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Abstract. This paper presents the following approximation algorithms
for computing a minimum cost sequence of planes to cut a convex polyhe-
dron P of n vertices out of a sphere Q: an O(n log n) time O(log2 n)-factor
approximation, an O(n1.5 log n) time O(log n)-factor approximation, and
an O(1)-factor approximation with exponential running time. Our re-
sults significantly improve upon the previous O(n3) time O(log2 n)-factor
approximation solution.

1 Introduction

About two and a half decades ago, Overmars and Welzl considered the following
problem: Given a polygonal piece of paper Q with a polygon P of n vertices
drawn on it, cut P out of Q by a sequence of ”guillotine cuts” in the cheapest
possible way [9]. After the hardness of computing an optimal cutting sequence
was shown by Bhadury and Chandrasekaran [3], the research has recently been
concentrated on finding approximation solutions. Particularly, when both P and
Q are convex polygons in the plane, several O(log n) and constant factor ap-
proximation algorithms and a PTAS have been proposed [2,4,5,10]. The study
of this type of problems is mainly motivated by the application where a given
shape needs to be cut out from a parent of material.

In three dimensions, Jaromczyk and Kowaluk have studied the problem of
cutting polyhedral shapes with a hot wire cut and give an O(n5) time algorithm
that constructs a cutting path, if it exists [8]. Very recently, S. I. Ahmed et al.
considered the following problem in three dimensions: Given a convex polyhedron
P of n vertices inside a sphere Q, the objective is to compute a minimum cost
sequence of planes to cut Q such that after the last cut of the sequence we
have Q = P [1]. Here, the cost of a plane cut is the area of the intersection
of the plane with the current polyhedron Q. Their proposed algorithm runs in
O(n3) time and has the cutting cost O(log2 n) times the optimal. Whether the
approximation factor or the time complexity can be improved is left as an open
problem.

In this paper, we present three approximation algorithms for finding a mini-
mum cost sequence of planes to cut P out of Q: an O(n log n) time O(log2 n)-
factor approximation, an O(n1.5 log n) time O(log n)-factor approximation, and
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an O(1)-factor approximation with exponential running time. This gives a sig-
nificant improvement upon the previous result [1]. Our algorithms make use of
graph-decompositions based on the planar separator theorem [7], and extend
some known planar frameworks to three dimensions.

2 Preliminaries

Assume that a convex polyhedron P of n vertices is completely contained in a
sphere Q. A guillotine cut, or simply a plane cut is a cut that does not intersect
the interior of P and divides Q into two convex pieces, lying on both sides of
the cut. Particularly, a plane cut is a face/edge/vertex cut if it cuts along a
face/edge/vertex of P . After a cut is made, Q is updated to the piece containing
P . A cutting sequence is a sequence of plane cuts such that after the last cut in
the sequence we have P = Q.

The cost of a cut is the area of the intersection of the cut with Q. Our objective
is to find a cutting sequence whose total cost is minimum. Let us denote by |S|
the cost of a cutting sequence S. An optimal cutting sequence S∗ is a cutting
sequence whose cost |S∗| is minimum. A face cutting sequence, denoted by Sf ,
is a sequence of plane cuts that are all made along the faces of P . An optimal
face cutting sequence S∗

f is a face cutting sequence whose cost |S∗
f | is minimum

among all face cutting sequences.
Let f denote a face of the polyhedron P . We will denote by |f | the area of f .

Also, we let |P | =
∑

|f |, for all f ∈ P , i.e., |P | denotes the surface area of P .
For two points x, y, we denote by xy the line segment connecting x and y, and
denote by |xy| the length of the segment xy.

2.1 Lower Bounds

In order to estimate the cost performance of our approximation algorithms given
in the next two sections, we now establish some lower bounds on |S∗|. A trivial
lower bound on |S∗| is clearly |P |. The following two lower bounds are similar
to, but slightly different from, those of [1].

Lemma 1. Suppose that the center o of the sphere Q is contained in the polyhe-
dron P . Let f denote the face of P such that the distance between the supporting
plane of f and the center o is minimum, and let R1 denote the radius of the
intersection (circle) of Q with the supporting plane of f . Then, |S∗| ≥ π

2 R2
1.

Proof. First, an optimal cutting sequence contains a face cut along f ; otherwise,
P cannot be cut out, a contradiction. Assume below that the kth cut in S∗(=
C1, C2, . . . , Ck, . . .) is made along the face f .

