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Abstract. Pre-stack Kirchhoff time migration (PKTM) is one of the
most widely used migration algorithms in seismic imaging area. Howev-
er, PKTM takes considerable time due to its high computational cost,
which greatly affects the working efficiency of oil industry. Due to its
high fault tolerance and scalability, Hadoop has become the most pop-
ular platform for big data processing. To overcome the shortcoming too
much network traffic and disk I/O in Hadoop, there shows up a new dis-
tributed framework—Spark. However the behaviour and performance of
those two systems when applied to high performance computing are still
under investigation. In this paper, we proposed two parallel algorithms
of the plre-stack Kirchhoff time migration based on Hadoop and Sark
respectively. Experiments are carried out to compare the performances
of them. The results show that both of implementations are efficient and
scalable and our PKTM on Spark exhibits better performance than the
one on Hadoop.
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1 Introduction

Pre-stack Kirchhoff time migration (PKTM)[1] is one of the most popular mi-
gration technique in seismic imaging area because of its simplicity, efficiency,
feasibility and target-orientated property. However, practical PKTM tasks for
large 3D surveys are still computationally intensive and usually running on su-
percomputers or large PC-cluster systems with high cost for purchasing and
maintaining.

Nowadays, cloud computing has received a lot of attention from both research
and industry due to the deployment and growth of commercial cloud platforms.
Compared to other parallel computing solutions such as MPI or GPU, cloud
computing has advantages of automatically handling failures, hiding parallel
programming caomplexity as well as better system scalability. Thus more and
more geologists turn to finding seismic imaging solutions on Hadoop and Spark.

Hadoop is an Apache open source distributed computing framework for clus-
ters with inexpensive hardware[2] and is widely used for many different classes of



data-intensive applications[3]. The core design of Apache Hadoop[4] is MapRe-
duce and HDFS. MapReduce is a parallel computing framework to run on HDFS,
it will abstract the user’s program for two processes: Map and Reduce. A key
benefit of MapReduce is that it automatically handles failures, hiding the com-
plexity of fault-tolerance from the programmer[5].

Apache Spark, which is developed by UCBerkeley’s AMP laboratory, is an-
other fast and general-purpose cluster computing system. It provides high-level
APIs in Java, Scala and Python, and an optimized engine that supports general
execution graphs[6]. Spark is a MapReduce-like cluster computing framework[6–
8]. However, unlike Hadoop, Spark enables memory distributed data sets, pro-
vides interactive query, optimize iterative workloads. Most importantly, Spark
introduces the concept of memory computing(RDD)[3], i.e. data sets can be
cached in the memory to shorten the access latency, which is very efficiency for
some applications.

In this paper, we propose two parallel algorithms of the pre-stack Kirchhoff
time migration based on Hadoop and Sark respectively. Experiments are carried
out to compare the performances of them. The results show that both of im-
plementations are efficient and scalable while PKTM on Spark exhibits better
performance than the one on Hadoop.

2 Related Work

Several works exist in the literature with regards to implementation of Kirch-
hoff on MapReduce framework. Rizvandi[9] introduces an algorithm of PKTM
on MapReduce framework, which splits data into traces, sends traces to Map
function, then computes traces, shuffles data to Reduce function. The program
use MapReduce parallel framework to realize parallelism of the PKTM, but the
problem is that the shuffle data is very huge, and seriously affected the perfor-
mance of the program.

Another kind of parallel PKTM uses GPUs to achieve parallelism. Shi[1]
presents a PKTM algorithm on GPGPU[10], it uses multi-GPUs to compute the
data and runs much faster than CPU implementation. However, the memory on
GPUs are not large enough. Therefore, when the data gets bigger and bigger
and cannot be hold in GPU memory, the data transfer between RAM and GPU
memory will be the bottleneck of the program. Li[11] puts forward another P-
KTM on GPUs. It’s 20 times faster than a pure CPU execution, still the data
transfer between RAM and GPU memory as well as loop control are overloaded.
Generally, Running PKTM on GPUs will have the problems of data transfer and
synchronize between GPUs and CPU.

Gao[12] presents a solution utilizing the combination of the GPUs and MapRe-
duce. It can greatly accelerate the execution time. However, it just abstract the
Map function to a GPU implementation. If the Map function needs to change,
the whole GPU codes must be modified, which is not flexible. So far, there is no
Kirchhoff works on Spark.



