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Abstract- This paper presented a fast algorithm which could 
measure similarity between two meshes interactively. The 

algorithm was based on CUDA (Compute Unified Device 
Architecture) technology. In order to fully utilize the computing 
power of GPU, we developed parallel method to construct 
uniform grid for fast space indexing of triangles. Special data 
structure was designed on device end to overcome the 

disadvantage of CUDA that it does not support dynamic 
allocation of memory. Lots of experiments were carried out and 
the results verified the effectiveness and efficiency of our 
algorithm. 
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I. INTRODUCTION 

Measuring the similarity between different polygonal 
objects is often needed as a first step for other geometric 
computations in diverse fields including computer graphics, 
computer games, virtual environment, geometric modeling, and 
robotics. Thus the development of efficient algorithms for 
distance computation is very important for improving the 
performance of related geometric problems. Various types of 
similarity measures have been extensively investigated and 
efficient algorithms have been proposed over the past two 
decades. Among them, the Hausdorff distance has attracted 
considerable research attention. 

Using Hausdorff, however, distance to measure the 
similarity between meshes has two disadvantages. Firstly, the 
efficiency of the algorithm is quite low. For polygonal models 
in R3 with n polygons, the expected time taken by the best
known algorithm to exactly evaluate the Hausdorff distance is 
O(n3+8), where 8 > 0 [2]. Thus, due to the high computational 
complexity and difficult implementation of proposed 
approaches, very few algorithms exist to compute Hausdorff 
distance for polygonal models in R3. Secondly, The Hausdorff 
distance between two models is the maximum deviation 
between them. Hence it cannot reflect the overall shape 
similarity and is easy to be affected by noise. Using the 
summation of the squared Hausdorff distance of all sample 
points is a resonable solution. But the efficiency is still a 
bottleneck. 

The recent introduction of the CUDA programming model, 
along with the advancement in GPU hardware design, made 
GPUs an attractive architecture for implementing parallel 
algorithms such as ray tracing [7][11][13][15]. Current 
NVIDIA GPUs are many-core processor chips, scaling from 8 
to 240 cores. Increasing parallelism, rather than increasing 
clock rate, has become the primary engine of processor 
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performance growth. This degree of hardware parallelism 
reflects the fact that GPU architectures evolved to fit the needs 
of those problems with tremendous inherent parallelism. 
However, this also raised many important questions about how 
to develop efficient parallel programs. Exist methods cannot be 
shifted to many-core system directly. 

In this paper, we present a parallel method to compute the 
similarity between meshes. The whole process is divided into 
three steps: uniform grid construction, sampling on meshes and 
Hausdorff distance computing. Each step is converted into a 
kernel function which could be executed paralleled on GPU. 
The main contributions of our work are as follows: 

• Present a better way to measure the similarity between 
meshes. 

• Implemented a parallel method to construct a uniform 
grid containing triangles for fast space indexing of a 
triangle. 

• Designed efficient data structure on device end, overcame 
the shortcoming of CUDA which does not support 
pointers and dynamic allocation of memory. 

We have implemented the algorithm on graphics card using 
CUDA which gained a significant speedup over the CPU 
implementation and other exist methods. Actually, we could 
measure the similarity between two meshes with more than 100, 
000 triangles in real time. 

II. RELATED WORK 

Since the seminal work by Atallah [4], different algorithms 
for mesh similarity measuring have been proposed in the 
literature, we give only a short overview of the most related 
methods. 

For simple, non-convex polygons with n and m vertices, 
Alt [1] presented a method to compute the Hausdorff distance 
between two point sets in R2 based on the V oronoi diagram 
which requires O«n+m)log(n+m» running time. For R3, Alt [2] 
proposed a randomized algorithm with O«n+m+(nm)3/4) 
log(n+m» expected time. 