We claim that the total cost of C1, C2, . . . , Ck is at least π
2 R2

1. It is trivially
true when k = 1. Assume below that k > 1. Denote by H1 the intersection
(circle) of the sphere Q with the supporting plane of f . Let A be the portion of
H1, which is cut out by Ck. See Fig. 1. Clearly, |A| = |Ck|. Denote by D and E
the portions of H1 which are to the left and the right of A, respectively. Without
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Fig. 1. A planar view of several cuts, with the last one made along the face f

loss of generality, assume that neither D nor E is empty. Assume that Ci and
Cj (1 ≤ i, j ≤ k − 1) are the last cuts that cut off D and E, respectively. Also,
assume i < j.

Consider first the simplest situation in which i = 1 and j = 2. See Fig. 1(a).
Since D is contained in the portion of the given sphere Q, which is cut off by
C1, we have |D| ≤ |C1|. If C2 does not intersect C1, we also have |E| ≤ |C2|, and
thus 2|S∗| > |C1| + |C2| + |C3| ≥ |D| + |E| + |A| = πR2

1. The claim is true. In
the case that C2 intersects with C1, E is contained in the portion of the given
or original sphere, which is cut off by C1 and C2. See Fig. 1(a) for an example,
where C1, C2 and E are drawn in bold line. We then have |E| ≤ |C1| + |C2|.
Hence, 2|S∗| > |C1|+(|C1|+ |C2|)+ |C3| ≥ |D|+ |E|+ |A| = πR2

1, and the claim
also holds.

Consider next the situation in which i = 1 and j > 2. Note that C2, . . . , Cj cut
out an outward-convex surface on the resulting polygon Q. If none of C2, . . . , Cj

intersects with C1, then E is contained in the portion of the given sphere, which is
cut off by C2, . . . , Cj (Fig. 1(b)). Otherwise, E is contained in the portion cut off
by C1, C2, . . . , Cj (Fig. 1(c)). In either case, we have |E| ≤ |C1|+ |C2|+ . . .+ |Cj |,
and thus 2|S∗| ≥ πR2

1. Our claim is true, again.
For the last situation in which i > 1 and i < j, we can also see that D

(E) is contained the portion of the given or original sphere, which is cut off
by the cuts C1, . . . , Ci (the cuts C1, . . . , Cj). So we have |C1| + . . . |Ci| ≥ |D|,
|C1|+ . . . |Cj | ≥ |E|, and 2|S∗| ≥ πR2

1. Our claim is thus proved, and the lemma
follows. �

Remark 1. In Lemma 3 of [1], it was claimed that |S∗| ≥ πR2, where R denotes
the radius of the given sphere Q. Only a short sketch was described, in which two
special cases (i.e., P denegerates to a point or the sphere Q itself) are considered
[1]. A more strict proof should further be given.

Lemma 2. Suppose that the center o of Q is not contained in P . Let p denote the
point of P which is closest to o, and let R2 denote the radius of the intersection
(circle) of Q with the plane, which is perpendicular to the segment op at the point
p. Then, |S∗| ≥ π

2 R2
2.
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Proof. Denote by H2 the intersection (circle) of the sphere Q with the plane,
which is perpendicular to the segment op at the point p. Clearly, H2 touches a
face/edge/vertex of P , and does not intersect P . To cut out P from Q, the circle
H2 has to be cut out, too. By an argument similar to the proof of Lemma 1, we
can then obtain |S∗| ≥ π

2 R2
2. �

3 An Efficient O(n log n) Time Approximation Algorithm

As in the previous work [1,5], our algorithm consists of two phases: box cutting
phase and carving phase. In the box cutting phase, we cut a bounding box B
out of Q such that P is contained in B. (Note that B is used for the worst case
analysis, and only part of the box B may actually result.) Then in the carving
phase, we further cut P out of B.

