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Nearest neighbor search

m Search over millions, even billions of data
e Images, local features, other media objects, ...

m Applications
e Image retrieval, computer vision, machine learning, ...




Challenges

m Query precision and recall Effectlveness
e Basic requirements in nearest neighbor search

m Query speed

e For high-dimensional spaces, there is no any generic
exact algorithm that is faster than linear search [M. Muija,
2013]

e O(n) complexity is prohibitive Efficiency
m Memory cost
e Increase in number of dimensions leads to rapid

increase in volume Scalability

M. Marius. "Scalable nearest neighbour methods for high
dimensional data." (2013).
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Hashing-based methods

hash table
H= [hy, -, hg] data bucket code
Ny | | oo |
|| ovton |
01110
01111
m O(1) search time for single bucket
m Each bucket stores an inverted list - 01101
m Reranking may be needed q

m LSH, spectral hashing, semi-supervised hashing, weakly-
supervised hashing and kernelized LSH, ...



Motivation and Contribution

m Cluster-based
e Clustering algorithm
e Index is carried out on a distributed cluster

m Centralized settings = distributed settings
e CLSH can cope with larger scale feature dataset
o Clustering and hashing

e The generated clusters can guide feature dataset
automatic mappings to a distributed cluster

o One node cover one cluster
e Search time is significantly reduced
o Parallel searching on multiple computing nodes



Motivation and Contribution

m Cluster-based
e Clustering algorithm
e Index is carried out on a distributed cluster

m Centralized settings = distributed settmgs
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EfflClency & Scalability

automatic mappings to a distributed cluster
o One node cover one cluster
e Search time is significantly reduced
o Parallel searching on multiple computing nodes
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Approach

m Index construction

m Nearest neighbor searching
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Indexing construction

m Clustering the feature dataset

e k-means
m LSH is employed in each cluster [P, Indyk 1998, M. Datar 2004]
0 \ O _‘_‘7/.— 110 | Index by compact code
O w
1 ® \ O @ hash function
o ® 3\ ° h(x) = sgn(w'x + b)

v

0
0 \ random
1 / COS_IXTy K
5 Pl = Hyp =1 - Y]

Prob(hash code collision) is proportional to data similarity
[: # hash tables, K: hash bits per table 12




Nearest neighbor searching

m Query near the cluster boundary

e Search fixed number s clusters

. d; :
e Search the clusters: T EA <T(i= -, k)
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Experiments

m Experiment settings

e Dataset

o INRIA BIGANN (10K 128-d SIFT, 1M SIFT, 1M 960-d
GIST)

m LSH is a filter-and-refine framework, only recall is
employed for measurement
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Results

Table 1: Comparison on Recall

_Dataset | SIFTI0K | SIFTIM | GISTIM
I E2LSH 0.9647 0.9494 0.9680 1
§ = 0.8704 0.8926 0.7732
§ = 0.9667 0.9494 0.9514
CLSH 5= 3 0.9741 0.9494 0.9647
P = LL 00008 L Q9310 05083,
| T =1.2 0.9741 0.9494 0.9640
T=13" 09741 | 09494~ °0.9647 ~
Table 2: Comparison on the detailed distance
evaluation times
__Dataset _ | SIFTI0K | SIFTIM | GISTIM
i B2LSH 1426_ | 13,4353 | 121,871 |
s=1 95.03 9,854.27 | 53,021.7
§ = 124.64 13,3185 | 91,421.2
CLSH |_5= 134.5 14,639.4 | 106,805
L. =LL ._Lﬂﬁ.l.f._..ll.EL?ﬂﬁ-_D.ﬁﬂLl
[ T=12[ 11932 [ 127532 | 93,000 |
= 1.3 128.46 13,467 107,738
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Results (cntd.)

m Search time in our settings
e 6 computing nodes (64-bit 2.00GHz, 8GB RAM each)

Table 3: Comparison on total search time (s)

------ ﬂ L N N N N | I

I CLSH ! I
Dataset :E.ZLE}H p— p—) s—3 T_lliT_lle_13

Max{T, }

SIFT10K | 0.00031 : 0.00021 0.00022 0.00024 | 0.00022 ; 0.00024 : 0.00025 0.00022
SIFTIM | 0.01531 § 0.00813 0.00907 0.00994 | 0.00915 | 0.00983 ; 0.01011 0.00813

|
|
GIST1IM : 0.59721 1 0.25116 0.25832 0.26014 | 0.25883 |EI 26001 ' 0.26797 0.25271
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Outline

m Conclusion
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Conclusion

m A distributed scalable framework for large-scale
high-dimensional datasets indexing and searching

m Clustering is applied and the generated clusters are
treated as a guideline to automatically deliver the
feature dataset to a distributed cluster

m The search time is significantly reduced in CLSH
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m Data-adaptive hashing function (__jﬁ']

m Extend our work to further applications S
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