Klein [8] first used the Hausdorff distance between the 
original and simplified mesh to control the simplification error, 
although with significant computational effort. Cignoni [5] 
introduced a method dedicated exclusively to measurement of 
errors on simplified surfaces. Another method, presented by 
Aspert [3], is more efficient in terms of speed at the cost of 
higher memory use. Llanas [12] proposed an algorithm using 



random covering, and also demonstrated implementation 
results for simple, convex ellipsoids. Giithe [6] use polygon 
subdivision to approximate the solution within an error bound. 
In a recent work, Tang [14] presented a real-time algorithm for 
approximating the Hausdorff distance between two triangular 
meshes within a given error bound. Due to the complexity of 
the exact computation, the performance of these algorithms is 
still too slow for interactive applications especially for large 
scale models. 

III. PRELIMINARIES AND OVERVIEW 

In this section, we present some preliminary concepts and 
theorems related to our mesh similarity measuring algorithm 
before presenting the algorithm itself. 

A. Problem Formulation 

The mesh similarity measuring problem could be 
formulized as: Given two meshes M and M', find a map E: M 
X M ---+ R, which could evaluate the similarity between two 
meshes quantitively. The lower the E(M, M) is, the more 
similar the two meshes are. 

Hausdorff distance was adopted by some reseachers to 
measure the similarity between meshes. The definition of 
Harsdorff distance between two meshes is as follows. Firstly, 
the distance from a point p to a mesh M is defined as: 

d(p,M') = min d(p,p') 
p'eM' 

(1) 

where d(P,p') is the Euclidian distance between two points 
inR3. 

The one-sided Hausdorff distance between two meshes M and M' 
is then defined as: 

d(M,M') = maxd(p,M') 
pEM 

(2) 

The symmetrical Hausdorff distance is defined as: 

ds(M,M') = max(d(M,M'),d(M',M)) (3) 

Hausdorff distance is the max difference between two meshes. It, 
however, does not reflect the overall similarity between two meshes 
and is easy to be affected by noise. Hence, we proposed an improved 
metric as follows: 

E(M,M') = Id2(p,M') (4) 

pEM 

where cl.p, M) is defined in (1). And the symmetrical metric is 
defined as: 

Es(M,M') = max(E(M,M'),E(M',M)) (5) 

Computing E, is a time consuming task. Fortunately, with the 
adventure of GPU and CUDA, we could compute it paralleledly even 
in real time. 

B. Overview of the Algorithm 

Equation (4) could be computed paralleledly on GPU. Each 
sample point uses a single thread. Equation (1) is time consuming. So 
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we create an uniform grid to accelerate the indexing of a triangle in R3. 
Below is algorithm to compute (2) and (4). Here we mean device end 
as GPU and host end as CPU. 

Algorithm 1: One-side Mesh Similarity Measuring 
Input: M, M 
Output: mesh similarity 

1: import M and M 
2: compute the number of vertex and triangle of M 
3: compute the size of uniform grids 
4: transfer M to device memory 
5: compute the memory size G of uniform grids of M 
6: transfer Gto host end 
7: allocate the memory for the uniform grids of M 
8: construct the uniform grids of M 
9: sampling on M 
10: compute the cl.p, M) for each sample point of M 
11: compute �M, M) and E{M, M) 
12: transfer the result to host end 

Step 1-4, 7, 9 are carried out on CPU side and other steps are 
carried out on GPU side. 

IV. UNIFORM GRIDS 

In this section, we present some preliminary concepts and 
theorems related to our mesh similarity measuring algorithm 
before presenting the algorithm itself 

Uniform grids are used in a wide variety of applications 
including ray tracing of dynamic scenes. While other spatial 
structures, such as kd-trees and BVHs can provide better 
performance, their construction is very time consuming. GPU
algorithms that allow per-frame rebuild of hierarchical data 
structures in real time were introduced only recently Zhou [15]; 
Lauterbach [11] and build times are still considerably slower 
than those of grids. 

During constructing uniform grids of triangles on CUDA 
device, we met some problems: 

• Each triangle could belong to multiple grids, and the 
number of grids is unfixed. 