The following new ideas allow us to develop an efficient O(n log n) time ap-
proximation solution. Instead of finding a minimum box bounding P used in [1],
we present a simple linear-time algorithm to compute a bounding box B, with
|B| ≤ 6|P |. In the carving phase. we employ the planar separation theorem, so
as to accelerate the process of cutting P out of B.

3.1 Box Cutting Phase

In this section, we present a linear-time algorithm for finding a bounding box B
of P with |B| ≤ 6|P |, and then, we show how to cut B out of Q at cost O(|S∗|).

Lemma 3. For a convex polyhedron P of n vertices, one can compute in O(n)
time a bounding box B such that P is contained in B, with |B| ≤ 6|P |.

Proof. First, we find two vertices s, t of P such that the z-coordinates of s and t
are minimum and maximum, respectively. (Note that two points s, t do not give
the diameter of the set of all vertices of P .) Without loss of generality, assume
that st is parallel to the z-axis; otherwise, we can simply rotate the coordinate
axes such that the z-axis is parallel to st. Clearly, it takes O(n) time to compute
s and t.

Now, we project all vertices of P into the (x, y) plane vertically. Denote by
P2 the set of the projected vertices of P in the (x, y) plane. Next, we compute
two points u, v of P2 such that the x-coordinates of u and v are minimum and
maximum, respectively. Again, we can assume that uv is parallel to the x-axis.
Finally, compute two vertices u′, v′ of P2 such that their y-coordinates, denoted
by y(u′) and y(v′), are minimum and maximum, respectively. See Fig. 2. (We
cannot assume that u′v′ is parallel to the y-axis. However, the value y(v′)−y(u′)
is sufficient for the performance analysis of our algorithm.)

Let B be the minimum axis-aligned box that encloses P . As discussed above,
the lengths of B in three different directions are |st|, |uv| and y(v′) − y(u′).
(Remember that s and t (u and v) are two vertices of P (P2).) We show
below that |B| ≤ 6|P |. Denote by CH(P2) the convex hull of the point set
P2 in the (x, y) plane, and denote by |CH(P2)| the area of CH(P2). Clearly,
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Fig. 2. The orthogonal projection of the vertices of P in the (x, y) plane

|P | ≥ 2|CH(P2)|. (Note that we needn’t compute CH(P2) at all.) Since the
segment uv is parallel to the x-axis, we have |CH(P2)| ≥ (y(v′) − y(u′))|uv|/2.
Thus, |P | ≥ (y(v′)−y(u′))|uv|. Since st is parallel to the z-axis, we can similarly
obtain |P | ≥ (y(v′) − y(u′))|st| and |P | ≥ |uv| · |st|. In summary, we have

|B| = 2((y(v′) − y(u′))|uv| + (y(v′) − y(u′))|st| + |uv| · |st|) ≤ 6|P |,

as required. �

Lemma 4. For a convex polyhedron P of n vertices inside the sphere Q, one
can compute in O(n) time a cutting sequence of cost O(|S∗|), which cuts the box
B (bounding P ) out of Q.

Proof. We mainly distinguish two different situations. If the center o of Q is
contained in the polyhedron P , then we simply make six cuts along all faces of
the box B. From the definition of the radius R1 (see Lemma 1), each of these
cuts is of cost no more than πR2

1. Thus, the cost of this cutting sequence is at
most 12|S∗|. In the case that the center o of Q is not contained in P , we first
make a cut along the plane, which is perpendicular to the segment op at p, where
p is the point of P that is closest to the center o of Q. Following from Lemma 2,
its cutting cost πR2

2 is no more than 2|S∗|. For the remaining part of the sphere
(that contains P ), we further make six cuts along all faces of the box B. Since
any of these six cuts is of cost at most πR2

2, the cost of this cutting sequence is
at most 14|S∗|.

Consider now the time required to compute the cutting sequence described
above. Since P is convex, whether the center o of Q is contained in P can simply
be determined in O(n) time. If o is not contained in P , we further compute in
O(n) time the point p of P that is closest to o. It gives the first cutting plane
that is perpendicular to op in this case. Since finding the bounding box B of P
also takes O(n) time, the proof is thus complete. �

3.2 Carving Phase

Denote by P+ (P−) the set of the faces of P , whose outward normal has the
positive (negative) z value. We describe below how to cut all faces of P+ out of
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the box B. (Cutting P− out of B can be done analogously.) Since P is convex,
P+ is clearly a planar graph.

