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Abstract—Region-based Image Annotation has received in-
creasing attention in recent years. Topic models such as prob-
abilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet
Allocation (LDA) have shown great success in object recognition
and localization. In this paper, we introduce a supervised topic
model for region-based image annotation. Images are segmented
into superpixels, and visual features are extracted from each
superpixel region. Boosted classifiers are then trained for each
class, and the output of boosted classifiers are quantized as
boosted visual words. The proposed model builds a generative
model on both visual words and corresponding class labels. We
tested the model on the 21-class MSRC dataset. Experimental
results show that our model improves the annotation performance
comparing with boosted classifiers.

Index Terms—Image Annotation; latent Dirichlet Allocation;
Variational Inference

I. INTRODUCTION

Automatic image annotation assigns metadata, usually key-
words, to images automatically, makes it easier for indexing
and maintaining large collections of images, plays an important
role in image retrieval systems. It has been studied a lot in
the last decades. Region-based image annotation, also known
as region-naming, region-labeling, and multi-class image seg-
mentation, is an important part of image annotation. Various
machine learning techniques were employed for learning the
correspondence between image regions and keywords [1], [2],
[3], [4], [5], [6], [7], [8], [9] .

For region-based image annotation, each image is annotated
with a set of keywords associated with its location. Fig.
1 shows one sample image from 21-class MSRC dataset
[10], each pixel of the images is associated with one of the
21 classes, with additional void class. Region-based image
annotation can be divided into two procedures, images are
first segmented into several regions and visual features are
extracted from each region, then each region is annotated by
utilizing different machine learning technologies. There are
various methods for image segmentation, Barnard et al. [6]
evaluated some image segmentation algorithms for region-
based image annotation. The two most frequently used strate-
gies are dense block [1], [3], [4] and over-segmentation [8],
[2], [5]. Dividing images with dense blocks is much faster
than over-segmentation, while different objects may share the
same region. Over-segmentation is usually computationally
expensive, while the different objects are segmented into
different regions with more accuracy. Fig. 1(c) shows the over-
segmented superpixels of one sample image from MSRC, there

Fig. 1. Sample images from MSRC (the first column) with ground truth
annotation (the second column) and over-segmented superpixels (the right
column).

are approximately 200 regions in this images, we can see that
most of the regions contains only one object class.

After segmentation and feature extraction, a statistical
model is build to learn the correspondence between labels
and features of each region from training images. Various
models have been used for annotating the segmented images.
Richard et al. [1] incorporated region and global features with
Conditional Random Field for labeling regions of images.
Shotton et al. [2] trained a discriminative model for automatic
recognition and segmentation by incorporating appearance,
shape and context information.

Topic models such as Probabilistic Latent Semantic Anal-
ysis (pLSA) [11] and Latent Dirichlet Allocation (LDA) [12]
has received increasing attention in recent years for multi-class
image segmentation and annotation. Sivic et al. [7] utilized
pLSA and LDA for discovering object categories in image
collections. Verbeek [3] and Mackey [4] extended the topic
models with Markov Random Field over the latent topic for
capturing the spatial relations of image regions. Barnard et
al. [5] proposed a multi-modal extension to mixture of latent
Dirichlet allocation (MoM-LDA) for image segmentation with
associated text. Cao and Li [8] presented a generative model
for object recognition and segmentation by incorporating the
spatial coherence of images and scenes. Images are represented
by over-segmented regions and image patches within one
region shares the same topic.

Most of the topic models are unsupervised, the latent
topics are used to capture the class probabilities in most
previous works. Blei and McAuliffe [13] introduced supervised
latent Dirichlet allocation to predict response values for new
documents. In this paper, we proposed a modified supervised
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topic model for region-based annotation where each region
has its own class label. We build a generative model on both
the visual words and labels, all the regions from one image
have latent topics drawn from one multi-nominal distribution,
classification performance is improved with the help of latent
topics.

The rest of this paper is organized as follows. In Section 2,
we first briefly reviewed latent Dirichlet Allocation, and then
describes our supervised latent Dirichlet Allocation for region-
based image annotation. Experiments and results are detailed
in Section 3.

II. THE PROPOSED METHOD FOR IMAGE ANNOTATION

A. Latent Dirichlet allocation (LDA)

Latent Dirichlet allocation (LDA) [12] captures the semantic
theme by building distributions over a set of words, called
vocabulary. The topics of each document are drawn from a
Dirichlet distribution. The graphical model representation of
LDA is shown in Fig. 2. LDA is one kind of bag of words
model and is used for text analysis originally. By representing
images with bag-of-words model, the visual features need
to be quantized. For image annotation, the images are first
segmented into superpixels, as shown in Fig. 1(c). In this paper,
we use the segmentation algorithm proposed by Greg Mori
[14], each image is segmented into approximately 200 regions
with Normalized Cuts algorithm. Each superpixel region is
associated with one single class label. For each region, we
extract color, texture, geometry and location features. As
described in [15], performance can be greatly improved by
utlizing boosted classifiers. A one-vs-all boosted classifier is
trained for each class, the boosted features are generated by
utlizing the output of the learned boosted classifier. The visual
vocabulary is built by clustering on the raw features or boosted
features, and each region is represented by the quantized visual
features.

