
Frequency Based Locality Sensitive Hashing

Kang Ling, Gangshan Wu
State Key Laboratory for Novel Software Technology

Nanjing University
 Nanjing, China

lingkang1988@gmail.com, gswu@nju.edu.cn

Abstract—Nearest Neighbor (NN) search is of major importance
to many applications, such as information retrieval, data mining
and so on. However, finding the NN in high dimensional space
has been proved to be time-consuming. In recent years, Locality
Sensitive Hashing (LSH) has been proposed to solve
Approximate Nearest Neighbor (ANN) problem. The main
drawback of LSH is that it requires quite a lot of memory to
achieve good performance, which makes it not that suit for
today’s application of massive data. We analyze generic LSH
scheme as well as the properties of LSH hash functions based on
p-stable distributions and propose a new LSH scheme called
Frequency Based Locality Sensitive Hashing (FBLSH). FBLSH
just uses one function based on p-stable distributions as hash
function of a hash table, and it sets a frequency threshold m, only
those points which collide with query point more than m times
can be candidate ANNs. FBLSH is easy to implement and
through experiments, we show that FBLSH can reduce the extra
space cost by several orders of magnitude with less (or similar)
time cost while achieving better search quality compared with
LSH based on p-stable distributions.

Keywords-Information Retrieval; Similarity Search; LSH

I. INTRODUCTION
Nearest Neighbor (NN) search is widely used in many

applications, such as information retrieval, data mining, signal
processing and so on. Some indexing methods using branch
and bound techniques have good performance in low-
dimensional space, KD-tree [1] for example. However, when it
comes to high dimensional space, current techniques for NN
search are proved to be no better than linear search, which is
known as “curse of dimensionality” [2].

Some researchers proposed to improve the time efficiency
by applying Approximate Nearest Neighbor (ANN) [3] search
in recent years, because ANN can act as good as the exact one
in many applications. Locality Sensitive Hashing (LSH) [3, 4]
is one of the most popular ANN algorithms, which can achieve
good performance in high-dimensional space. However, there
is a trade-off between search efficiency and memory usage. To
achieve high search efficiency, LSH requires quite a lot of
memory due to a large number of hash tables used. But the data
we deal with today is massive in many cases, the search quality
and search efficiency on large dataset will be affected when the
main memory capacity can not satisfy the space requirement.

A lot of improvements of LSH have been done recently. [5]
proposed a near-optimal LSH that uses a Leech lattice for

hashing in order to get better results than just using random
projections. Query-adaptive LSH was proposed in [6], this
method uses E8 lattices as hash functions and selects the most
appropriate hash functions by a relevance criterion, resulting in
less query time at the cost of more memory. In [7], entropy-
based LSH selects several points in the neighborhood of query
point and merges the query results of them. Obviously, it is a
way of trading time for space. To reduce the time cost of
entropy-based LSH, [8] proposed multi-probe LSH which
searches several buckets that are likely to contain the query
results for a query point. A posteriori multi-probe LSH has
been proposed in [9], which defines a more reliable posteriori
probabilistic model taking account some prior about the queries
and the searched points.

These improvements are all based on generic LSH scheme.
However, generic LSH scheme has some limitations as it trades
space for time and does not make full use of hash functions. In
this paper, we give the analysis of generic LSH scheme and
present a new LSH algorithm scheme called Frequency Based
Locality Sensitive Hashing (FBLSH) based on p-stable LSH.
FBLSH does not use hash function which is generated by
concatenating several functions chosen randomly from LSH
family but just uses one function based on p-stable
distributions. Correspondingly, it does not choose those points
that collide with query point at least once as candidate ANNs
but sets a frequency threshold m, only those points which
collide with query point more than m times can be candidates.
FBLSH can improve space efficiency and search quality with
less (or similar) query time. Through experiments, we can
prove the improvement over LSH based on p-stable
distributions.

II. BACKGROUND

A. Approximate Nearest Neighbor Search
What LSH deals with is Approximate Nearest Neighbor

search problem, more specifically, (r,)-NN problem. Let X be
the data domain and D: X × X → R be the similarity function,
we can define it as follows: given a query point q (q ∈ X), each
point p (p ∈ X) satisfying D(p, q) r has to be returned with a
probability at least .

B. Generic Locality Sensitive Hashing Scheme
The basic idea of LSH is to hash the points from the

database so as to ensure that the probability of collision is

This work is supported by the National Science Foundation of China
under Grant Nos. 61021062.

49294929
978-1-61284-774-0/11/$26.00 ©2011 IEEE

much higher for those points that are close to each other than
for those that are far apart.