• CUDA does not support dynamic allocation of memory. 

• CUDA does not support pointers. 

Lagae [10] proposed a parallel method to construct uniform 
grids which runs pretty fast on CPU. Its data structure, however, 
does fit into GPU device. We designed a proper data structure 
and proposed a parallel method to construct uniform grids on 
GPU which is similar to Kalojanov [9] 's work. 

A. Data Structure 

The data structure used during the constructing of uniform 
grids of triangle mesh has 4 components: (1) Vertex array 
(vertexs): the coordinates of vertices. (2) Triangle array 
(triangles): the indices of each triangle of the mesh. (3) Pair 
array (pairs): each element in this array contains two symbols. 
The first is grid index, and the second is the index of the 
triangle distributed to this grid. A grid could have multiple 
triangles. (4) Grid array (cells): this array store the start index 
and end index of a grid in pair array. If a grid has no triangle, 
then store -1 as its start and end index. 



Fig. 1 gives an example of our data structure of uniform 
grids. In Fig. 1 we could find that grid 2 has 4 triangles which 
are triangle 2, 3, 6 and 8. As for grid 2 in grid array (cells), we 
record its start index in pair array (pairs) which is 7 and its end 
index which is 10. 

_I � I v1 l.a I V3 1 V4 1 v5 I � I V7 1 

mllv-sl to I t1 I t2 I t3 I t4 1 t5 I t6 I t7 I t8 I {J1cr. {Ji(H 
t1 t2 t4 

IJid3 

c .... 

Figure 1. an example of uniform grid on eUDA 

B. Algorithm 

Among the four parts of the data structure mentioned 
above, the lengths of vertex array, triangle array and grid array 
could be precomputed when we have the mesh. But the size of 
pair array could not. This is because a triangle could overlap 
multiple grids. In CPU, we can use pointer and dynamic 
allocation of memory to solve the problem. But we cannot do it 
on CUDA. Therefore we have to know the size of the array that 
stores the primitive references in advance. 

We present a CUDA kernel function to compute the size of 
pair array. Each thread computed how many grids a triangle 
intersect and write the number into a shared memory variable. 
After all thread finished, all numbers are summed and the result 
is the length of pair array. The kernel function is shown below, 
in which THREAD_NUM must be 2n, block_num is (tnum-
1 )/THREAD _ NUM+ 1. tnum is the number of triangles. 

Algorithm 2: Computing overlap triangle numbers 

1: _global_ ComputeOverlap(int vnum, int tnum, float3 
*vbuf, int3 *tbuf, int *ref) { 

2: _shared _ int ret[THREAD _ NUM]; 

3: int Udx �blockldx.x*blockDim.x+threadIdx.x; 
4: if(Udx>=tnum) 

ret[Udx] = 0; 
5: else { 
6: get the vertices of the triangle 
7: compute the normal and the plane p of the triangle 
8: find the possible intersected grids S 
9: intn�O; 

10: for each grid s in S do { 
11: if(8 vertices of s lies in diferent side of p) 
12: n++; / /triangle overlap this grid 
13: } 
14: ret[Udx] = n; 
15: } 
16: _syncthreadsO; //make sure all thread finished 
17: sum all ret; 
18: _syncthreadsO; 
19: if(threadIdx.x=O) ref[blockldx.x] =ret[O]; 
20: } 
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After all threads finished, we sum all values in ref array, 
and return it to host end as the total pair array length. When we 
allocate the device memory for pair array, we run a second 
kernel to scan the triangle array once again. Each thread loads a 
triangle, computes again how many grids it overlaps and for 
each overlapped grid writes a pair consisting of the grid and 
triangle indices. We can use the shared memory to write the 
pair counts and perform a prefix sum to determine output 
locations in pair array. After being written, the pairs are sorted 
by the cell index via radix sort. We used the radix sort 
implementation from the CUDA SDK examples for this step of 
the algorithm. 