An important observation made here is that P+ can be cut out from the
box B using the planar separator theorem [7]. Suppose first that each face of
P+ has been triangulated. Consider the dual graph of the triangulation of P+,
which has O(n) edges and nodes. We can select in linear time O(

√
n) edges to

form a separator T , which partitions the (dual) graph into two portions with at
most two third of the edges on each side of T [7]. Our idea is then to perform a
sequence of plane cuts along all faces of T . (Note that each node of the separator
T corresponds to a triangle or face of P+.) So P + can be cut out from B using
a divide-and-conquer procedure. For each separator T , the other divide-and-
conquer procedure will also be used to give the face cutting sequence along T ,
which total cost is O(|S∗| · logn). For this purpose, we order all nodes of T from
one of its ends to the other, and define the median node of T to be the node of
T with the middle index.

Lemma 5. The convex polyhedron P can be cut out from the box B in O(n log n)
time by a cutting sequence of cost O(|S∗| · log2 n).

Proof. First, we triangulate each face of P+. Consider the dual graph of the
triangulation of P+, which has O(n) edges and nodes. We can then select in
linear time O(

√
n) edges to form a separator T , which partitions the (dual)

graph into two portions with at most two third of the edges on each side of T .
Let us now consider how to perform a sequence of plane cuts along the found

separator T . We use O(log n) recursive steps. In the first step, we find the median
node of T , and make a plane cut C1 along its corresponding triangle or face of
P+. Clearly, |C1| ≤ |B|, and the cut C1 divides the separator T into two sub-
separators. (Note that C1 actually contains all triangles that are on the same
face as the chosen triangle.) In the next step, we find the median node in each
of the sub-separators, and make two cuts C2, C3. Note that |C2| + |C3| ≤ |B|.
This operation is performed until all plance cuts along the nodes of T are made.
In each recursive step, the cutting cost is no more than |B|. Therefore, the total
cost taken for the face cutting sequence along T is O(|B| · log n) = O(|S∗| · log n).

After the cutting sequence along the separator T is made, the problem of cut-
ting out the faces of P+ is partitioned into two subproblems; one on each side
of T . Denote by B1, B2 the two portions (of the original box B), which is ob-
tained after the cutting sequence along T is made, on different sides of T . Thus,
|B1|+ |B2| ≤ |B|. Next, we further apply the planar separator theorem to B1, B2,
and denote by T 1, T 2 the found planar separators, respectively. Then, perform
the cutting sequences along T 1 and T 2, separately. Again, the cutting costs are
O(|B1|·log n) and O(|B2|·log n), respectively. So the cutting cost taken in the sec-
ond step of our algorithm is also O(|S∗| · log n). In this way, all faces of P+ can be
cut out in at most O(log n) recursive steps. Since the cutting cost of each recursive
step is O(|S∗| · log n), the total cost taken by our algorithm is O(|S∗| · log2 n).

Finally, since the separator of a planar graph can be found in linear time, the
total time required to cut P out of B is O(n log n). �

The first result of this paper immediately follows from Lemmas 3 to 5.
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Theorem 1. For a given convex polyhedron P of n vertices inside a sphere Q,
an O(log2 n)-factor approximation of an optimal cutting sequence for cutting P
out of Q can be computed in O(n log n) time.

4 Constant and O(log n) Factor Approximation
Algorithms

To obtain a good approximation of an optimal cutting sequence, we will extend
some known planar frameworks to three dimensions. First, we show a general
property of an optimal cutting sequence S∗, i.e., any cut of S∗ has to touch
P . Next, we present a constant factor and an O(log n) factor approximation
algorithms for cutting P out of Q.

4.1 A General Property

Assume that both Q and P are the convex polyhedra. Then, we have the fol-
lowing result.

Lemma 6. Any cut of an optimal cutting sequence S∗ for cutting P out of Q
has to touch a vertex, an edge or a face of P .

