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Abstract—Nearest Neighbor (NN) search is of major importance 
to many applications, such as information retrieval, data mining 
and so on. However, finding the NN in high dimensional space 
has been proved to be time-consuming. In recent years, Locality 
Sensitive Hashing (LSH) has been proposed to solve 
Approximate Nearest Neighbor (ANN) problem. The main 
drawback of LSH is that it requires quite a lot of memory to 
achieve good performance, which makes it not that suit for 
today’s application of massive data. We analyze generic LSH 
scheme as well as the properties of LSH hash functions based on 
p-stable distributions and propose a new LSH scheme called 
Frequency Based Locality Sensitive Hashing (FBLSH). FBLSH 
just uses one function based on p-stable distributions as hash 
function of a hash table, and it sets a frequency threshold m, only 
those points which collide with query point more than m times 
can be candidate ANNs. FBLSH is easy to implement and 
through experiments, we show that FBLSH can reduce the extra 
space cost by several orders of magnitude with less (or similar) 
time cost while achieving better search quality compared with 
LSH based on p-stable distributions. 
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I.  INTRODUCTION  
Nearest Neighbor (NN) search is widely used in many 

applications, such as information retrieval, data mining, signal 
processing and so on. Some indexing methods using branch 
and bound techniques have good performance in low-
dimensional space, KD-tree [1] for example. However, when it 
comes to high dimensional space, current techniques for NN 
search are proved to be no better than linear search, which is 
known as “curse of dimensionality” [2]. 

Some researchers proposed to improve the time efficiency 
by applying Approximate Nearest Neighbor (ANN) [3] search 
in recent years, because ANN can act as good as the exact one 
in many applications. Locality Sensitive Hashing (LSH) [3, 4] 
is one of the most popular ANN algorithms, which can achieve 
good performance in high-dimensional space. However, there 
is a trade-off between search efficiency and memory usage. To 
achieve high search efficiency, LSH requires quite a lot of 
memory due to a large number of hash tables used. But the data 
we deal with today is massive in many cases, the search quality 
and search efficiency on large dataset will be affected when the 
main memory capacity can not satisfy the space requirement. 

A lot of improvements of LSH have been done recently. [5] 
proposed a near-optimal LSH that uses a Leech lattice for 

hashing in order to get better results than just using random 
projections. Query-adaptive LSH was proposed in [6], this 
method uses E8 lattices as hash functions and selects the most 
appropriate hash functions by a relevance criterion, resulting in 
less query time at the cost of more memory. In [7], entropy-
based LSH selects several points in the neighborhood of query 
point and merges the query results of them. Obviously, it is a 
way of trading time for space. To reduce the time cost of 
entropy-based LSH, [8] proposed multi-probe LSH which 
searches several buckets that are likely to contain the query 
results for a query point. A posteriori multi-probe LSH has 
been proposed in [9], which defines a more reliable posteriori 
probabilistic model taking account some prior about the queries 
and the searched points. 

These improvements are all based on generic LSH scheme. 
However, generic LSH scheme has some limitations as it trades 
space for time and does not make full use of hash functions. In 
this paper, we give the analysis of generic LSH scheme and 
present a new LSH algorithm scheme called Frequency Based 
Locality Sensitive Hashing (FBLSH) based on p-stable LSH. 
FBLSH does not use hash function which is generated by 
concatenating several functions chosen randomly from LSH 
family but just uses one function based on p-stable 
distributions. Correspondingly, it does not choose those points 
that collide with query point at least once as candidate ANNs 
but sets a frequency threshold m, only those points which 
collide with query point more than m times can be candidates. 
FBLSH can improve space efficiency and search quality with 
less (or similar) query time. Through experiments, we can 
prove the improvement over LSH based on p-stable 
distributions. 

II. BACKGROUND 

A. Approximate Nearest Neighbor Search 
What LSH deals with is Approximate Nearest Neighbor 

search problem, more specifically, (r, )-NN problem. Let X be 
the data domain and D: X × X → R be the similarity function, 
we can define it as follows: given a query point q (q ∈ X), each 
point p (p ∈ X) satisfying D(p, q)  r has to be returned with a 
probability at least . 

B. Generic Locality Sensitive Hashing Scheme 
The basic idea of LSH is to hash the points from the 

database so as to ensure that the probability of collision is 
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much higher for those points that are close to each other than 
for those that are far apart. 

