
S-SIFT: A Shorter SIFT without Least Discriminative Visual Orientation 

Sheng-hua ZHONG 

Department of Computing 

The Hong Kong Polytechnic University 

Hong Kong, P.R. China 

csshzhong@comp.polyu.edu.hk 

 

 

Yan LIU 

Department of Computing 

The Hong Kong Polytechnic University 

Hong Kong, P.R. China 

csyliu@comp.polyu.edu.hk 

 

 

Gangshan WU 

State Key Laboratory for Novel 

Software Technology 

Nanjing University 

Nan Jing, P.R.China 

gswu@nju.edu.cn 

Abstract— Detection and description of local features are a 

classical problem in image processing and multimedia content 

analysis. Based on the inhomogeneity of visual orientation in 

human visual system, we propose a novel algorithm S-SIFT to 

detect and describe local image features. In three stages of S-

SIFT, the information from the least discriminability 

orientation is omitting. Compared with the standard SIFT 

algorithm, S-SIFT has lower dimension and provides a faster 

keypoint matching. Experiments on the standard dataset 

demonstrate that our algorithm yields comparable or even 

better results for feature detection and matching tasks. 
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I.  INTRODUCTION 

Inspired by the highly discriminatory property of local 
position-dependent gradient orientation histograms, 
researchers have proposed a variety of means to detect and 
describe local features in images, such as Scale-invariant 
feature transform (SIFT) [1][2], Histogram of Oriented 
Gradients (HOG) [3], Gradient Location and Orientation 
Histogram (GLOH) [4], and Speeded Up Robust Feature 
(SURF) [5]. The dimension of the image feature descriptor 
has an impact on the running time, and lower dimensions 
indicate faster interest point matching. However, lower 
dimensional feature vectors tend to be less distinctive in 
general. So our goal is to develop both a detector and 
descriptor that, in comparison to the state-of-the-art, is fast to 
compute without sacrificing much performance [5]. 

Humans are good at performing visual tasks, especially 
image classification and recognition. Many artificial 
intelligence models have recently been developed to provide 
human-like judgment in a frame of simulating the human 
visual cortex and human’s perception [6]. To strike a balance 
between the dimension and accuracy, we learn from the 
characters of human’s perception in gradient orientation. 

From the research in neuroscience [7], we know the 
orientation perception of human is inhomogeneous. 
Neuroscientists measured performance in several orientation-
estimation tasks and found that orientation discriminability 
in human observation is worst at oblique angles and best at 
cardinals (horizontal and vertical). They pursued the 
physiological instantiation of this phenomenon and found 
that the non-uniformities in the representation of orientation 
in the V1 population contribute to non-uniformities in 
perceptual discriminability. Specifically, a variety of 
measurements have shown that cardinal orientation is 
represented by a disproportionately large fraction of V1 

neurons, and that those neurons also tend to have narrower 
tuning curves [8].  

In this paper, we aim to provide a human-like feature 
detector and descriptor by referencing the visual orientation 
inhomogeneity of human visual system. Unlike existing 
SIFT algorithm or other detectors and describers the 
proposed S-SIFT detects, preserves and processes the non-
uniformly information from different visual orientation in 
every stage. The information in cardinals (horizontal and 
vertical) is kept, but the information in the least 
discriminability orientation (oblique angles) is omitted in our 
proposed algorithm S-SIFT. 

The remainder of this paper is organized as follows. 
Section 2 reviews the existing work of the SIFT algorithm. 
Section 3 details three stages in the proposed Short-SIFT (S-
SIFT) algorithm. Section 4 provides the experimental results 
from a comparison between S-SIFT and standard SIFT on 
feature detection and matching experiments. Finally, Section 
5 concludes this paper and outlines the future work. 

II. RELATED WORK ON SIFT 

Scale-invariant feature transform s an algorithm to detect 
and describe local features in images developed by Lowe 
[1][2]. The SIFT descriptor is invariant to translations, 
rotations and scaling transformations in the image domain, 
and it is robust to moderate perspective transformations and 
illumination variations.  