Proof. The proof is by contradiction. Suppose that C∗ is the first cut of S∗,
which does not touch P . Clearly, moving or deleting C∗ does not change the
cost of the cuts before C∗. If no cuts after C∗ end on the cut C∗, then C∗ can
be deleted from S∗ without increasing the cost of any other cuts; it contradicts
the optimality of S∗. Denote by X the set of the cuts after C∗, which end on
the cut C∗. Clearly, moving C∗ will change the cost of the cuts of X .

Assume first that C∗ does not contain any vertex of the current polyhedron Q.
Denote by C1, C2 the two cuts which are obtained by moving C∗ parallel to itself,
towards and away from P , by a very small distance ε such that the shape of C1

(C2) on the surface of Q is similar to that of C∗, if the cut C∗ of S∗ is replaced
by C1 (C2). Since ε is arbitrarily small, neither C1 nor C2 touches P . Then, |S∗|
cannot be strictly smaller than the cost of either new sequence (i.e., |S∗| is equal
to the cost of both new sequences), in which the cut C∗ of S∗ is replaced by C1

or C2; otherwise, due to the similarity, the cost of one new cutting sequence is
strictly smaller than |S∗|, a contradiction. Assume now that |S∗| is equal to the
cost of both new sequences. Remember that the current polyhedron Q containing
P is always convex. So if we keep to move C∗ away from P , by a distance ε every
time, the change in the total area of the current cut C∗ and all the cuts of X , which
still end on the current cut C∗, is a monotone decreasing function. This implies
that either a new position of C∗ yields an empty set X , or C∗ is eventually moved
outside the polyhedron Q; a contradiction occurs in either case.

It requires a little more care of the situation in which C∗ contains at least one
vertex of the current polyhedron Q. Also, denote by C1 (C2) the cut, which is
obtained by moving C∗ parallel to itself, towards (away from) P , by a very small
distance ε. Since C1 is not similar to C2 in this case, it needs a slightly different
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argument. Suppose now that we move the plane containing C∗ away from P by
the same distance ε, and consider the (convex) region C′

2 in that plane, which
is bounded by its intersection with the planes containing all faces of X . Note
that C′

2 is similar to both C∗ and C1. We call C′
2 a pseudo-cut, and the cutting

sequence in which C∗ of S∗ is replaced by C′
2 and the cuts of X are extended

to end on C′
2 (if needed), a pseudo-cutting sequence. As discussed above, |S∗| is

then equal to the cost of of this pseudo-cutting sequence. It also follows from the
convexity of Q and the above construction of the pseudo-cut C′

2 that C′
2 ⊇ C2.

Thus, the cost of the cutting sequence in which C∗ of S∗ is replaced by C2, is
no more than the cost of the above pseudo-cutting sequence. This implies that
the operation of keeping to move C∗ away from P also works, which eventually
leads to a contradiction. The proof is thus complete. �

4.2 Algorithms in the Carving Phase

Suppose that the box B has been cut out from the sphere Q, as described in
Section 3.1. We will focus our attention on the problem of cutting P out of B.
For ease of presentation, we still use S∗ to represent an optimal cutting sequence
for cutting P out of B, and S∗

f an optimal face cutting sequence for cutting P
out of B.

In the following, we first show that an optimal face cutting sequence for cutting
P out of B is a constant factor approximation of an optimal cutting sequence.
To obtain an O(log n)-factor approximation, we further employ a dynamic pro-
gramming technique, which was originally given by Overmars and Welzl [9].

Lemma 7. In the carving phase of cutting P out of B, an optimal face cutting
seqeunce S∗

f is an O(1)-factor approximation of S∗.

Proof. Our proof is similar to that of its planar counterpart given by Daescu
and Luo [4]. Let S∗ be an optimal cutting seuqence for cutting P out of B. We
will construct a face cutting sequence Sf , whose cost is at most 10|S∗|. Since
|S∗

f | ≤ |Sf | holds, the lemma then follows.
For every optimal cut C∗ ∈ S∗, in order, if C∗ is a face cut, we simply add it

