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Abstract—This Paper proposes an interactive point clouds 
fairing algorithm running on many-core system. The algorithm 
is composed of four steps. Firstly, a k nearest neighbor 
searching method was designed which could fully utilize the 
computing ability of GPU. Secondly, a parallel Gaussian 
weighted normal estimation was put forward. Thirdly, a 
weighted fairing method was proposed to get better result 
especially for the unevenly distributed point clouds. The whole 
algorithm was implemented on NVIDIA GPU using CUDA. 
Experimental results show that the algorithm could achieve 
interactive fairing of large size point clouds with good quality. 
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I.  INTRODUCTION  
Point clouds have become increasingly popular in 

modeling. Due to improved graphics hardware and 
technologies for the acquisition of point geometry, point 
clouds are getting larger and larger. Point clouds has simple 
data description and easy to get. Therefore, it is widely used 
in many fields. However, there usually exist some noise in 
point clouds due to the fluctuation during the measure 
course. Hence, it is critical to erase the noise as much as 
possible. Otherwise, it will influence the quality of 
following processing. 

 Fairing is used to eliminate or alleviate the noise 3d 
model. So fairing effect is an important feature of fairing 
algorithm. Unlike meshes, there is no explicit connection 
information in point clouds. Furthermore, it is very easy to 
mistake the connection status nearby sharp features such as 
thin parts, which will further influence the effect of fairing. 
Running speed is an important feature of fairing algorithm. 
Real time or interactive fairing is the most favorable. 
Unfortunately, with the growth of data size of point clouds, 
traditional fairing methods such as Laplace filtering etc, 
which perform fairing iteratively, usually cost several 
minutes or more on a model with 100,000 points. This is 
unacceptable in interactive modeling system. So we have to 
find a better solution. 

Modern graphics processing units(GPUs) have been at 
the leading edge of increasing chip-level parallelism for 
some time. Current NVIDIA GPUs are many-core processor 
chips, scaling from 8 to 240 cores. Increasing parallelism, 
rather than increasing clock rate, has become the primary 
engine of processor performance growth. This degree of 

hardware parallelism reflects the fact that GPU architectures 
evolved to fit the needs of those problems with tremendous 
inherent parallelism, such as point clouds fairing. However, 
this also raised many important questions about how to 
productively develop efficient parallel programs. Exist point 
fairing methods cannot be shifted to many-core system 
directly. 

In this paper, we extent the bilateral mesh denoising 
method proposed by Fleishman[1] to point clouds. The 
fairing process is divided into 4 steps: uniform grid 
construction, k-neighbor search, normal estimation and 
fairing. Each step is converted into a kernel function which 
could be executed paralleledly on GPU. Our contributions 
are as follows: 

 Extract the parallelism in bilateral point denoising 
algorithm, execute it on a many-core system and 
achieve interactive point fairing. 

 Propose a new parallel k nearest neighbour searching 
algorithm with good quality and fast speed. 

 Improve the normal estimation method to deal with 
unevenly distributed points. 

 Proposed a weighted bilateral denoising method to 
cope with unevenly distribute points. 

Our fairing algorithm has been implemented on a 
graphics card using CUDA[2] for a significant speedup over 
the CPU implementation. 

II. RELATED WORK 
According to the diffusion type, point clouds fairing 

could be categorized into two types: isotropic method and 
anisotropic method. According to fairing evenly or not, 
point clouds fairing could be categorized into linear fairing 
and non-linear fairing. According to the filter type, point 
cloud fairing could be categorized into the following 
groups: Laplace fairing, Wiener filtering, bilateral 
denoising, and Moving Least squares method. 

Laplace fairing diffuses high frequency noise to achieve 
filtering[3][4]. In fact, Laplace filtering is the minimization of 
energy of a surface. With the increase of iterations, the 
shrinking and distortion are inevitable. To overcome this 
problem, Vollmer[5] adjust the vertex’s position along its 
normal with a little offset after it has been faired. But 
distortion nearby sharp features still exists. Those methods 
belong to isometric linear fairing, in which denoising and 
feature keeping are contradictive. 
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Peng[6] apply the local adaptive filtering to the mesh and 
point denoising, but the local connectivity should be aware 
of before fairing. Alexa[7] proposed a Wiener filter utilized 
in mesh denoising. Similar to Laplace filter, the method also 
diffuses the high frequency noise into local neighbor and 
has to know the local connectivity. 