The standard SIFT algorithm firstly detects interest 
points by scale-space extrema of differences-of-Gaussians 
(DoG) within a difference-of-Gaussians pyramid. Then the 
position-dependent histograms of local gradient directions 
around the interest points are statistically accumulated as the 
SIFT descriptor. In the end, this SIFT descriptor is utilized to 
match corresponding interest points between different 
images. Experimentally, the SIFT algorithm has been proven 
to be very useful in practice for image matching and object 
recognition under real-world conditions, including image 
retrieval [9], object category classification [10], image 
stitching [11], gesture and posture recognition [12], video 
tracking [13], and so on. 

Based on the standard SIFT, many extension work has 
been proposed. Ke and Sukthankar used PCA to normalize 
gradient patch instead of histograms [14] and demonstrated 
that their proposed PCA-SIFT is distinctive and robust to 
image deformations. But their process of extracting features 
is slow. Burghouts and Geusebroek constructed a set of 
colour SIFT descriptors by different colour gradients that are 
invariant to different combinations of local intensity level, 
shadows, shading and highlights [15]. By computing 



position-dependent histograms over local spatio-temporal 
neighbourhoods of either spatio-temporal gradient vectors, 
the SIFT descriptor has been generalized from 2-D spatial 
images to 2+1-D spatio-temporal video [16]. By computing 
the SIFT descriptor over dense grids in the image domain 
accompanied with a clustering stage, Dense SIFT is 
proposed and combined with a bag-of-words model [17]. 
Bay et al. [5] sped up robust features (SURF) and used 
integral images for image convolutions and Fast-Hessian 
detector. Their experiments revealed that the SURF is faster 
and better than its predecessor. Recently, affine_SIFT 
(ASIFT) extends the SIFT algorithm to a fully affine 
invariant device. It simulates the scale and the camera optical 
direction, and normalizes the rotation and the translation [18]. 

Those SIFT related algorithms all take advantage of the 
highly discriminatory property in gradient orientation 
histograms. But as far as we know, no existing algorithm 
focuses on the difference in different orientation, such as 
which orientation information is the most discriminative and 
which is the least. In this paper, we propose the S-SIFT, a 
shorter SIFT without least discriminability orientation based 
on the visual orientation inhomogeneity of human. 

III. SHORTER SIFT WITHOUT LEAST DISCRIMINABILITY 

VISUAL ORIENTATION 

SIFT consists of three major stages [1]: (1) keypoint 
detection and localization; (2) orientation assignment to 
keypoint; (3) keypoint descriptor. All three stages are also 
included in our proposed S-SIFT. The difference between S-
SIFT and SIFT is that in every stage, we ignore the 
information of oblique orientation. 

A. Keypoint detection and location 

The first stage of keypoint detection is to identify 
locations and scales that can be repeatedly assigned under 
differing views [2]. One effective way of detecting locations 
that are invariant to scale change is searching for stable 
features across all possible scales. The scale space image of 
the input image ( , )I x y  can be defined as ( , ; )L x y s , which 

could be produced by the convolution of a variable-scale 
Gaussian, ( , ; )G x y s with ( , )I x y : 

( , ; ) ( , ; )* ( , )L x y s G x y s I x y                         (1) 

where ( , ; )G x y s  is defined as: 
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Based on the scale space function, the difference-of-
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Once DoG images have been obtained, keypoints are 
identified as local minima/maxima of the DoG images across 
scales. In the standard SIFT, this is done by comparing each 
pixel in the DoG images to its eight neighbors at the same 

scale and nine corresponding neighboring pixels in each of 
the neighboring scales. If the pixel value is the maximum or 
minimum among all compared pixels, it is selected as a 
keypoint. Different with standard SIFT in Fig. 1(a), S-SIFT 
only compares the neighbors in cardinal orientation, as Fig. 
1(b). 