After pair array is calculated, the next step is to deduce the 
grid array (cells in Fig. 1). We also designed a parallel method 
to fulfill this task. Each thread checks if two neighboring pairs 
have different cell indexes. If such exists, the corresponding 
thread updates the range indexes in both grids. During the 
execution, each thread loads the element to share memory. 
Algorithm 3 shows the detail. 

Algorithm 3: Computing the grid array 

I: _global_ ExtractCell( int paimum, uint2 * pairs, 
2: int2 *cells){ 
3: _shared _ uint pairs _ cell [THREAD _ NUM]; 
4: int pairs_idx = blockldx.x*blockDim.x+threadIdx.x; 
5: pairs_cell [pairs_idx] = 
6: pairs _idx<paimum?pairs[pairs _idx ].x:O; 
7: _syncthreadsO; 
8: if(pairs_idx==O){ 
9: set the start index of the first elemenmt; 
10: return; 
II: } 
12: if(thread_idx.x=O){//first thread of the block 
13: load pre pair p I from global memory; 
14: load current pair p2 from share memory; 
15: if (the grid index ofpl and p2 are different){ 
16: set the end index of the pre grid; 
17: set the start index of the current grid; 
18: return; 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: } 

} 
if(pairs _idx<paimum) 

} 

load pre pair p 1 from share memory; 
load current pair p2 from share memory; 
if (the grid index of pI and p2 are different){ 

set the end index of the pre grid; 
set the start index of the current grid; 
return; 

if(pairs _idx==pairnum-l )  { 
set the end index of the grid; 
return; 

After the grid array was constructed, the uniform grid 
creating process was finished. Using this structure, we could 
fast index a triangle in R3 space. And the method has a linear 
complexity. Another advantage is that the algorithm avoided 
writing conflict and no atomic synchronization is required 
throughout the construction. Hence, the performance of the 



construction algorithm depends only on the number of triangles 
that are inserted into the grid. 

V. SIMILARITY COMPUTING 

Using metric described in (5) could better reflect the 
similarity between two meshes. But it needs massive 
computing. With the help of uniform grid structure and the 
great computing ability of GPU, we could achieve interactive 
results even processing large scale models. The atomic task is 
to compute the distance from a sample point to another mesh. 
Here, we proposed a parallel method to compute it. The 
algorithm of kemel function is showed below. 

Algorithm 4 Computing the distance from a sample point to a mesh 

1: �loba1_ HausdorfCkernelO{ 

2: int vidx <--blockldx.x*blockOim.x+threadldx.x; 

3: if(vidx>= sample_poincnum) return; 

4: gridldx <--grid index in which point vidx locates; 

5: set the current grid as the search area 

6: float hOis <-FLOA LMIN 

7: int flag <--0; 
8: do{ 

9: flag <--0; 
10: hOis <---the least distance from point vidx to all triangles of 

11: search area 
12: if( one of the distance from point vidx to 6 bounding planes of 
13: search area < hOis){ 
12: extend the search area in that direction by one grid 

13: flag<-l; 

14: } 
15: }while(flag) 
16: } 

The atomic operation of algorithm 4 is to compute the 
distance from a point to a triangle. Given a point v and a 
triangle VOVtV2, the point v' is the projection ofv on to the plane 
where the triangle lies (shown in Fig. 2). The distance d from v 
to triangle VOVtV2 could have 3 different cases according to the 
location of the v': 

• when v' lies in area 1, d is the distance from point v to the 
plane on which triangle VOVtV2 lies. 

• 

• 

when v' lies in area 2, d is the distance from point v to the 
relative edge. 

when v'  lies in area 3, d is the distance from point v to the 
relative vertex. 

@ 

(1), 
" .) , 

' , 
Vo 

CD 

.v 

I 
@ 

·v' 

Vz : (1) 

Figure 2. The projection of v on the triangle vOvlv2 (the dashline is 
perpendicular to the relative edge) 
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VI. RESULTS 

We have implemented the algorithm on CUDA 2.3. The 
testing systems are: 

system 1: Windows XP, Inter Core 2 Duo 
E6550@2.33GHz(2 CPUs), 2GB RAM, NVIDIA GeForce 
9800GT which has 112 CUDA core and 512MB Memory. 