The generative process of LDA for each image is :
1) Choose θ from Dir(α).
2) For each of the images of N regions with visual words

wn:
a) Choose a topic zn from Multinomial(θ).
b) Choose a visual word wn from p(wn|zn, β), a

multinomial probability conditioned on the topic
zn.

B. Class-Specified Latent Dirichlet allocation (csLDA)

LDA is a unsupervised generative model and class labels of
each region is ignored during the training procedure. In order
to handle the labels, we proposed a modified supervised latent
Dirichlet allocation, which builds a generative model with both
visual words and class labels. Different with sLDA proposed
in [13], each region of the images has different labels, we
called it Class-Specified LDA (csLDA). The graphical model
representation of csLDA is shown in Fig. 3.

Topic proportions θ are drawn from Dirichlet distribution
Dir(α). Topics of each image are drawn from a multi-nominal

Fig. 2. The graphical model representation of LDA.

Fig. 3. The graphical model representation of csLDA.

distribution Mult(θ), and the words are drawn from a multi-
nominal distribution Mult(β, z), where z is topic and β is
describes the probabilities of each word w with corresponding
topic z. The class of each region c is also drawn from a multi-
nominal distribution Mult(η, z).

The generative process of csLDA for each image is :

1) Choose θ from Dir(α).
2) For each of the words N regions with visual words wn

and class label cn :

a) Choose a topic zn from Multinomial(θ).
b) Choose a visual word wn from p(wn|zn, β), a

multinomial probability conditioned on the topic
zn.

c) Choose a class label cn from p(cn|zn, η), a multi-
nomial probability conditioned on the topic zn.

The parameters α, β, η are corpus-level parameters, θd are
document-level variables, and the topics zdn are word-level
variables.

For a given image with visual words wi, i = 1, ..., N and
labels ci, i = 1, ..., N , with N the number of regions in current
image. The probability conditional on parameters α, β, η is :

P (w1:N , c1:N |α, β, η) =
∫
P (θ|α)

{
N∏
n=1

P (zn|θ)P (wn|zn, β)P (cn|zn, η)}dθ
(1)

The probability of the training corpus is :
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P (D|α, β, η) =
D∏
d=1

∫
P (θd|α)

{
N∏
n=1

P (zdn|θ)P (wdn|zdn, β)P (cdn|zdn, η)}dθd

(2)

C. Variational Inference

Directly maximizing the likelihood is intractable, thus,
variational method [12] is employed to maximize the lower
bound of log likelihood.

logP (w1:N , c1:N |α, β, η) ≥ Eq[log p(θ|α)]
+ Eq[log p(z1:N |θ)]
+ Eq[log p(w1:N |z1:N , β)]
+ Eq[log p(c1:N |z1:N , η)]
− Eq[log q(θ)]
− Eq[log q(z1:N )]

(3)

where Eq[·] is the expectation and q is the variational
distribution:

q(θ, z1:N |γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn) (4)

As shown in (3), the only difference between csLDA and
LDA is Eq[log p(c1:N |z1:N , η)], thus the coordinate update of
α, β, γ is the same as LDA. For maximizing the lower bound
of log likelihood described in (3). The update of η and φ are :

ηij ∝
D∑
d=1

N∑
n=1

φdnicdnj (5)

φni ∝ βivηiuexp(ψ(γi)− ψ(
k∑
j=1

γj)) (6)

where D is the number of training images and v, u are the
indexes of word and label of region n, cdnj = 1 if and only if
the label of the nth region in image d has index j, otherwise,
cdnj = 0.