To implement LSH, the definition of LSH family was
introduced in [3]. Let S be the domain of d-dimensional points
and D: S × S → R be the similarity function. A family H = {h :
S → U} is called (r1, r2, p1, p2)-sensitive for D if for any p, q ∈
S:

• if D(p, q) r1 then PrH[h(p) = h(q)] p1,

• if D(p, q) r2 then PrH[h(p) = h(q)] p2.

To make LSH family be useful, it has to satisfy inequalities r1 <
r2 and p1 > p2.

Generic LSH scheme works as follows:

1) Index construction: For an integer k, define a function
family G = {g : S → Uk} such that g(v) = (h1(v), ... , hk(v)). For
an integer L, choose L functions g1, ... , gL from G,
independently and uniformly at random. For any point v in the
input dataset, store it in the bucket gi(v), where i = 1, ... , L.

2) Query procedure: When processing a query point q,
search buckets g1(q), ... , gL(q) and get all points v1, ... , vn in
these buckets as candidate ANNs. For each vj, j = 1, ... , n, if
D(q , vj) r, return vj.

C. Locality Sensitive Hashing Based on p-Stable
Distributions
[4] proposed LSH families based on p-stable distributions

where each hash function is defined as:

 () a v b
h v

w
⋅ += , (1)

where a is a d-dimensional vector with entries chosen
independently from a p-stable distribution and b is a real
number chosen uniformly from the range [0, w].

For any two vectors v1, v2 in the data domain, let x =

1 2 p
v v− , and fp is the probability density function of the

absolute value of the p-stable distribution, we can prove that

 []1 2 0

1() Pr () () ()(1)
w

p

t t
p x h v h v f dt

x x w
= = = − . (2)

For a fixed parameter w, the probability of collision p(x)
decreases monotonically with x, so h(v) belongs to LSH family.

Exact Euclidean LSH (E2LSH) is a popular implementation
of LSH based on p-stable distributions using generic LSH
scheme which can be used in Euclidean space, and we use it to
compare with our method in this paper.

III. ANALYSIS OF LOCALITY SENSITIVE HASHING
We will give a brief analysis of generic LSH scheme in this

section. Before that, let’s define a function t(x) first, where x
denotes the distance between query point q and any point v in

the data domain, and t(x) denotes the probability of that v is the
candidate ANN of q. In order to solve (r,)-NN problem
effectively, this function should have two properties:

• if x r then t(x) ,

• if x (1+c)r then t(x) (is small for large c).

The first property guarantees that each point v satisfying D(q, v)
 r should be returned with a probability at least while the

second property guarantees that the candidate ANN set
contains only a small number of false ANNs. The smaller is,
the fewer comparisons will be made.

It is easy to find a function h(v) belonging to family H in
some degree while it is hard to meet the above two conditions
at the same time by using a single h(v) as hash function for the
only hash table, and that’s the reason why generic LSH scheme
was proposed. For generic LSH scheme, it is easy to see

 () (()) 1 (1 ())k k Lt x f p x p x= = − − , (3)

where p(x) denotes the probability of that h(q) equals h(v). We
know that f(p(x)k) increases monotonically with p(x)k when
p(x)k is in the interval close to 0, and the larger L is, the more
rapidly f(p(x)k) increases. Since p(x) may drop slowly when p(x)
is small, h(v) is not suitable to be used as the hash function of a
hash table. To solve this problem, g(v) is used. Compared with
just using h(v) as hash function of a hash table, using g(v)
insures that p(x)k drops rapidly with x when p(x)k is small. Thus,
it is obvious to see t(x) holds the two properties and this
scheme can be used to solve (r,)-NN problem.

From the analysis above, we can see that to make LSH
work better, L should be large, but a lot of memory is required
at the same time. What’s more, generic LSH scheme
guarantees that any function h(v) belonging to LSH family can
be used to solve (r,)-NN problem. But it does not make full
use of the properties of h(v) in some degree. So we make a
further study on the properties of h(v) based on p-stable
distributions and propose an improved LSH scheme which can
be used for solving (r,)-NN problem better.

IV. FREQUENCY BASED LOCALITY SENSITIVE HASHING

A. Frequency Based Locality Sensitive Hashing Scheme
Our new scheme is similar to generic LSH scheme except

that it uses a single h(v) as hash function and sets a frequency
threshold m to select those points which collide with query
point more than m times as candidate ANNs. It works as
follows:

1) Index construction: For an integer L (L > 1), choose L
functions h1, ... , hL from H (based on p-stable distributions),
independently and uniformly at random. For any point v in the
input dataset, store it in the bucket hi(v), where i = 1, ... , L.

2) Query procedure: For a query point q, search buckets
h1(q), ... , hL(q) and get all points v1, ... , vn which appear no less
than m times in these buckets as candidate ANNs. For each vj, j
= 1, ... , n, if D(q , vj) r, return vj.

