast and is appropriate for GPU
computing. During the implementation, we noticed that
Hoppe’s method will get unexpected results while coping
with unevenly distributed point clouds. Fig 8 shows an
example. Fig 8a is the original point set. In Fig 8b, if there is
a noise point such as the one in the white rectangle, the
computed normal will point to an unexpected direction. To
solve the problem, we propose a new Gaussian weighted
least squares method to estimate normal from noisy point
cloud. The method first constructs the covariance matrix
like equation (3). Then the eigenvector corresponding to the

v2

Algorithm 1: uniform grid construction algorithm
__global__ void UniformGrid(){

int vidx = blockIdx.x*blockDim.x+threadIdx.x;
if(vidx>vnum) return;
conmpute gidx from the point position and

bounding vox;
d_vertex_link[vidx]=atomicExch(&d_grid_head[gi

dx],vidx);
}

v

A B
s s’

v1 v3

559

least eigenvalue of the covariance matrix is selected as the
normal of the point.

∑
∈

−−−−=
)(

))||)((||)()||)((||(
ij vNv

cjcjg
T

cjcjg vvvvwvvvvwM (3)

∑
∈

−=
)(

||)(||
ij vNv

jijgc vvvwv (4)

)2/(22

)(σx
g exw −= (5)

E. Fairing
Section III.A introduced the bilateral mesh denoising

method. However, we find that BMD method performs not
so good when it processes unevenly dense point clouds.
This is because it adopted an unweighted method to
calculate the offset of each point. Dense part will contribute
more to the computed offset than the sparse part will. Hence
the parameterization will affect the result greatly. Therefore,
it is better to design a weighted method to compute the
offset of a point only from its local geometric shape.
Unfortunately, point clouds do not have an inherent property
to be used as a weight, while the local area could be used as
a weight in mesh denoising.

In this paper, we proposed a weighted fairing method of
point clouds. For each point v in the point clouds, an
average length for v to its 5 nearest neighbor is computed.
We use the length’s square as the weight. The equation (2)
is improved as:

∑
∑

∈

∈

−⋅−

−⋅−⋅−⋅

=

)(

)(

)())(()(

)())(()()(

ij

ij

vNv
jajiisjic

vNv
jajiisjicjii

i vWvvnWvvW

vWvvnWvvWvvn

d (6)

Where Wa(vj) is the average length from vj to its five nearest
neighbors. Computing average length for each point on CPU
is time consuming especially for large scale data. However,
when we turn to GPU, we could get an interactive result for a
point clouds containing a million points.

IV. EXPERIMENTAL RESULTS
We have implemented the algorithm using CUDA 2.3

on MS Visual Studio 2008. Two GPU devices were tested.
One is NVIDIA GeForce 9800GT, the other is NVIDIA
Tesla 1060. The specifications of the two devices are listed
in the following table.

TABLE I. TEST ENVIRONMENT

 GeForce 9800GT Tesla 1060

core 112 240

Processor Clock 1500MHz 1.296GHz

Memory 512MB 4.0GB

Memory Bandwidth 57.6 GB/s 102GB/s

We have test many models. Following are two of them.

The left column shows original model, and the right one
shows the noisy one.

Figure 5. Buddha and its noisy model

A. k nearest neighbor searching
The running time of k nearest neighbor searching is

affected by the resolution of uniform grid and the parameter
k. Figure 6 shows the uniform grid construction time of
Buddha which has 543652 points. From the figure, we could
find that the construction time is related to the number of
computing core of GPU. Figure 7 shows the time cost by k
nearest neighbor searching.

Figure 6. Uniform grid construction

Figure 7. k nearest neighbor searching

560

(a) (b)

(c)

Figure 8. Constrained k nearest neighbor searching

Figure 8 shows the result of constrained k nearest
neighbor searching. Figure 8a is the original point set. Figure
8b shows the computed normal using old method. We could
see than the normals in the white box are not properly
computed. The reason is explained in the section 3.3. Figure
8c shows the improved results of constrained nearest
neighbor searching. The normals in white box were
computed more precisely.