  
(a)Standard SIFT                                       (b)S-SIFT 

Figure 1. Maxima and minima are detected by comparing a pixel (marked 

with X) to its neighbors at the current & adjacent scales. (a) Standard SIF 

comparing 26 neighbors. (b) S-SIFT comparing 14 neighbors.  

B. Orientation assignment to keypoint 

In this step, each keypoint is assigned one or more 
dominant orientations based on local image gradient 
directions. This is the key step in achieving invariance to 
rotation, as the keypoint descriptor can be represented 
relative to this orientation. 

The scale space image ( , ; )L x y s  at the keypoint’s scale 

s , the gradient magnitude ( , ; )m x y s  and orientation 

( , ; )x y s  are precomputed using pixel differences: 
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As computed in Equations (4) and (5), the magnitude and 
direction calculations for the gradient are calculated for 
every pixel around the keypoint. Then, the orientation 
histogram for every keypoint is formed. In the standard SIFT, 
the histogram has 36 bins, with 10 degrees per bin. Each 
sample in the neighboring window added to a histogram bin 
is weighted by its gradient magnitude and by a Gaussian-
weighted circular window. In S-SIFT, by omitting the 
histogram in oblique orientation, the histogram only has 24 
bins with 10 degrees per bin just as Fig. 2. 

 
Figure 2. S-SIFT orientation histogram with 24 bins and 10 degrees/bin. 
 

After the histogram is created, the orientations 
corresponding to the highest peak and local peaks that are 
within the threshold   of the highest peaks are assigned to 

the keypoint as main orientations. In the case where multiple 
orientations are assigned, an additional keypoint is created 



for the additional orientation with the same location and 
scale as the original keypoint. In S-SIFT, the threshold  is 

set as 78% just as in the standard SIFT. 

C. Keypoint descriptor 

To the standard SIFT algorithm, the keypoint descriptor 
is a vector of orientation histograms. These histograms are 
computed from magnitude and orientation values of samples 
in a 16   16 region around the keypoint such that each 
histogram contains samples from 4   4 subregions of the 
original neighborhood region. Since there are 4   4 = 16 
histograms and each comes with 8 bins, the vector has 128 
elements in total.  

To S-SIFT, the main orientations obtained by previous 
section are near cardinal. Therefore, the top-left, top-right, 
down-left and down-right subregions are located in the 
oblique orientation of the keypoints. Therefore, S-SIFT is 
different from the SIFT that utilizes 16 subregions as 
neighborhood region as shown Fig. 3. The S-SIFT use 34 
=12 subregions, and 348 = 96 elements feature vector 
for each keypoint. The dimension of S-SIFT is lower than 
SIFT, meaning that S-SIFT is faster in interest point 
matching. 

 
Figure 3.  Subregions selection around keypoint of S-SIFT. 

IV. EXPERIMENTAL RESULTS 

For systematic evaluating the proposed S-SIFT, we do 
the matching experiments on the standard dataset [21]. The 
task of this dataset is to measure the methods’ invariance to 
absolute and transition tilts. The resolution of the original 
image and the transformed image is 600   450. 

In the absolute tilt tests, the image was photographed 
with an optical zoom varying between 1 and 10 and with 
viewpoint angles   between the camera axis and the normal 

to the painting varying from 0 (frontal view) to 80 .  

In this dataset, we first evaluate the first stage of S-SIFT. 
In this stage, the keypoint is detected in a DoG image by 
comparing a pixel to its neighbors in the cardinal orientation 
at the current & adjacent scales. In Fig. 4, we provide the 
number of keypoints that are detected by SIFT and S-SIFT. 
Compared with SIFT, it is obvious that S-SIFT obtains more 
keypoints than SIFT. 

Then, aiming at the second stage, we calculate the 
proportion of the dominant orientation of each keypoint in 
every image. In this stage of S-SIFT, we only consider the 
cardinal orientation as the dominant orientation. As listed in 
Table I, the oblique orientation is less possible to be the 
dominant orientation, which proves that the lost information 
of S-SIFT in the second stage is limited.  