Moving Least squares(MLS)[8] belongs to surface fitting 
method based on iteration. For the input point clouds, 
firstly, an approximating hyperplane has to be determined 
for points p near the (d -1)-dimensional hypersurface S 
which is sampled by {pi}. This is done by solving a non-
linear minimization problem. Then the hypersurface is 
interpolated locally by polynomials that have the hyperplane 
defined in the first step as domain. The non-linear 
minimization problem is reformulated as an eigenvalue 
problem of an associated weighted covariance matrix. The 
second step is a system of linear equations whose size 
depends on the degree of the approximating polynomials. 
The main idea of this method is to implicitly define an 
approximating surface. MLS perform well on denoising, but 
acted bad where the shape is sharp. 

Different from Laplace filtering, bilateral filtering use 
weighted summation of neighbor sample points to adjust the 
fairing point, which could preserve the feature very well. 
Fleishmann[1], Jones[9] utilize it to achieve mesh denoising. 
The method does not need iterations, and could keep the 
sharp feature pretty well. 

Actually, the fairing of large point clouds runs very slow. 
And the fairing could be done parallelly. Jalba[10] proposed a 
mesh smoothing method using GPU, which runs pretty fast. 
Ni[11] gave a quadrangle mesh fairing method. These 
methods are both cope with meshes which have explicit 
connectivity. 

Bilateral denoising does not need iteration and could 
keep sharp feature while eliminate the noise. However, 
existed method could only process meshes which have 
explicit neighbor connectivity. Also while processing 
unevenly mesh fairing, it is straightforwardly to use the area 
of triangle as weights. But pointset does not have such 
attribute to use. Bilateral denoising method does fairing 
point by point. Hence the method possesses high 
parallelism. However, the sub-process, such as k-neighbour 
searching is time consuming with less apparent parallelism. 
This section will introduce our interactive point clouds 
fairing method suitable for many-core system. The 
experimental results will be discussed in next section. 

III. EASE OF USE 

A. Bilateral mesh denoising 
Bilateral mesh denoising[1] is a diffusion method, which 

move each vertex of a mesh along its normal for an offset. 
The offset is calculated from the vertex’s neighbor geometry, 
as follows: 
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Where ni is the normal of vi, N(vi) is the neighborhood 
of vi. In practice, N(vi) is defined by a set of points }{ iq , 

where cii rqv σ2=<− . The closeness smoothing filter 
is the standard Gaussian filter with parameter σc: 
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c exW σ−=  , and a feature-preserving weight 

function, which refered to as a similarity weight function, 
with parameter σs that penalizes large variation in intensity, 

is: )2/( 22

)( sx
s exW σ−= . 

Unfortunately, there is no explicit connectivity 
information in point clouds. Therefore, we have to compute 
it from the local area of each point. To best utilize the 
computing ability of many-core system, the whole fairing 
process is divided into 4 sub processes with great 
parallelism as follows: 

 Constructing fast space indexing data structure for point 
clouds 

 K-neighbour searching 
 Normal estimation 
 Bilateral denoising 

B. Construction of Uniform Grid 
Uniform grid is used for fast indexing of space point. 

First the bounding box of all points is divided into cells with 
equal size, and the index of each cell could be calculated by 
its position. During the initializing period, each point is 
allocated into a cell according to its position. After that, we 
could fast retrieve all points from a given cell.  

We have implemented our algorithm on NVIDIA GPU 
using CUDA technology. CUDA does not support 
dynamically allocate memories in kernel function. However 
the number of points in each cell is variable. Hence we have 
to design a flexible data structure to solve the problem. Fig. 
1 is the data structure of point clouds on device end. 

 
Figure 1.  Data structure of point clouds on CUDA 

Fig. 2 shows an example of uniform grid with 4 cells. 8 
points are distributed into the grid (Fig. 2b). d_vertex stores 
the position information of 8 points. d_grid_head stores the 
indices of head points in each cell. d_vertex_link stores the 
indics of other points in each cell until the index is -1. 

float3 *  d_vertex;        //original point clouds 
int *      d_grid_head;  //the index of the first point in each cell 

of //uniform grid 
int*     d_vertex_link;   //the list of the other points in each cell 
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(a)                                         (b) 

Figure 2.  Sample of Data structure of point clouds on CUDA 

Algorithm 1 shows the pseudo code of kernel function 
which is executed in device end. Because some threads may 
write the same data in d_grid_head simultaneously, antomic 
operation atomicExch() is used to exchange two items. 