To implement LSH, the definition of LSH family was 
introduced in [3]. Let S be the domain of d-dimensional points 
and D: S × S → R be the similarity function. A family H = {h : 
S → U} is called (r1, r2, p1, p2)-sensitive for D if for any p, q ∈ 
S:  

• if D(p, q)  r1 then PrH[h(p) = h(q)]  p1, 

• if D(p, q)  r2 then PrH[h(p) = h(q)]  p2. 

To make LSH family be useful, it has to satisfy inequalities r1 < 
r2 and p1 > p2. 

Generic LSH scheme works as follows: 

1) Index construction: For an integer k, define a function 
family G = {g : S → Uk} such that g(v) = (h1(v), ... , hk(v)). For 
an integer L, choose L functions g1, ... , gL from G, 
independently and uniformly at random. For any point v in the 
input dataset, store it in the bucket gi(v), where i = 1, ... , L. 

2) Query procedure: When processing a query point q, 
search buckets g1(q), ... , gL(q) and get all points v1, ... , vn in 
these buckets as candidate ANNs. For each vj, j = 1, ... , n, if 
D(q , vj)  r, return vj. 

C. Locality Sensitive Hashing Based on p-Stable 
Distributions 
[4] proposed LSH families based on p-stable distributions 

where each hash function is defined as: 

 ( ) a v b
h v

w
⋅ += , (1) 

where a is a d-dimensional vector with entries chosen 
independently from a p-stable distribution and b is a real 
number chosen uniformly from the range [0, w]. 

For any two vectors v1, v2 in the data domain, let x = 

1 2 p
v v− , and fp is the probability density function of the 

absolute value of the p-stable distribution,  we can prove that 

 [ ]1 2 0

1( ) Pr ( ) ( ) ( )(1 )
w

p

t t
p x h v h v f dt

x x w
= = = − . (2) 

For a fixed parameter w, the probability of collision p(x) 
decreases monotonically with x, so h(v) belongs to LSH family. 

Exact Euclidean LSH (E2LSH) is a popular implementation 
of LSH based on p-stable distributions using generic LSH 
scheme which can be used in Euclidean space, and we use it to 
compare with our method in this paper. 

III. ANALYSIS OF LOCALITY SENSITIVE HASHING 
We will give a brief analysis of generic LSH scheme in this 

section. Before that, let’s define a function t(x) first, where x 
denotes the distance between query point q and any point v in 

the data domain, and t(x) denotes the probability of that v is the 
candidate ANN of q. In order to solve (r, )-NN problem 
effectively, this function should have two properties: 

• if x  r then t(x)  , 

• if x  (1+c)r then t(x)   (  is small for large c). 

The first property guarantees that each point v satisfying D(q, v) 
 r should be returned with a probability at least  while the 

second property guarantees that the candidate ANN set 
contains only a small number of false ANNs. The smaller  is, 
the fewer comparisons will be made. 

It is easy to find a function h(v) belonging to family H in 
some degree while it is hard to meet the above two conditions 
at the same time by using a single h(v) as hash function for the 
only hash table, and that’s the reason why generic LSH scheme 
was proposed. For generic LSH scheme, it is easy to see 

 ( ) ( ( ) ) 1 (1 ( ) )k k Lt x f p x p x= = − − , (3) 

where p(x) denotes the probability of that h(q) equals h(v). We 
know that f(p(x)k) increases monotonically with p(x)k when 
p(x)k is in the interval close to 0, and the larger L is, the more 
rapidly f(p(x)k) increases. Since p(x) may drop slowly when p(x) 
is small, h(v) is not suitable to be used as the hash function of a 
hash table. To solve this problem, g(v) is used. Compared with 
just using h(v) as hash function of a hash table, using g(v) 
insures that p(x)k drops rapidly with x when p(x)k is small. Thus, 
it is obvious to see t(x) holds the two properties and this 
scheme can be used to solve (r, )-NN problem. 

From the analysis above, we can see that to make LSH 
work better, L should be large, but a lot of memory is required 
at the same time. What’s more, generic LSH scheme 
guarantees that any function h(v) belonging to LSH family can 
be used to solve (r, )-NN problem. But it does not make full 
use of the properties of h(v) in some degree. So we make a 
further study on the properties of h(v) based on p-stable 
distributions and propose an improved LSH scheme which can 
be used for solving (r,  )-NN problem better. 

IV. FREQUENCY BASED LOCALITY SENSITIVE HASHING 

A. Frequency Based Locality Sensitive Hashing Scheme 
Our new scheme is similar to generic LSH scheme except 

that it uses a single h(v) as hash function and sets a frequency 
threshold m to select those points which collide with query 
point more than m times as candidate ANNs. It works as 
follows: 

1) Index construction: For an integer L (L > 1), choose L 
functions h1, ... , hL from H (based on p-stable distributions), 
independently and uniformly at random. For any point v in the 
input dataset, store it in the bucket hi(v), where i = 1, ... , L. 