to Sf . Otherwise, C∗ is tangent to a vertex or an edge of P ; in this case, we add
several face cuts to Sf as follows. If C∗ is tangent to an edge e of P , then we
add to Sf two cuts C1, C2 (in this order), which are made along the two faces
of P having the common edge e. A portion of C1 lies outside of C∗ as viewed
from a point inside P , but the whole cut C2 lies inside of C∗. Since the original
polyhedron containing P is the box B, the portion of C1 lying outside C∗ is of
area at most |C∗|. If C∗ touches a vertex v of P , we first project all the edges
having the common vertex v into the plane C∗ vertically, and find the two edges
e1, e2 such that the smaller angle (less than π) between their projections in the
plane C∗ is maximum among all of these angles. Next, we add to Sf the cuts
C11 and C12 (C21 and C22), in this order, which are made along the two faces
of P having the common edge e1 (e2). (Two of these faces may be identical.)
Again, the portion of C11 (C21) lying outside C∗ is of area at most |C∗|.
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Since some cuts of S∗ may not be the face cuts, we give below a method to
bound the extra cost between |Sf | and |S∗|. Denote by B∗ the portion of the
original box B, which is obtained after C∗ in the cutting sequence S∗ is made,
and Bf the portion of B obtained after the cuts corresponding to C∗ in Sf are
made. It follows from the above construction of Sf that Bf ⊆ B∗.

For a cut C∗ ∈ S∗, at most four face cuts may have been added to Sf . As
discussed above, the portions of these faces lying outside B∗ are of area at most
2|C∗|. So the extra cost taken for all such portions (lying outside B∗) is at most
2|S∗|. Let us denote by C′

1 and C′
2 (C′

11, C′
12, C′

21 and C′
22) the portions of the

cuts C1 and C2 (C11, C12, C21 and C22), which are contained in B∗. Let Δ
denote the part of B∗, which is exactly cut off by the cuts C1 and C2 (C11,
C12, C21 and C22). Since both B∗ and P are convex, the inner surface of Δ,
which consists of C′

1 and C′
2 (C′

11, C′
12, C′

21 and C′
22), is inward-convex, and

the outer surface of Δ, which consists of all other faces (including C∗) of Δ, is
outward-convex. Therefore, the area of the inner surface of Δ is no more than
that of the outer surface. (It can simply be proved by an argument similar to that
given for its planar counterpart [6].) The extra cost between |C∗| and |C′

1|+ |C′
2|

(|C′
11|+ |C′

12|+ |C′
21|+ |C′

22|) is thus bounded by the total area of the faces f of
Δ, excluding C∗, C′

1 and C′
2 (C′

11, C′
12, C′

21 and C′
22). Since these faces f belong

to the surface of the original box B or some cuts of S∗, which are made before
C∗, the extra cost taken for all the portions of C′

1 and C′
2 (C′

11, C′
12, C′

21 and
C′

22) lying inside B∗ is at most |B| + |S∗|. Putting together all results, we have
|Sf | ≤ 2|S∗| + |S∗| + (|S∗| + |B|) ≤ 4|S∗| + 6|P | ≤ 10|S∗|. This completes the
proof. �

An optimal face cutting sequence S∗
f can be computed in exponential time,

because the number of all face cutting sequences is trivially bounded by n!. So
we have the following result.

Theorem 2. For a given convex polyhedron P of n vertices inside a sphere Q,
an O(1)-factor approximation of an optimal cutting sequence for cutting P out
of Q can be computed in exponential time.

It is not known whether there exists a polynomial time algorithm for comput-
ing S∗

f . However, optimal face cutting sequences for planar separators employed
in the previous section can be computed using dynamic programming. This yields
an O(log n)-factor approximation algorithm for computing S∗

f .

Lemma 8. The convex polyhedron P can be cut out from the box B in
O(n1.5 log n) time by a face cutting sequence of cost O(|S∗

f | · log n).