 

C. k Nearest Neighbour Searching 
Computation of k Nearest Neighbour forms a basic 

building block in solving many important problems 
including normal estimation, surface simplification, finite 
element modeling, shape modeling and surface 
reconstruction. With the growing sizes of point clouds, the 
emergence of many-core processors in mainstream 
computing and the increasing disparity between processor 
and memory speed, it is natural to ask if one can gain from 
the use of parallelism for the k-Nearest Neighbour  
construction problem. 

K Nearest Neighbour searching has great parallelism, 
very suitable for GPU computing. Garcia[12] and Liang[13] 
proposed algorithms using GPU to accelerate the computing 
of KNN. However, both of them belong to naive approach 
and run slower when dealing with large datasets with high 
dimension. We have implemented a KNN searching method 
based on uniform grid, which running fast on GPU. 
Algorithm 2 shows the pseudo code of its kernel function. 

While searching k nearest neighbor for point v, the 
method acts as follows: Starting from the cell where the 
point v lies, the distances between v and all other points lie 
in the cell are computed and sorted. If the number of the 
nearest neighbor is less than k, the searching range will 
increase in three directions by one cell. Compute the 
distances from v to six bounding planes. If one of the 
distances is less than the distance from v to found neighbor, 
increase the searching range in this direction by one cell. 
Figure 3 illustrate the circumstance. Cell B is the current 
searching range, s is one of the nearest neighbor of v. 

However, the distance from v to the left plane of B is less 
than that from v to s. So there exists the possibility that 
some point in cell A is nearer to v than s is. Hence the 
method increases the searching range in that direction by 
one cell. 

 

 
 
 
 

Figure 3.  k Nearest Neighbour searching 

Using Euclidean distance to sort the neighbor points 
sometime will lead to incorrect results near sharp features. 
Fig. 4 gives an example. There are two lines of sample 
points. When we compute k nearest neighbor points of v1, 
we will find that v2 is nearer than v3. But using v2 to 
compute the normal of v1 will lead to an incorrect result. So 
we have to find a way to improve it. If the point clouds is 
assumed to be a ρ-dense, δ-noise, when we add a new point 
q into the found nearest neighbor point set, we make a rule 
that d(q, N)< ρ+δ, where N is neighbor point set of v which 
has been searched, and d is minimum distance between q 
and N. So each neighbor point of v will not cross the sharp 
fearture, and the normal will be more precise.  

 

Figure 4.  Constrained k Nearest Neighbour searching 

D. Normal Estimation 
Bilateral denoising method moves the point along its 

normal direction for a small offset, which will only fair the 
geometry of the point cloud and keep the parameterization 
unchanged. The correctness of normal direction is critical to 
bilateral denoising. Hoppe[14] computed the least squares 
plane of a point and use the normal of that plane as the 
normal of the point. Alexa[8] adopted the moving least 
squares method, which is more precise but need too much 
computation.  

Hoppe’s method runs fast and is appropriate for GPU 
computing. During the implementation, we noticed that 
Hoppe’s method will get unexpected results while coping 
with unevenly distributed point clouds. Fig 8 shows an 
example. Fig 8a is the original point set. In Fig 8b, if there is 
a noise point such as the one in the white rectangle, the 
computed normal will point to an unexpected direction. To 
solve the problem, we propose a new Gaussian weighted 
least squares method to estimate normal from noisy point 
cloud. The method first constructs the covariance matrix 
like equation (3). Then the eigenvector corresponding to the 

v2 

Algorithm 1:  uniform grid construction algorithm 
__global__ void UniformGrid(){ 

int  vidx  =  blockIdx.x*blockDim.x+threadIdx.x; 
if(vidx>vnum) return; 
conmpute gidx from the point position and 

bounding vox; 
d_vertex_link[vidx]=atomicExch(&d_grid_head[gi

dx],vidx); 
} 

v 

A B 
s s’ 

v1 v3 
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least eigenvalue of the covariance matrix is selected as the 
normal of the point. 
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E. Fairing 
Section III.A introduced the bilateral mesh denoising 

method. However, we find that BMD method performs not 
so good when it processes unevenly dense point clouds. 
This is because it adopted an unweighted method to 
calculate the offset of each point. Dense part will contribute 
more to the computed offset than the sparse part will. Hence 
the parameterization will affect the result greatly. Therefore, 
it is better to design a weighted method to compute the 
offset of a point only from its local geometric shape. 
Unfortunately, point clouds do not have an inherent property 
to be used as a weight, while the local area could be used as 
a weight in mesh denoising. 