2) Query procedure: For a query point q, search buckets 
h1(q), ... , hL(q) and get all points v1, ... , vn which appear no less 
than m times in these buckets as candidate ANNs. For each vj, j 
= 1, ... , n, if D(q , vj)  r, return vj. 
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B. Correctness and Computational Complexity Analysis 
From our algorithm above, it is obvious to see that 

 ( ) ( ( )) ( ) (1 ( ))
L

i i L i
L

i m

t x f p x C p x p x −

=

= = − , (4) 

where x denotes the distance between query point q and any 
point v in the data domain, t(x) denotes the probability of that v 
is the candidate ANN of q, and p(x) denotes the probability of 
that q collides with v in a hash table. Let u = p(x), then 

 ( ) (1 )
L

i i L i
L

i m

f u C u u −

=

= − . (5) 

It is easy to see f(u) is a monotonically increasing function 
since 

 1 1
1( ) (1 ) 0m m L m

Lf u LC u u− − −
−′ = − > . (6) 

We can get that ( )f u′  is monotonically increasing in the 
interval (0, ), and is monotonically decreasing in ( , 1) while 
reaching its maximum when u =  (  = (m-1)/(L-1)). Moreover, 
there is an interval (0, ) in which ( )f u′  is close to 0; 
correspondingly, there exists an interval ( , 1) where ( )f u′  is 
close to 0, too. It is easy to see that (0) 0f =  and 

1
lim ( ) 1
u

f u
→

= . 
So f(u) is close to 0 and increases slowly when u is in the 
interval (0, ) while close to 1 and increasing slowly with u in 
the interval ( , 1). Finally, we can get such a conclusion that f(u) 
increases rapidly in the interval [ , ] containing . Because  
increases as m increases, the interval [ , ] shifts to right with 
m increasing. That is to say, we can change the interval in 
which f(u) increases rapidly by changing the value of m, as 
shown in Fig. 1. 

 

Figure 1.  Fuction images of f(u) with different m 

A simple calculation from (2) shows that 

 
2

222( ) 1 ( ) (1 )
2 2

w

xw x
p x erfc e

x wπ

−
= − − − . (7) 

It is difficult to study the properties of p(x) according to its 
function expression, so we draw the function image (Fig. 2). 
Here we can assume that r = 1, since otherwise, we can scale 
down all the points by a factor of r. The range of x is set to [1, 
2]. We observe that p(x) increases with the value of w. When w 
is in the interval (0, 2), p(x) is small and drops slowly in the 
interval [1, 2); similarly, when w is in (5, 10), p(x) is large and 
drops slowly in [1, 2), too; but when w is in the interval [2, 5], 
p(x) drops rapidly in [1, 2). 

 

Figure 2.  Fuction image of p(x) 

It is for the reason that p(x) drops slowly in the interval [r, 
(1+c)r) when p(x) is small that we can not use a single h(v) as 
the hash function of a hash table but use g(v) instead in generic 
LSH scheme. But if we set w in the interval [2, 5], and set m 
properly so that the interval [ , ] intersects with [p((1+c)r), 
p(r)], using just a single h(v) as the hash function is enough to 
solve (r, )-NN problem effectively since t(x) decreases 
monotonically with x and drops rapidly as x increases in the 
interval [r, (1+c)r). 

For E2LSH, let u = p(x)k and L = 30 in (3), the function 
image of f(u) is the one with m = 1 in Fig. 1, and it increases 
rapidly with u close to 0. But f(u) is close to 0 and increases 
slowly when u is close to 0 for FBLSH, as mentioned earlier. 
So for a large c, t((1+c)r) in FBLSH is smaller. In fact, there is 
a threshold l, for any L > l, FBLSH makes sure that t((1+c)r) is 
much smaller with the same t(r) compared with E2LSH, and 
the difference becomes relatively larger with L increasing. The 
mathematics proof is complicated, so we prove it using Matlab. 
When w is 4, l is about 20. Actually, E2LSH has poor 
performance when L is less than 20, and it needs hundreds of 
hash tables to reach the same quality as FBLSH when FBLSH 
uses only dozens of hash tables. In other words, FBLSH needs 
fewer hash tables and comparisons than E2LSH with the same 
accuracy. Besides, FBLSH needs only about 4nL bytes 
memory while E2LSH needs about 12nL bytes, where n is the 
size of dataset. That’s why FBLSH can reduce the space cost 
effectively. 

