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ABSTRACT
Depth information provides fundamental supports to mul-
timedia applications for both images and videos. Depth
acquisition for stereo images has drawn much attention while
few approaches are proposed for stereo videos. Conducting
stereo matching frame-by-frame is time consuming and the
result is temporally inconsistent. As a matter of fact, the
redundancy shared by frame sequences may cause extra
computational cost. Inspired by rapidly acquiring stereo
video depth for some specific applications, we propose a
novel bidirectional motion-based interpolation framework,
which avoids frame-by-frame matching through making
use of the motion estimation and the redundancy be-
tween frames. Firstly, comparable accurate depth maps
are generated for self-adaptive selected frames via stereo
matching. Then rough depth sequences inbetween are
calculated using bidirectional motion-based interpolation.
To improve the depth accuracy for non-selected frames, we
propose a refinement approach to handle cracks and holes.
The evaluation on both computer rendered and real world
captured datasets show that our approach is competent for
fast and accurate binocular video depth acquisition.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: 3D/stereo
scene analysis; I.4.8 [Scene Analysis]: Depth cues

General Terms
Algorithm, Experimentation, Performance

Keywords
Depth Acquisition, Stereo Videos, Stereo Matching, Motion
Estimation, Motion-based Interpolation

1. INTRODUCTION
Although stereo matching for binocular images is widely

studied in the field of multimedia applications and computer
vision, acquiring depth sequences from binocular videos has
seldom been discussed. As a matter of fact, depth informa-
tion can serve as a significant cue in many applications, such
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as 3D reconstruction [11], stereo video coding [9] and scene
understanding [4]. Nowadays, stereo media increase rapidly,
which leads to an emergent demand for further processing
on depth data.

The depth acquisition on stereo videos has two major
differences from that on stereo images which makes it a
challenging problem to be solved:

• Adjacent frames for a natural video are highly cor-
related which makes applying stereo methods frame-
by-frame time consuming. How to employ the content
redundancy and consistency between frames for reduc-
ing computation time turns out to be a problem.

• Frames in one shot have implicit continuity which
guarantees consistent changes when playing videos and
should be preserved in depth sequences for further pro-
cessing, e.g. stereo video coding and object tracking.

Due to the difficulty of fast computing reliable and con-
sistent depth in long sequences, few studies have well solved
the above problems. Wedel et al. [10] computed depth
sequentially assuming that the depth in previous frames
is known, which obviously contains computing redundancy.
Valgaerts et al. [8] estimated motion field in the four-
frame configuration which makes temporal consistency still
be a problem. In order to acquire temporal consistency
preservation depth maps, Hung et al. [5] proposed a depth
and image scene flow estimation method using motion-depth
temporal consistency constraint. Although this method
can generate very accurate and smooth depth videos, the
time complexity is definitely high because of a bunch of
constraints and optimization, which makes it inappropriate
for applications needed to be finished on time.

Differed from these methods, we try to leverage the
inter-frame redundancy to reduce computational time and
preserve consistency. As a natural video comprises of
several screenshots and the frames inside a shot are highly
correlated, we propose to perform stereo matching only for
selected frames and infer depth maps for the remaining
using a bidirectional motion-based interpolation. The inter-
frame interpolation is much faster than global optimization
methods. Compared to the previous work [10, 8, 5], our
approach is more efficient due to the employment of inter-
frame redundancy. Furthermore, owing to the bidirectional
motion estimation, the proposed approach works well in
preserving continuity between frames.

Figure 1 shows an overview of our approach. Considering
the redundancy between frames, we first adaptively select
a few frames based on PSNR threshold to ensure that
error propagation maintains within a proper range. The
complete depth computation is only applied to selected



Figure 1: The framework of the proposed approach

frames. For the remaining frames, we calculate the depth
maps by a bidirectional motion-based interpolation, which
shows both promising efficiency and accuracy for highly
similar frames. Finally, we apply a hole-filling to the depth
maps for refinement.
In brief, our approach contributes in the following aspects.

A fast binocular depth inference framework for applications
of time requirement has proposed. First, a self-adaptive
strategy for selecting frames is employed to control the
interpolation error propagation within a proper range. Then
an interpolation method based on bidirectional motion
estimation is presented to guarantee the consistency and
accuracy of the adjacent frames between selected frames.
Besides, our method is comparable to the global optimiza-
tion methods in accuracy while being much faster.
The remaining of the paper is organized as follows. In

Section 2 we give a detailed description of the proposed
approach. Then the experiments and discussion are shown
in Section 3. Finally, we conclude the paper in Section 4.

2. DEPTH INFERENCE BY BIDIRECTION-
AL MOTION-BASED INTERPOLATION

Given a stereo video, we aim to generate temporal
consistent depth maps in time. As shown in Figure 1,
the framework can briefly partition into self-adaptive frame
selection, stereo matching, and motion-based interpolation.