In this paper, we proposed a weighted fairing method of 
point clouds. For each point v in the point clouds, an 
average length for v to its 5 nearest neighbor is computed. 
We use the length’s square as the weight. The equation (2) 
is improved as: 
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Where Wa(vj) is the average length from vj to its five nearest 
neighbors. Computing average length for each point on CPU 
is time consuming especially for large scale data. However, 
when we turn to GPU, we could get an interactive result for a 
point clouds containing a million points. 

IV. EXPERIMENTAL RESULTS 
We have implemented the algorithm using CUDA 2.3 

on MS Visual Studio 2008. Two GPU devices were tested. 
One is NVIDIA GeForce 9800GT, the other is NVIDIA 
Tesla 1060. The specifications of the two devices are listed 
in the following table. 

TABLE I.  TEST ENVIRONMENT 

 GeForce 9800GT Tesla 1060 

core 112 240 

Processor Clock  1500MHz 1.296GHz 

Memory 512MB 4.0GB 

Memory Bandwidth  57.6 GB/s 102GB/s 

 
We have test many models. Following are two of them. 

The left column shows original model, and the right one 
shows the noisy one.  

     
Figure 5.  Buddha and its noisy model 

A. k nearest neighbor searching 
The running time of k nearest neighbor searching is 

affected by the resolution of uniform grid and the parameter 
k. Figure 6 shows the uniform grid construction time of 
Buddha which has 543652 points. From the figure, we could 
find that the construction time is related to the number of 
computing core of GPU. Figure 7 shows the time cost by k 
nearest neighbor searching. 

 
Figure 6.  Uniform grid construction 

 
Figure 7.  k nearest neighbor searching 
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(a)                                      (b) 

 
(c) 

Figure 8.  Constrained k nearest neighbor searching 

Figure 8 shows the result of constrained k nearest 
neighbor searching. Figure 8a is the original point set. Figure 
8b shows the computed normal using old method. We could 
see than the normals in the white box are not properly 
computed. The reason is explained in the section 3.3. Figure 
8c shows the improved results of constrained nearest 
neighbor searching. The normals in white box were 
computed more precisely.  

B. Fairing 
Table 2 shows the running time of our fairing method. K 

is set to be 8. And the time includes transferring initial data 
from RAM to GPU through PCI, fairing and transfer back 
the result. Most existed fairing algorithm focus on the 
fairing quality, so we find little introduction on time 
consuming of those method. But we have implemented 
some of those methods. It seems that those methods run 
pretty slow when dealing with large scale dataset. But from 
the table 2, we could find that for the model has almost half 
million points, we could achieve interactive fairing even 
using a common graphics card like GeForce 9800GT. 
Figure 9 shows the fairing results of Armadillo. Left is the 
noisy model and the right is the fairing result. 

TABLE II.  FAIRING TIME 

Num of point 12683 50833 114446 458074 1272739

CPU(s) 23 106 250 719 1439

GrForce 9800GT(s) 0.135 0.533 1.202 4.954 14.682

Tesla 1060(s) 0.027 0.099 0.215 0.883 2.617

 
Figure 9.  Armadillo and its noisy model 

V. CONCLUSION AND FUTURE WORK 
This paper proposed a parallel point clouds fairing 

method using NVIDIA CUDA. The method takes the full 
advantage of the high computing ability of GPU. The whole 
fairing course is divided into four separate processes with 
great parallelism, which are uniform grid construction, k 
nearest neighbor searching, normal estimation and fairing 
respectively. In order to overcome the inaccuracy caused by 
unevenly distributed point clouds, the k nearest neighbor 
searching method, normal estimation and fairing method are 
improved. Interactive results could be achieved on common 
graphics card for large scale dataset. 

Point clouds are getting larger and larger. Therefore, it is 
better to do the processing while transferring the data. 
Streaming fairing is what we want to do in the near future. 
How to fully utilize the share memory is another research 
subject attracting our attention. Using share memory could 
accelerate the algorithm greatly. But parallelism is difficult 
to manage.  
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