We have test our method using many models including 
Bunny, Armadillo and Buddha from Stanford 3D library as 
well as some models we build. The models are list in table 1. 
Table 2 shows the time results on system 1. 

TABLE I. THE MODELS USED FOR MESH SIMILARITY MEASURING 

model Bunny Bunny_a Bunny_b 
Vertnum 35947 739 13030 

Tri num 6945 1 142 1 26069 

model Bunny_a Armad Armad_a 
Vert num 220 17 1550 57892 

Tri num 44 1 343096 1 15780 

model Armad_b Cube Ball 
Vert num \08 14 1 2 1633 20897 

Tri num 2 16278 43247 4 1790 

TABLE II. THE TIME RESULTS OF MESH SIMILARITY MEASURING(MS) . 

model A Bunny_a Armad_a Armad_a 
modelB Bunny Armad_b Armad 

sampling time 0.7 17 1.3 1 1.65 

time] 4.08 13.32 13.32 

time 2 9.64 2 1.4 1 34.20 

time 3 37.9 305.9 399.2 

time 4 19.5 143. 1 200.2 

time 5 7.2 23.8 28.8 

rendering time 1.05 1.05 2. 18 

Total time 80 5 10 680 

In table 2, time 1 is the time to create the uniform grid for 
model A, time 2 is the time to create the uniform gird for 
model B, time 3 is the time to compute the shortest distance 
from a point of A to the model B, time 4 is the time to compute 
the shortest distance from a point of B to model A and time 5 is 
the time to compute the similarity according to (5). From the 
table, we could find that the most time consuming task is to 
compute the shortest distance from a point of A to model B. 
This process involves lots of distances from a point to a 
triangle. And since the coordinates of a vertex and the vertex 
indices of a triangle are stored on global memory of GPU, visit 
them usually is slow. 

Fig. 3 shows the comparison between our method and those 
of Giithe's [6] and Tang's [14] methods when computing the 
Hausdorff distance between Bunny_a and Bunny. From the 
figure, we could find that our method run the fastest. Also what 



we get is more than Hausdorff distance and could better reflect 
the similarity of two meshes. 

.... , 

GU'ItIt's Ow. 

Figure 3. The comparison of running time between our method and Guthe's 
and Tang's methods 

In order to verify the effectiveness of our method, we 
change the computed distance into colorful output. Fig. 4 
shows the result of a similarity between a box and a sphere. 
The barycenters of both models are coincident. The edge length 
of the box is 17, and the radius of the sphere is 10. In Fig. 4, 
the blue color means the distance is 0, and the red color means 
the distance is much larger. 

Figure 4. The colorful result of similarity between a box and a sphere 

Fig. 5 shows the result of Bunny model. The top left one is 
the original model. The top middle is Bunny_b. The top right is 
the result of Bunny _ b to Bunny. The bottom middle model is 
Bunny_c. The bottom right is the result of Bunny_c to Bunny. 

. .  

Figure 5. The colorful output of Bunny model 
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VII. RESULTS 

We presented a fast algorithm to measure the similarity of 
two meshes based on CUDA technology. Instead of using 
Hausdorff distance, we proposed a new metric to measure the 
similarity of two meshes which could better reflect the overall 
difference. In order to fully utilize the computing power of 
GPU, we developed parallel solutions to construct uniform grid 
for fast space indexing of triangles. Special data structure was 
designed on device end to overcome the disadvantage of 
CUDA that it does not support pointer and dynamic allocation 
of memory. Our method could compute the Hausdorff distance 
interactively even dealing with large scale models. The results 
verified the effectiveness and efficiency of our algorithm. 

The possible future work including mesh shape matching 
using CUDA, similarity measuring between meshes with 
multiple properties. 
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