49304930

B. Correctness and Computational Complexity Analysis
From our algorithm above, it is obvious to see that

 () (()) () (1 ())
L

i i L i
L

i m

t x f p x C p x p x −

=

= = − , (4)

where x denotes the distance between query point q and any
point v in the data domain, t(x) denotes the probability of that v
is the candidate ANN of q, and p(x) denotes the probability of
that q collides with v in a hash table. Let u = p(x), then

 () (1)
L

i i L i
L

i m

f u C u u −

=

= − . (5)

It is easy to see f(u) is a monotonically increasing function
since

 1 1
1() (1) 0m m L m

Lf u LC u u− − −
−′ = − > . (6)

We can get that ()f u′ is monotonically increasing in the
interval (0,), and is monotonically decreasing in (, 1) while
reaching its maximum when u = (= (m-1)/(L-1)). Moreover,
there is an interval (0,) in which ()f u′ is close to 0;
correspondingly, there exists an interval (, 1) where ()f u′ is
close to 0, too. It is easy to see that (0) 0f = and

1
lim () 1
u

f u
→

= .
So f(u) is close to 0 and increases slowly when u is in the
interval (0,) while close to 1 and increasing slowly with u in
the interval (, 1). Finally, we can get such a conclusion that f(u)
increases rapidly in the interval [,] containing . Because
increases as m increases, the interval [,] shifts to right with
m increasing. That is to say, we can change the interval in
which f(u) increases rapidly by changing the value of m, as
shown in Fig. 1.

Figure 1. Fuction images of f(u) with different m

A simple calculation from (2) shows that

2

222() 1 () (1)
2 2

w

xw x
p x erfc e

x wπ

−
= − − − . (7)

It is difficult to study the properties of p(x) according to its
function expression, so we draw the function image (Fig. 2).
Here we can assume that r = 1, since otherwise, we can scale
down all the points by a factor of r. The range of x is set to [1,
2]. We observe that p(x) increases with the value of w. When w
is in the interval (0, 2), p(x) is small and drops slowly in the
interval [1, 2); similarly, when w is in (5, 10), p(x) is large and
drops slowly in [1, 2), too; but when w is in the interval [2, 5],
p(x) drops rapidly in [1, 2).

Figure 2. Fuction image of p(x)

It is for the reason that p(x) drops slowly in the interval [r,
(1+c)r) when p(x) is small that we can not use a single h(v) as
the hash function of a hash table but use g(v) instead in generic
LSH scheme. But if we set w in the interval [2, 5], and set m
properly so that the interval [,] intersects with [p((1+c)r),
p(r)], using just a single h(v) as the hash function is enough to
solve (r,)-NN problem effectively since t(x) decreases
monotonically with x and drops rapidly as x increases in the
interval [r, (1+c)r).

For E2LSH, let u = p(x)k and L = 30 in (3), the function
image of f(u) is the one with m = 1 in Fig. 1, and it increases
rapidly with u close to 0. But f(u) is close to 0 and increases
slowly when u is close to 0 for FBLSH, as mentioned earlier.
So for a large c, t((1+c)r) in FBLSH is smaller. In fact, there is
a threshold l, for any L > l, FBLSH makes sure that t((1+c)r) is
much smaller with the same t(r) compared with E2LSH, and
the difference becomes relatively larger with L increasing. The
mathematics proof is complicated, so we prove it using Matlab.
When w is 4, l is about 20. Actually, E2LSH has poor
performance when L is less than 20, and it needs hundreds of
hash tables to reach the same quality as FBLSH when FBLSH
uses only dozens of hash tables. In other words, FBLSH needs
fewer hash tables and comparisons than E2LSH with the same
accuracy. Besides, FBLSH needs only about 4nL bytes
memory while E2LSH needs about 12nL bytes, where n is the
size of dataset. That’s why FBLSH can reduce the space cost
effectively.

The time for computing distances in FBLSH is smaller than
that in E2LSH since FBLSH needs fewer comparisons than
E2LSH. In E2LSH, g(v) is the concatenation of k LSH
functions, to reduce the memory needed for storing hash values,
another two hash computations are needed besides k hash
computations of g(v), which is time-consuming, especially
when L is very large. For small datasets, the frequency
counting time is much less than the time for getting candidate

49314931

ANNs in E2LSH, so FBLSH consumes much less query time
than E2LSH. For large datasets, the frequency counting time
becomes longer and FBLSH has similar query time with
E2LSH.

V. EXPERIMENTS
In this section, we will describe the configurations of our

experiments and show that our approach outperforms E2LSH
through experimental results.