B. Fairing
Table 2 shows the running time of our fairing method. K

is set to be 8. And the time includes transferring initial data
from RAM to GPU through PCI, fairing and transfer back
the result. Most existed fairing algorithm focus on the
fairing quality, so we find little introduction on time
consuming of those method. But we have implemented
some of those methods. It seems that those methods run
pretty slow when dealing with large scale dataset. But from
the table 2, we could find that for the model has almost half
million points, we could achieve interactive fairing even
using a common graphics card like GeForce 9800GT.
Figure 9 shows the fairing results of Armadillo. Left is the
noisy model and the right is the fairing result.

TABLE II. FAIRING TIME

Num of point 12683 50833 114446 458074 1272739

CPU(s) 23 106 250 719 1439

GrForce 9800GT(s) 0.135 0.533 1.202 4.954 14.682

Tesla 1060(s) 0.027 0.099 0.215 0.883 2.617

Figure 9. Armadillo and its noisy model

V. CONCLUSION AND FUTURE WORK
This paper proposed a parallel point clouds fairing

method using NVIDIA CUDA. The method takes the full
advantage of the high computing ability of GPU. The whole
fairing course is divided into four separate processes with
great parallelism, which are uniform grid construction, k
nearest neighbor searching, normal estimation and fairing
respectively. In order to overcome the inaccuracy caused by
unevenly distributed point clouds, the k nearest neighbor
searching method, normal estimation and fairing method are
improved. Interactive results could be achieved on common
graphics card for large scale dataset.

Point clouds are getting larger and larger. Therefore, it is
better to do the processing while transferring the data.
Streaming fairing is what we want to do in the near future.
How to fully utilize the share memory is another research
subject attracting our attention. Using share memory could
accelerate the algorithm greatly. But parallelism is difficult
to manage.

ACKNOWLEDGMENT
Work on this paper was partially supported by the

Natural Science Foundation of Jiangsu Province (No.
BK2008262) and the National High-Tech Research and
Development Plan of China under Grant No.
2007AA06A402

REFERENCES

[1] Fleishman S, Drori l, Cohen-Or D. Bilateral mesh denoising.
Proceedings of ACM SIGGRAPH 2003, 950-953.

[2] NVIDIA Corporation. NVIDIA CUDA compute unified device
architecture programming guide. http://developer.nvidia.com/cuda,
Jan. 2007.

[3] G Taubin. A signal processing approach to fair surface design.
Computer Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, Los Angeles, California, 1995, 351-358.

[4] M Desbrun, M Meyer, P Schröder, et al. Implicit fairing of irregular
meshes using diffusion and curvature flow. Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH, Los
Angeles, California, 1999, 317-324.

[5] Vollmer J, Mencl R, Muller H. Improved Laplacian smoothing of
noisy surface meshes. EUROGRAPHICS 1999 Conference
Proceedings, 1999,131-138.

561

[6] Peng J, Strela V, Zorin D. A simple algorithm for surface denoising.
Proceedings of the conference on Visualization 2001, San Diego,
California, October, 2001, 107-112.

[7] Alexa M. Wiener filtering of meshes. Proceedings of Shape Modeling
International, Calgary, Aiberta, 2002, 51-57.

[8] Alexa M, Behr J, Cohen-Or D et al. Computing and rendering point
set surfaces. IEEE Transactionson On Visualization and Computer
Graphics, 2003, 9(1):3-15.

[9] Jones T R, Durand F, Desbrun M. Non-iterative, feature-preserving
mesh smoothing[C]. SIGGRAPH 2003, 943-949.

[10] Jalba, A.C., Jos B.T.M.Roerdink. Efficient surface reconstruction
from noisy data using regularized membrane potentials. IEEE
Transactions on Image Processing, 2009,18(5):1119-1134.

[11] Ni,T., Yeo,Y., Myles,A., Goel,V., Peters,J.. GPU smoothing of quad
meshes. IEEE International Conference on Shape Modeling and
Applications, Stony Brook, NY, June, 2008, 3-9.

[12] Garcia,V., Debreuve,E., Barlaud,M.. Fast k nearest neighbor search
using GPU. Computer Vision and Pattern Recognition Workshops,
Anchorage, AK, June, 2008, 1-6.

[13] Shenshen Liang, Cheng Wang, Ying Liu, Liheng Jian. CUKNN: A
parallel implementation of K-nearest neighbor on CUDA-enabled
GPU. Information, Computing and Telecommunication , Beijing,
2009, 415-418.

[14] Hoppe H., DeRose T., Duehamp T., et al. Surface reconstruction from
unorganized points. Computer Graphics, 1992, 26(2):71-78.

562