   
(a) The optical zoom is 1  

 
(b) The optical zoom is 10  

Figure 4.  The number of keypoints detection by SIFT and S-SIFT in 
absolute tilt tests.  

TABLE I.  PROPORTION OF THE DOMINANT ORIENTATION 

 
An examination of the performance in feature matching 

task of SIFT [2] and S-SIFT, as shown in Table II, suggests 
that in most of cases, the proposed S-SIFT algorithm has 
more correct matches than SIFT.  

TABLE II.  NUMBER OF CORRECT MATCHES IN ABSOLUTE TILT TEST 

 Zoom  1 Zoom 10 

 ( ) 
SIFT S-SIFT SIFT S-SIFT 

+45 153 173 95 115 

-45 108 120 118 128 

+65 56 58 14 12 

-65 56 74 4 8 

+75 8 17 3 3 

-75 10 23 2 3 

+80 2 3 3 1 

-80 5 3 2 1 

In the transition tilt tests, the camera with a fixed latitude 
angle   corresponding to absolute tilt t=2 and 4 circled 

around. The longitude angle   varies from 0  to 90 . 

Compared with absolute tilt tests, the transition tilt test is 
more difficult. The performance of proposed S-SIFT and 
SIFT is provided in Table III. Although both of the 

 Zoom  1 Zoom 10 

 ( ) 
Cardinal(%) Oblique(%) cardinal(%) Oblique(%) 

+45 75.78 24.22 72.97 27.03 

-45 76.09 23.91 74.91 25.09 

+65 75.37 24.63 76.01 23.99 

-65 76.45 23.55 74.46 25.54 

+75 73.67 26.33 79.13 20.87 

-75 75.25 24.75 81.78 18.22 

+80 74.02 25.98 82.31 17.69 

-80 76.96 23.04 83.68 16.32 



performance decreases with the increase of the longitude 
angle, the number of correct matches of S-SIFT is 
comparable to that of SIFT in most cases.  

TABLE III.  NUMBER OF CORRECT MATCHES IN TRANSITION TILT TEST 

 t = 2 t = 4 

 ( ) 
SIFT S-SIFT SIFT S-SIFT 

10 166 175 15 23 

20 25 25 11 15 

30 4 4 3 4 

40 2 4 1 1 

50 1 0 1 1 

60 2 1 0 0 

70 1 1 0 0 

80 0 0 0 0 

90 2 1 0 0 

 
Fig. 6 provides two examples of feature detection and 

matching by SIFT and S-SIFT. Fig. 6 (a) and (b) are the 
results in absolute tilt tests when the viewpoint angle   is 

equal to 75 and the optical zoom is 1. In this case, SIFT 

has 8 correct matches and S-SIFT obtains 17 correct matches. 
Fig. 6 (c) and (d) are the results in transition tilt tests when 

the longitude angle   is 20  and the absolute tilt t is 2. In 

this condition, both algorithms have 25 correct matches. 

 
(a)SIFT algorithm result in absolute tilt tests 

 
(b)S-SIFT algorithm result in absolute tilt tests 

 

 
(c) SIFT algorithm result in transition tilt tests 

 
(d)S-SIFT algorithm result in transition tilt tests 

Figure 6. Feature detection and matching of SIFT and S-SIFT algorithm. 

V. CONCLUSION AND FUTURE WORK 

Based on the inhomogeneity in the visual orientation 
perception of human, this paper introduced a novel local 
image algorithm, S-SIFT, to detect and describe local 
features in images. By omitting the least discriminability 
orientation information in the three stages of the standard 
SIFT, our S-SIFT has lower dimensions, and comparable, if 
not better, accuracy. Future work will be explored from two 
aspects. The first direction is to evaluate the proposed S-
SIFT algorithm using other standard datasets including more 
types of distortions such as Gaussian blur, illumination 
change and jpeg compression. The second direction is to 
propose new image feature detectors and descriptors based 
on the visual orientation inhomogeneity in the real-world 
environment.  
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