2.1 Frame Selection
The contents between sequential frames are highly corre-

lated in natural videos. In video coding society the property
is widely adopted to improve coding efficiency. We follow
a similar way to eliminate the redundant computation for
stereo video depth acquisition. On one hand, not every
pair frame need to be matched because of the temporal
redundancy. On the other hand, error propagation caused
by motion-based interpolation should be controlled within
a proper scope. We manage to select several frames and
leverage the information loss. And the depth values for the

remaining can be inferred from those selected frames. In our
work, we introduce a self-adaptive algorithm based on peak
signal-to-noise ratio (PSNR). The PSNR measure is com-
monly used to evaluate the quality of reconstruction of loss
compression codecs between two images. With the help of
quantitative measurement to inter-frame reconstruction, we
apply PSNR to predict the difference between neighboring
frames. The rule for selecting frames is defined as:

decision(i) =

{
1, ∥P b

i − P a
i ∥ > τ

0, otherwise
(1)

where τ is a threshold determined based on the quality of
stereo videos, P b

i is the PSNR difference between ith frame
and (i−1)th frame while P a

i is the PSNR difference between
ith frame and (i + 1)th frame. Each comparison involves
three frames which ensures that scene change can also be
detected and handled. And PSNR is defined as:

PSNR = 10× log10(
(2n − 1)2

MSE
) (2)

MSE =

M∑
x=1

N∑
y=1

(f(x, y)− g(x, y))

M ×N
(3)

where n represents using n bits per sample, f(x, y) and
g(x, y) are grayscale values of adjacent frames and M × N
is the size of each frame. In this paper, we use 8 bits.

A relative high PSNR difference indicates that the current
frame has a sharp change between its previous and next
frames, which means that the loss would be high if the
current frame was used to reconstruct its neighborhoods.
Hence this frame is regarded as a selected frame. Depth
sequences between selected frames are highly similar and
thus can be inferred by motion-based interpolation.

Next we calculate the depth maps on selected frames. For
depth acquisition, we adopt Sun’s [7] optical flow method
for its accuracy and robustness, which achieved a good rank
in the Middlebury optical flow Benchmark [1]. Considering
that in calibrated stereo videos the flow (disparity) only
occurs in horizontal direction, we add a constraint to Sun’s
model to eliminate the vertical displacement.

2.2 Depth Interpolation
For the content variation between selected frames is very

small, it is possible to infer accurate depth by inter-frame
interpolation. To save computational time and keep the
depth maps temporal continuous, we utilize a motion-based
linear interpolation, which is defined as:

DK(x+αu, y+αv) = αDm(x, y) + (1−α)Dn(x+ u, y+ v) (4)

α =
k −m

n−m
(5)

where Dm and Dn indicate the depth of selected frames
and Dk is a depth frame inbetween. (u, v) is the horizontal
and vertical motion vector estimated between frames m and
n. To refine the flow vector, a bidirectional motion filed is
calculated, as well as depth interpolation.

It is worth noting that inter-frame motion is much smaller
than left-right view motion (disparity) for the following
reasons. First, the frames between selected frames are highly
similar. Second, for static shots most of the frame contents
like background keep unchanged. Besides, in most cases the
objects move slowly, which leads to a very small flow field
between neighboring frames. In comparison, the left-right



view motion depends only on the baseline distance and scene
depth range. This leads to relative large disparities due to
scene depth variation even for static shots. According to
the above analysis, we perform accurate but time consuming
global optimization for left-right view disparity estimation,
and utilize coarse but fast motion estimation for sequential
adjacent frames. In this work we apply Liu’s implementation
for its efficiency [6]. The core of the algorithm is based on [2,
3]. By using the successive over-relaxation (SOR), the code
runs much faster and the accuracy goes near to the other
time consuming methods.
In fact, the disparity and motion estimation method

is not limited to the above. Any stereo matching and
motion estimation methods satisfying accuracy and efficien-
cy requirements as we mentioned can be applied to our
framework.

2.3 Depth Refinement
Inter-frame interpolation may generate cracks and holes in

depth maps because of inevitable vanishment and occlusion.
An example is shown in the fifth column of Figure 2. To
overcome the problem, we apply a linear interpolation to
fill the cracks and holes based on small changes between
selected frames. First, we detect the unassigned pixels by
Eq.(6), where di is the disparity of pixel i and j is the sur-
rounding pixels within a fixed window. ϵ is the experiential
threshold to control the influence of the neighborhood. I(x)
determines whether the pixel has disparity or not. Then
we fill the unassigned pixels (assignment(i) = 0) for the
current frame k by Eq.(8), where m is the previous selected
frame and n is the next selected frame.

assignment(i) =

{
0 di = 0 and

∑
j∈N(i)

I(dj) < ϵ

1 otherwise
(6)

I(x) =

{
1 x = 0
0 x > 0

(7)

Dk(x, y) = βDm(x, y) + (1− β)Dn(x, y) (8)