The procedure of training csLDA is shown as fllowing:
1) initialize τ = 0
2) initialize ατ , βτ , ητ

3) repeat
4) for each image d in training set
5) initialize t = 0
6) initialize φtdni =

1
k , i = 1, ..., k for all n

7) initialize γdi = αi +
N
k , i = 1, ..., k

8) repeat
9) for n = 1 to N

10) for i = 1 to k
11) update parameter φt+1

dni

12) update parameter γt+1
d

13) until convergence
14) τ = τ + 1,update parameter ατ , βτ , ητ

15) until convergence

D. Prediction

In the procedure of prediction, the labels of regions are
unknown. Thus, the label node is removed from the graphical
model, and same as LDA. The topic probabilities of each
region φk, k = 1, ...,K is computed, and the labels of each
region is computed by:

ĉ = argmaxc

K∑
k=1

ηckφk (7)

The prediction procedure of each test image is :
1) initialize t = 0
2) initialize φtdni =

1
k , i = 1, ..., k for all n

3) initialize γdi = αi +
N
k , i = 1, ..., k

4) repeat
5) for n = 1 to N
6) for i = 1 to k
7) update parameter φt+1

dni

8) update parameter γt+1
d

9) until convergence
10) predict the class label of each region with (7)

E. csLDA-MRF

Verbeek [3] and Mackey [4] extended the topic models with
Markov Random Fields over the latent topic for capturing the
spatial relations of image regions. In this paper, we utilize
Markov Random Field to capture the spatial relations of the
labels, not topics.

P (c) ∝ exp(
∑
i∈N

log(
K∑
k=1

ηckφik) +
∑
ij∈E

f(ci, cj)) (8)

where N , E are the set of nodes and edges of markov
random fields, and f(ci, cj) = ρδ(ci = cj). δ is the indicator
function and δ(ci = cj) = 1 if and only if ci = cj . ρ is set
empirically, and in this paper we set ρ = 0.7.

Different with [3], [4], the inference procedure is only
executed during prediction.

III. EXPERIMENTS

We evaluated csLDA on the 21-class MSRC dataset [10],
which consists of 591 pixel-wise annotated images. The sample
images are shown in Fig. 1. We split the images into 296
training and 295 test. First, each image is over-segmented
into superpixels. We use the code provided by Greg Mori
[14], and each image is segmented into approximately 200
regions. For each region, we extract color, texture, geometry
and location features. Visual vocabulary is constructed by
using kmeans, and the features are quantized into 500 visual
words. Experimental results shows that training csLDA directly
with raw appearance features poorly on MSRC dataset. Thus
according to [15], we trained boosted classifiers for each class
and using the output of boosted classifiers as features instead of
using the raw appearance features, and built new vocabulary
on the boosted features. The feature extraction and training
boosted classifiers are performed by utilizing STAIR Vision
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TABLE I
THE ACCURACY OF BASELINE METHOD, CSLDA AND CSLDA-MRF WITH 100 TOPICS.

Accuracy building grass tree cow sheep sky airplane water face car

baseline 63 93 80 37 36 92 35 48 59 26
BFS 55 93 74 59 60 80 76 51 77 52

BFS-MRF 61 94 78 63 60 91 81 52 87 62

bicycle flower sign bird book chair road cat dog body boat Average

58 58 29 8 58 10 79 24 22 30 9 64
64 72 28 6 77 21 79 38 45 45 23 69
73 74 35 13 85 24 82 40 50 52 24 73

Library [15] provided by Stephen Gould. The Markov Random
Fields is inferenced with Loopy Belief Propagation provided
by libDAI [16]. Void regions are ignored for both training and
testing.

The training and testing process of csLDA with boosted
visual words are :

1) Segment each image in the training set into superpixels.
2) Extract features from each region.
3) Train boosted classifiers on the raw features.
4) The output of boosted classifiers are used as boosted

features.
5) Quantize the boosted visual features and build boosted

vocabulary.
6) Represent each image with {wn, cn}, n = 1, ..., N .
7) Train csLDA with training images for parameters α, β, η.
8) For each test image, get parameters φ with general LDA

and predict each region with (7).
9) The final class labels of regions are smoothed with MRF.
The resulting mean accuracy of boosted classifiers is

64.40%, and the confusion matrix is shown in Fig. 5(a). The
confusion matrix of csLDA with different number of topics
are also shown in Fig. 5. The mean accuracy of csLDA on
raw features and boosted features are shown in Fig. 4. As
the number of topic increases, the mean accuracy of csLDA
with BFS increases and finally converged at approximately
69% and csLDA-MRF converged at approximately 72%, which
performs better or equally well with previous works [2], [3],
[9]. Table I shows the accuracy of each semantic class of
baseline method and csLDA with 100 topics, and csLDA-
MRF performs better than baseline method on 18 classes. The
average accuracy of csLDA with 100 topics on all 21 classes
is 69.1%, and csLDA-MRF achieved 72.6%, and the accuracy
of boosted classifiers is 64.4%. Training csLDA on quantized
boosted features (BFS) performs better than raw features
(RFS). Fig. 6 shows some sample images from MSRC dataset
and the annotation results performed by boosted classifiers and
csLDA. We observed that by utilizing csLDA, the annotation
accuracy performance are improved.