The time for computing distances in FBLSH is smaller than 
that in E2LSH since FBLSH needs fewer comparisons than 
E2LSH. In E2LSH, g(v) is the concatenation of k LSH 
functions, to reduce the memory needed for storing hash values, 
another two hash computations are needed besides k hash 
computations of g(v), which is time-consuming, especially 
when L is very large. For small datasets, the frequency 
counting time is much less than the time for getting candidate 
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ANNs in E2LSH, so FBLSH consumes much less query time 
than E2LSH. For large datasets, the frequency counting time 
becomes longer and FBLSH has similar query time with 
E2LSH. 

V. EXPERIMENTS 
In this section, we will describe the configurations of our 

experiments and show that our approach outperforms E2LSH 
through experimental results. 

A. Experimental Setup 

1) Implementation details: FBLSH is easy to implement in 
many ways. In our implementation, we set w in the interval [2, 
5] and choose L which results in best query time. The 
parameters of E2LSH are set to the optimal ones estimated by 
itself.  is set to 0.9 for both two methods. 

2) Datasets: Our experiments are based on two datasets, 
one is 128-dimensional SIFT feature vectors of size 1M, the 
other is 1M 960-dimensional GIST feature vectors. Both of 
them are from INRIA ANN datasets for evaluation of ANN 
search algorithms. For each dataset, we generate several 
subsets with different size to perform experiments on. 

3) Evaluation benchmark: For each dataset, we picked a 
set of 100 points from query set as queries, and we set the 
search radius properly so that the average number of near 
neighbors is 100. (For 10K datasets, the number is 20.) Since 
precision does not need to be considered, we mainly compare 
recall, query time, and memory used. The query time is 
measured by averaging the query time over 100 queries, and 
the memory used does not contain the memory for storing the 
dataset. Each experiment is repeated 5 times and the average is 
recorded. 

4) Hardware and software: The evaluation is done on a PC 
with 4 32-bit 2.66GHz CPUs and 4GB RAM (about 3GB 
available). The operating system is linux with kernel 2.6.32. 

B. Experimental Results 
Table 1 and Table 2 show the average results of E2LSH 

and FBLSH methods with datasets of different size, and we 
compare the two methods from recall, query time, and memory 
used. 

1) Recall: Each method has a higher recall compared with 
the given , and the recall of FBLSH is slightly higher than that 
of E2LSH. 

2) Time: FBLSH outperforms E2LSH for small datasets 
and has similar time cost for large ones since the frequency 
counting time is increasing with the size of dataset. The higher 
the dimension is, the more time for computing distances our 
method saves, and the better our method performs. When the 
dataset is large enough to the capacity of main memory, 750K 
GIST dataset for example, E2LSH acts as bad as linear search 
while our method still needs only a little time. 

3) Space: When memory is enough for E2LSH, FBLSH 
can reduce the extra memory used by a factor of 56 to 106, 

even for datasets larger than 500K, our approach can still 
reduce the memory by an order of magnitude. 

VI. CONCLUSION 
In this paper, we proposed a new LSH scheme called 

FBLSH which can reduce the extra space cost by several orders 
of magnitude with less (or similar) time cost while achieving 
better search quality compared with E2LSH. We are now 
trying to reduce the query time further and expect some 
improvements of LSH to be done based on our scheme. 

TABLE I.  SEARCH PERFORMANCE COMPARISON (SIFT) 

Size Method Recall Time (s) L Space Ratio 

10K E2LSH 0.951 0.00065 1485 97 
FBLSH 0.965 0.00042 46 1 

100K E2LSH 0.948 0.00314 1485 106 
FBLSH 0.950 0.00347 42 1 

1M 
E2LSH 0.959 0.02867 153 16 
FBLSH 0.983 0.03880 28 1 

TABLE II.  SEARCH PERFORMANCE COMPARISON (GIST) 

Size Method Recall Time (s) L Space Ratio 

10K E2LSH 0.937 0.00220 1485 56 
FBLSH 0.949 0.00082 79 1 

100K E2LSH 0.981 0.00420 1485 84 
FBLSH 0.984 0.00317 53 1 

500K 
E2LSH 0.923 0.01846 153 14 
FBLSH 0.982 0.01277 33 1 

750K E2LSH 0.982 0.72324 6 1 
FBLSH 0.981 0.03041 30 1.7 
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