β =
k −m

n−m
(9)

3. EXPERIMENTS

3.1 Dataset and Experimental Settings
To comprehensively evaluate and compare our proposed

method with the others, we selected two kinds of datasets,
a synthesized dataset1 including TrafficScene1 and Traf-
ficScene2, and Karlsruhe Dataset2. The former contains
synthesized (gray-level and color) sequences with ground
truth for stereo and motion analysis rendered by computer
and the resolution is 480×640 of 100 and 396 sequences. And
the latter contains high-quality stereo sequences captured in
real world and the resolution is 1344×372 of 112 sequences.
For the TrafficScene1, the selection threshold τ is set to 0.03
and 0.05 for TrafficScene2. While τ is set to 0.2 for the
Karlsruhe dataset. It is notable that very few methods in
the literature reported error statistics on video sequences
based on [5]. For now, only [5] is the state-of-the-art with
leveraging long-range temporal information. That is the
reason why only this method is used for comparison.

1http://ccv.wordpress.fos.auckland.ac.nz/eisats/
set-2/
2http://www.cvlibs.net/datasets/karlsruhe_
sequences/

Table 1: Comparison of running time (in minutes)
Total Per frame

Hung et al. (single thread) 2772 28
Hung et al. (multi thread) 138 1.4

Ours (single thread) 51.606 0.516

Table 2: Running time (in minutes) of our approach
OFBSM MBI Ref. Total Per Frame

Scene1 44.437 7.126 0.043 51.606 0.516
Scene2 294.025 16.675 0.099 310.799 0.785
Scene3 82.434 12.170 0.061 94.665 0.845

(note: OFBSM is optical flow based stereo matching, MBI is
motion based interpolation, and Ref. is short for refinement)

In order to evaluate the performance of the proposed
algorithm quantitatively, the mean absolute error (MAE),
the same as in [5], is employed to measure the errors between

the inferred depth D̂ and the ground truth disparity D. Let
Ω be the pixels in an image, the MAE is calculated as follows:

MAE =
1

|Ω|
∑
Ω

|D̂ −D| (10)

The experiments are implemented in Matlab on a machine
with a 3.4GHZ Intel i7-4770 CPU and 16GB memory.

3.2 Results and Discussion
A few results of our approach compared to [5] are

illustrated in Figure 2. We choose the same frame shown
in [5]. It is noteworthy that our depth maps for these
frames are generated by interpolation. Obviously both of
our approach and [5] can generate satisfactory depth maps.
However, our approach is much more efficient due to the
employment of inter-frame redundancy. The time evaluation
on fixed selective threshold mentioned in Section 3.1 of
our approach is given in Table 2. OFBSM means running
time of optical flow based stereo matching while MBI
is motion based interpolation. And Ref. is short for
refinement. Although implemented without parallelization
and computation speedup, the average processing time of
per frame is close to 0.5 minutes and the accuracy is also
satisfactory at the same time. Furthermore, by setting
reasonable selective threshold, the number of frames to be
stereo matched can be reduced which means processing time
of per frame can decrease sharply. We excerpt the running
time from [5] and list our result on the same dataset in
Table 1 for comparison. We also give a few results on the
real world Karlsruhe dataset in Figure 3. It can be seen
that even for real world videos our approach can generate
promising results due to the reasonable strategy for frame
selection and inter depth interpolation. And this suggests
that our approach is competent for fast and accurate depth
acquisition tasks.

At last we give the mean absolute error (MAE) curve of
TrafficScene1 and TrafficScene2 in Figure 4. The first row is
the MAE curve on two dataset of our method and the second
is the comparison with [5]. On account of coarse motion
field estimation and interpolation, error would accumulate
in some frames, it is the reason why there are some peaks. It
can be eliminated by certain post-processing or refinement
which is not considered here. It can be seen that even
the computing time is greatly reduced, the accuracy nearly
maintains the same level. This indicates that our approach
can generate accurate depth maps for stereo videos while
preserving the inter-frame continuity well.



Figure 2: Example of disparity estimation. (a)-(b) Color stereo images. (c) The ground truth disparity map.
(d) The estimated disparity map from Hung’s [5]. (e)-(f) Our initial and final inference results.

Figure 3: Our inference disparity map from
Karlsruhe dataset. (a) Left frame from stereo video.
(b) Inference results of the proposed approach.

4. CONCLUSION
We have proposed a fast depth inference method via

bidirectional motion-based interpolation. In contrast to
previous optimization techniques, our method utilize frame
redundancy to save computing time. By setting out rational
strategy for frame selection, increasing number of estimated
depth maps meanwhile minimizing error propagation. We
evaluate our approach on two open datasets and the exper-
iments show that our approach can generate comparatively
accurate and consistent depth efficiently. In the future,
we look forward to improving the framework and applying
our method to further multimedia applications, such as 3D
reconstruction, object tracking and scene understanding.
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