A. Experimental Setup

1) Implementation details: FBLSH is easy to implement in
many ways. In our implementation, we set w in the interval [2,
5] and choose L which results in best query time. The
parameters of E2LSH are set to the optimal ones estimated by
itself. is set to 0.9 for both two methods.

2) Datasets: Our experiments are based on two datasets,
one is 128-dimensional SIFT feature vectors of size 1M, the
other is 1M 960-dimensional GIST feature vectors. Both of
them are from INRIA ANN datasets for evaluation of ANN
search algorithms. For each dataset, we generate several
subsets with different size to perform experiments on.

3) Evaluation benchmark: For each dataset, we picked a
set of 100 points from query set as queries, and we set the
search radius properly so that the average number of near
neighbors is 100. (For 10K datasets, the number is 20.) Since
precision does not need to be considered, we mainly compare
recall, query time, and memory used. The query time is
measured by averaging the query time over 100 queries, and
the memory used does not contain the memory for storing the
dataset. Each experiment is repeated 5 times and the average is
recorded.

4) Hardware and software: The evaluation is done on a PC
with 4 32-bit 2.66GHz CPUs and 4GB RAM (about 3GB
available). The operating system is linux with kernel 2.6.32.

B. Experimental Results
Table 1 and Table 2 show the average results of E2LSH

and FBLSH methods with datasets of different size, and we
compare the two methods from recall, query time, and memory
used.

1) Recall: Each method has a higher recall compared with
the given , and the recall of FBLSH is slightly higher than that
of E2LSH.

2) Time: FBLSH outperforms E2LSH for small datasets
and has similar time cost for large ones since the frequency
counting time is increasing with the size of dataset. The higher
the dimension is, the more time for computing distances our
method saves, and the better our method performs. When the
dataset is large enough to the capacity of main memory, 750K
GIST dataset for example, E2LSH acts as bad as linear search
while our method still needs only a little time.

3) Space: When memory is enough for E2LSH, FBLSH
can reduce the extra memory used by a factor of 56 to 106,

even for datasets larger than 500K, our approach can still
reduce the memory by an order of magnitude.

VI. CONCLUSION
In this paper, we proposed a new LSH scheme called

FBLSH which can reduce the extra space cost by several orders
of magnitude with less (or similar) time cost while achieving
better search quality compared with E2LSH. We are now
trying to reduce the query time further and expect some
improvements of LSH to be done based on our scheme.

TABLE I. SEARCH PERFORMANCE COMPARISON (SIFT)

Size Method Recall Time (s) L Space Ratio

10K E2LSH 0.951 0.00065 1485 97
FBLSH 0.965 0.00042 46 1

100K E2LSH 0.948 0.00314 1485 106
FBLSH 0.950 0.00347 42 1

1M
E2LSH 0.959 0.02867 153 16
FBLSH 0.983 0.03880 28 1

TABLE II. SEARCH PERFORMANCE COMPARISON (GIST)

Size Method Recall Time (s) L Space Ratio

10K E2LSH 0.937 0.00220 1485 56
FBLSH 0.949 0.00082 79 1

100K E2LSH 0.981 0.00420 1485 84
FBLSH 0.984 0.00317 53 1

500K
E2LSH 0.923 0.01846 153 14
FBLSH 0.982 0.01277 33 1

750K E2LSH 0.982 0.72324 6 1
FBLSH 0.981 0.03041 30 1.7

REFERENCES
[1] Bentley and J. L. , “Multidimensional binary search trees used for

associative searching,” Communications of the ACM, vol. 18, no. 9, pp.
509–517, 1975.

[2] C. B¨ohm, S. Berchtold, and D. Keim, “Searching in high-dimensional
spaces: index structures for improving the performance of multimedia
databases,” ACM Computing Surveys, vol. 33, no. 3, pp. 322–373,
2001.

[3] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proc. of Symposium on
Theory of Computing, 1998, pp. 604–613.

[4] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. of annual
symposium on Computational geometry, 2004, pp. 253–262.

[5] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Communications of
the ACM, vol. 51, no. 1, 2008.

[6] H. Jegou, L. Amsaleg, C. Schmid, and P. Gros, “Query-adaptative
locality sensitive hashing,” in Proc. of IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2008, pp. 825.

[7] R. Panigrahy, “Entropy based nearest neighbor search in high
dimensions,” in Proc. of annual ACM-SIAM symposium on Discrete
algorithm, 2006, pp. 1186–1195.

[8] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
LSH: efficient indexing for high-dimensional similarity search,” in Proc.
of International Conference on Very Large Data Bases, 2007, pp. 253–
262.

[9] A. Joly and O. Buisson, “A posteriori multi-probe locality sensitive
hashing,” in Proc. of ACM International Conference on Multimedia,
2008.

49324932

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