IV. CONCLUSION

This paper presented a new supervised topic model for
region-based image annotation. LDA is unsupervised topic
model, and cannot handle the labels of segmented regions.
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Fig. 4. Accuracy of csLDA with quantized raw features (RFS) and quantized
boosted features (BFS), and BFS with MRF, the x-axis refers to different
number of topics, and the y-axis refers to the average accuracy of 21-classes.

(a) (b) (c) (d) (e)

Fig. 5. The confusion matrix of baseline method and csLDA with different
number of topics. (a): the confusion matrix of boosted classifier on test images;
(b): the confusion matrix of csLDA based on boosted words with 30 topics;
(c): the confusion matrix of csLDA based on boosted words with 40 topics;
(d): the confusion matrix of csLDA based on boosted words with 50 topics;
(e): the confusion matrix of csLDA based on boosted words with 100 topics.

In this paper, We build a generative model on both the
visual words and labels, all the regions from one image have
latent topics drawn from one multi-nominal distribution, the
visual words and labels are both drawn from multi-nominal
distribution with specific topic, and classification performance
is improved with the help of latent topics. Images are first
over-segmented into superpixels and features are extracted
from each region. Boosted classifiers are trained with the raw
features and the output of classifiers are quantized to generate
boosted words and vocabulary. The proposed method built a
generative model on the boosted words and labels of over-
segmented regions. By utilizing csLDA-MRF, the annotation
accuracy increases from 64.4% to 72.6% with 100 topics.
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airplane bicycle bird boat body book building car cat chair cow

dog face flower grass road sheep sign sky tree water void

Fig. 6. Example test images from the 21-class MSRC database (the first row) ,the groudtruth annotation (the second row), and the annotations produced by the
baseline method (the third row) and csLDA with 100 topics (the fourth row), the firth row refers to the annotation produced by csLDA-MRF with 100 topics.
The void class is ignored for both training and testing.

475



ACKNOWLEDGMENT

This work is supported by the ”973” Program of China
(Grant No. 2010CB327903), the National Natural Science
Foundation of China (Grant Nos. 60875011, 60723003), and
the Key Program of Natural Science Foundation of Jiangsu
Province, China (Grant BK2010054).

REFERENCES

[1] X. H. Richard, R. S. Zemel, and Miguel, “Multiscale Conditional
Random Fields for Image Labeling,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, vol. 2, pp. 695–702, 2004.

[2] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost: Joint
appearance, shape and context modeling for multi-class object recog-
nition and segmentation,” in Proceedings of European Conference on
Computer Vision, pp. 1–15, 2006.

[3] J. Verbeek and B. Triggs, “Region classification with markov field aspect
models,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1–8, 2007.

[4] L. Mackey, “Latent Dirichlet Markov Random Fields for Semi-
supervised Image Segmentation and Object Recognition,” Technical
Report, Computer Science, University of California, Berkeley, 2007.

[5] K. Barnard, P. Duygulu, D. Forsyth, N. De Freitas, D. Blei, and
M. Jordan, “Matching words and pictures,” The Journal of Machine
Learning Research, vol. 3, pp. 1107–1135, 2003.

[6] K. Barnard, P. Duygulu, R. Guru, P. Gabbur, and D. Forsyth, “The effects
of segmentation and feature choice in a translation model of object
recognition,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, vol. 2, pp. 675–82, 2003.

[7] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman,
“Discovering Object Categories in Image Collections,” in Proceedings
of IEEE International Conference on Computer Vision, 2005.

[8] L. L. Cao and F. F. Li, “Spatially coherent latent topic model for
concurrent segmentation and classification of objects and scenes,” in
Proceedings of IEEE International Conference on Computer Vision,
pp. 1–8, 2007.

[9] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for
image categorization and segmentation,” in Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1–8, 2008.

[10] A. Criminisi, “Microsoft research cambridge object recognition image
database.” http://research.microsoft.com/vision/cambridge/recognition/,
2004.

[11] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 50–57, 1999.

[12] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” The Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[13] D. Blei and J. McAuliffe, “Supervised topic models,” in Advances in
Neural Information Processing Systems, vol. 20, pp. 121–128, 2008.

[14] G. Mori, X. Ren, A. Efros, and J. Malik, “Recovering human body con-
figurations: Combining segmentation and recognition,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, vol. 2,
pp. 326–333, 2004.

[15] S. Gould, O. Russakovsky, I. Goodfellow, P. Baumstarck,
A. Ng, and D. Koller, “The stair vision library (v2.4).”
http://ai.stanford.edu/ sgould/svl, 2010.

[16] J. M. Mooij, “libDAI: A free and open source C++ library for discrete
approximate inference in graphical models,” Journal of Machine Learn-
ing Research, vol. 11, pp. 2169–2173, 2010.

476


