
CLSH: Cluster-based 
Locality-Sensitive Hashing

Gangshan WuXiangyang Xu Tongwei Ren

Multimedia Computing Group, State Key Laboratory for Novel Software 
Technology, Nanjing University

xiangyang.xu@smail.nju.edu.cn



Outline

Background

Approach

 Experiment

Conclusion

2



Outline

Background

Approach

 Experiment

Conclusion

3



Nearest neighbor search

 Search over millions, even billions of data
 Images, local features, other media objects, …

Applications
 Image retrieval, computer vision, machine learning, …
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Challenges

Query precision and recall
 Basic requirements in nearest neighbor search

Query speed
 For high-dimensional spaces, there is no any generic 

exact algorithm that is faster than linear search [M. Muja, 
2013]

 O(n) complexity is prohibitive

Memory cost
 Increase in number of dimensions leads to rapid 

increase in volume
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M. Marius. "Scalable nearest neighbour methods for high 
dimensional data." (2013).
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Hashing-based methods
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 O(1) search time for single bucket

 Each bucket stores an inverted list

 Reranking may be needed

 LSH, spectral hashing, semi-supervised hashing, weakly-
supervised hashing and kernelized LSH, …
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data bucket codeH = ℎ1, ⋯ , ℎ𝐾



Motivation and Contribution

Cluster-based
 Clustering algorithm

 Index is carried out on a distributed cluster

Centralized settings  distributed  settings
 CLSH can cope with larger scale feature dataset

 Clustering and hashing

 The generated clusters can guide feature dataset 
automatic mappings to a distributed cluster

 One node cover one cluster

 Search time is significantly reduced

 Parallel searching on multiple computing nodes
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Approach

 Index construction

Nearest neighbor searching
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Indexing construction

Clustering the feature dataset
 k-means

 LSH is employed in each cluster
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110 Index by compact code

[P. Indyk 1998, M. Datar 2004] 

Prob(hash code collision) is proportional to data similarity
l: # hash tables, K: hash bits per table



Nearest neighbor searching

Query near the cluster boundary
 Search fixed number s clusters

 Search the clusters:
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Experiments

 Experiment settings
 Dataset

 INRIA BIGANN (10K 128-d SIFT, 1M SIFT, 1M 960-d 
GIST)

 LSH is a filter-and-refine framework, only recall is 
employed for measurement
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Results
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Results (cntd.)

 Search time in our settings
 6 computing nodes (64-bit 2.00GHz, 8GB RAM each)
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Conclusion

A distributed scalable framework for large-scale 
high-dimensional datasets indexing and searching

Clustering is applied and the generated clusters are 
treated as a guideline to automatically deliver the 
feature dataset to a distributed cluster

 The search time is significantly reduced in CLSH 
framework

Data-adaptive hashing function

 Extend our work to further applications
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