

CLSH: Cluster-based Locality-Sensitive Hashing

Xiangyang Xu

Tongwei Ren

Gangshan Wu

Multimedia Computing Group, State Key Laboratory for Novel Software Technology, Nanjing University

xiangyang.xu@smail.nju.edu.cn

- Background
- Approach
- **■** Experiment
- **■** Conclusion

- Background
- Approach
- Experiment
- Conclusion

Nearest neighbor search

- Search over millions, even billions of data
 - Images, local features, other media objects, ...
- Applications
 - Image retrieval, computer vision, machine learning, ...

Challenges

Query precision and recall

- **Effectiveness**
- Basic requirements in nearest neighbor search
- Query speed
 - For high-dimensional spaces, there is no any generic exact algorithm that is faster than linear search [M. Muja, 2013]
 - *O*(*n*) complexity is prohibitive

Efficiency

- Memory cost
 - Increase in number of dimensions leads to rapid increase in volume

 Scalability

M. Marius. "Scalable nearest neighbour methods for high dimensional data." (2013).

Challenges

Query precision and recall

- **Effectiveness**
- Basic requirements in nearest neighbor search
- Query speed
 - For high-dimensional spaces, there is no any generic exact algorithm that is faster than linear search [M. Muja, 2013]
 - *O*(*n*) complexity is prohibitive

Efficiency

- Memory cost
 - Increase in number of dimensions leads to rapid increase in volume

 Scalability

M. Marius. "Scalable nearest neighbour methods for high dimensional data." (2013).

Hashing-based methods

- O(1) search time for single bucket
- Each bucket stores an inverted list
- Reranking may be needed
- LSH, spectral hashing, semi-supervised hashing, weakly-supervised hashing and kernelized LSH, ...

01101

Motivation and Contribution

- Cluster-based
 - Clustering algorithm
 - Index is carried out on a distributed cluster
- Centralized settings → distributed settings
 - CLSH can cope with larger scale feature dataset
 - Clustering and hashing
 - The generated clusters can guide feature dataset automatic mappings to a distributed cluster
 - One node cover one cluster
 - Search time is significantly reduced
 - Parallel searching on multiple computing nodes

Motivation and Contribution

- Cluster-based
 - Clustering algorithm
 - Index is carried out on a distributed cluster
- Centralized settings → distributed settings

Efficiency & Scalability

automatic mappings to a distributed cluster

- One node cover one cluster
- Search time is significantly reduced
 - Parallel searching on multiple computing nodes

- Background
- Approach
- Experiment
- Conclusion

Approach

- Index construction
- Nearest neighbor searching

Indexing construction

- Clustering the feature dataset
 - k-means

■ LSH is employed in each cluster

[P. Indyk 1998, M. Datar 2004]

0 110

Index by compact code

hash function

$$h(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^{\top}\mathbf{x} + b)$$

random

$$P\{H(\mathbf{x}) = H(\mathbf{y})\} = l \cdot \left[1 - \frac{\cos^{-1}\mathbf{x}^{\top}\mathbf{y}}{\pi}\right]^{K}$$

Prob(hash code collision) is proportional to data similarity

I: # hash tables, K: hash bits per table

12

Nearest neighbor searching

- Query near the cluster boundary
 - Search fixed number s clusters
 - Search the clusters: $\frac{d_i}{\min\{d_i\}} \leq T(i=1,\cdots,k)$

- Background
- Approach
- **■** Experiment
- Conclusion

Experiments

- Experiment settings
 - Dataset
 - INRIA BIGANN (10K 128-d SIFT, 1M SIFT, 1M 960-d GIST)
- LSH is a filter-and-refine framework, only recall is employed for measurement

Results

Table 1: Comparison on Recall

Da	taset	SIFT10K SIFT1		GIST1M	
E2LSH		0.9647	0.9494	0.9680	
	s = 1	0.8704	0.8926	0.7732	
	s = 2	0.9667	0.9494	0.9514	
CLSH	s = 3	0.9741	0.9494	0.9647	
CLSII	T = 1.1	0.9518	0.9319	0.8953	
	T = 1.2	0.9741	0.9494	0.9640	
	T = 1.3	0.9741	0.9494	0.9647	

Table 2: Comparison on the detailed distance evaluation times

Da	taset	SIFT10K	SIFT1M	GIST1M	
E2	LSH	142.6	13,435.3	121,871	
	s = 1	95.03	9,854.27	53,021.7	
	s = 2	124.64	13,318.5	$91,\!421.2$	
CLSH	s = 3	134.5	14,639.4	106,805	
CLBII	T = 1.1	108.17	11,078.8	75,891.2	
	T = 1.2	119.32	12,753.2	93,990	
	T = 1.3	128.46	13,467	107,738	

Results (cntd.)

- Search time in our settings
 - 6 computing nodes (64-bit 2.00GHz, 8GB RAM each)

Table 3: Comparison on total search time (s)

				_				*	
	Dataset	ESLSH	S = 1 $S = 2$ $S = 3$ $S = 1$				$T=1.2$ $\max\{T_{c_i}\}$		
Date	Dataset	EZESTI	s = 1	s = 2	s = 3	T = 1.1	T = 1.2	T = 1.3	$Max\{I_{c_i}\}$
	SIFT10K	0.00031	0.00021	0.00022	0.00024	0.00022	0.00024	0.00025	0.00022
	SIFT1M	0.01531	0.00813	0.00907	0.00994	0.00915	0.00983	0.01011	0.00813
	GIST1M	0.59721	0.25116	0.25832	0.26014	0.25883	0.26001	0.26797	0.25271

- Background
- Approach
- Experiment
- **■** Conclusion

Conclusion

- A distributed scalable framework for large-scale high-dimensional datasets indexing and searching
- Clustering is applied and the generated clusters are treated as a guideline to automatically deliver the feature dataset to a distributed cluster

■ The search time is significantly reduced in CLSH framework

- Data-adaptive hashing function
- Extend our work to further applications

image database

References

- P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In STOC, pages 604–613. ACM, 1998.
- M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Localitysensitive hashing scheme based on p-stable distributions. In SoCG, pages 253–262. ACM, 2004.
- B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972–976, 2007.
- J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, pages 1–8. IEEE, 2007.
- J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable image retrieval. In CVPR, pages 3424—3431. IEEE, 2010.
- Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, pages 1753–1760. MIT Press, 2008.

Thank you!