Proof. As in the proof of Lemma 5, we employ a divide-and-conquer algorithm
to cut P out of B. In every step of cutting along a separator, instead of a
simple divide-and-conquer method, we use a dynamic programming algorithm
to compute an optimal face cutting sequence for the separator. This allows us
to cut P in O(n1.5 log n) time out of B at cost O(|S∗

f | · log n).
The dynamic programming algorithm for plane cuts along a planar separator

is essentially the same as that for line cuts along a convex chain in the plane [9].
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Let T 1 be the separator of P+, which is found in the first step of our algorithm.
Let us number the faces of T 1 from 1 to m along the surface of P+. (All triangles
on the same plane are considered as a single face.) Then, we compute optimal
face cutting sequences of all arc of faces of T 1, in order of length of the arc, i.e.,
start with the arc of one face, next arcs of two arcs. Note first that the optimal
face cutting sequence for the arcs having only one face fi is the face fi itself, as
the cuts along fi−1 and fi+1 are assumed to have been made. (No face cut is
made along fi−1 or fi+1 if i = 1 or i = m.) Assume now that all optimal face
cutting sequences for the arcs of length no more than j − i− 1, j > i, have been
computed. Consider how to cut out the faces between fi and fj. An optimal
face cutting sequence consists of a cut along some face fk (i ≤ k ≤ j), followed
by at most two optimal cutting sequences; one for all faces between fi and fk−1

and the other for all faces between fk+1 and fj . Trying all possible choices of
k clearly gives an optimal face cutting sequence for all faces between fi and fj .
Note that a face cut along fk may intersect with the previously made cuts fi−1

and fj+1, or the surface of the box B. After all the first two cuts along fi and fj

(1 ≤ i, j ≤ m) inside B have been precomputed in O(m2) time, such a try can
be done in constant time. So after an O(m2)-time preprocessing step, an optimal
face cutting sequence for the arc between (any) two faces fi, fj can be computed
in O(j − i) time. Since the total number of these arcs is bounded by O(m2), and
since m is of size O(

√
n), the time required to find an optimal cutting sequence

along T 1 is O(m3) or O(n1.5).
An optimal face cutting sequence along the separator T 1 divides the problem

of cutting out the faces of P+ into two independent subproblems; either subprob-
lem is of size at most 2n/3. Solving the recurrence T (n) = 2T (2n/3) + O(n1.5)
gives us the time bound O(n1.5 log n).

Next, we show that the cutting cost taken in each recursive step of our al-
gorithm is O(|S∗

f |). Let S1
f denote the optimal face cutting sequence along T 1.

Clearly, we have |S1
f | ≤ |S∗

f |. Denote by B1 the polyhedron obtained after S1
f is

made. Denote by T 2, T 3 the two planar separators found in the second step of
our divide-and-conquer algorithm, and S2

f , S3
f the optimal face cutting sequences

along T 2, T 3. The problem of cutting P+ out of B1 can then be considered as
two independent subproblems, which are separated by T 1. Since the face cutting
sequence S2

f or S3
f is optimal only for the separator found in either side of T 1,

the cost (|S2
f |+ |S3

f |) is no more than the cost of an optimal face cutting sequence
for cutting P+ out of B1. Moreover, since B1 ⊂ B, the cost of any optimal face
cutting sequence for cutting P+ out of B1 is no more than |S∗

f |. Thus, we have
|S2

f | + |S3
f | ≤ |S∗

f |. Analogously, the cutting cost at each recursive step of our
algorithm is no more than |S∗

f |. Since it needs at most O(log n) recursive steps,
the total cost of our cutting sequence is O(|S∗

f | · log n). �

The main result of this paper follows from Lemmas 4, 7 and 8.

Theorem 3. For a given convex polyhedron P of n vertices inside a sphere Q,
an O(log n)-factor approximation of an optimal cutting sequence for cutting P
out of Q can be computed in O(n1.5 log n) time.
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5 Concluding Remarks

We have presented three approximation algorithms for computing a minimum
cost sequence of planes to cut a convex polyhedron P of n vertices out of a sphere
Q. Our algorithms with O(n1.5 log n) running time O(log n)-factor approxima-
tion and O(n log n) running time O(log2 n)-factor approximation greatly improve
upon the previously known O(n3)-time O(log2 n)-factor approximation solution.

Finally, we pose two open questions for further research. First, it is open to
find a polynomial-time algorithm for computing an optimal face cutting sequence
for cutting the convex polyhedron P out of the box B. Although its planar
counterpart is true [9], we find it difficult to obtain the same result in 3D. Also,
it is an interesting work to develop an approximation algorithm for cutting P
out of another convex polyhedron Q. Again, whether the method used for its
planar counterpart [5] can be generalized to 3D remains open.
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