3 Algorithms

Kirchhoff migration uses the Huygens-Fresnel principle to collapse all possible
contributions to an image sample. Wherever this sum causes constructive in-
terference, the image is heavily marked, remaining blank or loosely marked on
destructive interference parts. A contribution to an image sample T(z,x,y,o) is
generated by an input sample S(t,x,y,o) whenever the measured signal travel
time t matches computed travel time from source to (z,x,y,o) subsurface point
and back to receiver. The set of all possible input traces (x,y,o) that may con-
tribute to an output trace (x,y,o) lie within an ellipsis of axis ax and ay (aper-
tures) centered at (x,y,o). Input traces are filtered to attenuate spatial aliasing.
Sample amplitudes are corrected to account for energy spreading during propa-
gation. PKTM algorithm and program data flow structure shown in Fig.1.

(a) PKTM algorithm (b) RKTM flowchart

Fig. 1: PKTM flowchart

The schematic of the seismic imaging shown in Fig.2.

Fig. 2: Seismic imaging



The pseudocode of the Kirchhoff algorithm shown as below:

Algorithm 1 Kirchhoff Algorithm

1: procedure Kirchhoff(inputtraces)
2: for all input traces do
3: read input trace
4: filter input trace
5: for all output traces within aperture do
6: for all output trace contributed samples do
7: compute travel time
8: compute amplitude correction
9: select input sample and filter
10: accumulate input sample contribution into output sample
11: end for
12: end for
13: end for
14: dump output volume
15: end procedure

3.1 PKTM on Hadoop

We propose an algorithm to carry on PKTM on Hadoop framwork. The steps
of the algorithm are as follows:

1. Acquiring cluster environment variables: As we all know, Hadoop frame-
work is closely related to machine configuration. So in the first step, some
system variables are detected and stored, including number of nodes n, mem-
ory of each node M1, M2... Mn, number of CPUs cpus, number of cores per
CPU cores, threads per core threads.
2. Inputting data: In Hadoop, each input file block corresponds to a map-

per. Also according to Hadoop[4] document, a node performs well when the
number of mappers running on it are between 10 and 100. Therefore, in order
to control the number of mappers, we override the FileInputFormat class,
which is in charge for how to logically split the input files. Each split will
produce a mapper. Hadoop usually splits a file into default size. The size of
the split is key to system efficiency. Hence ,we need to re-split the whole file
into splits with proper size. Firstly, we read in default splits lengths of the
whole file S1, S2, S3... Sn. Based on these lengths, we can calculate the total
size of the input file as

∑n
i=1 Si. The number of reduce tasks rn is set by the

user. Then to limit the number of mappers between 10∼100, the size of a
split is computed as follows:

fsplit =
(
∑n

i=1 Si)

k ∗min
(
(cpus ∗ cores+ rn) ,

(∑n
i=1 Mi

M

))



where k∈ [1,∞) is a controllable parameter that can be modified. fsplit
must be greater than 0. M is the memory size of a mapper. Finally we
set the mapreduce.input.fileinputformat.split.maxsize as fsplit which decides the
split size. Through input split processing, we read in the samples of an input
trace, producing < key, value > pairs. key represents the offset of input trace
in the input files, value represents the coordinate points of each input trace.
One pair may combine many input traces. These pairs will be submitted to
the mapper for execution.
3. Mapping: Since the input files are logically divided into E splits, each

split data is submitted to a mapper, these mappers will be computing in
parallel. Each mapper computes a lot of input traces, and each input trace
will produce many output traces, so in order to achieve parallelism within
the mapper, we use the multi-threads to process input traces. Each thread
shares a data structure HashMap which is used to save the output trace with
the same output key, so that the same output trace will be merge locally
which greatly decrease the load of the data transmission. We detect the
Hyper-Threading mode of the cluster system. If it is on, we set the number
of threads of a mapper to 2 ∗ (threads− 2), else we set it to (threads− 2).
Another strategy to decrease the load of data transmission is to write map
values to the HDFS files, only send < key, filename#offset > pairs.
4. Combining: In this phase, we aggregate the output pairs which are gen-

erated by mappers with the same key on the same node and will reduce
the network traffic across nodes, thus improve the efficiency of the program.
Because in the same mapper and in the same node, there will be many out-
put traces with the same key. This also largely decrease the load of data
transmission.
5. Partitioning: The output < key, value > pairs are mapped to reduce

nodes with the key. Ensure that all keys are sorted in each reduce node
according to its reduce task attempt id. The formula is as follows:

fhash = [
key(

keymax

reduceid

) ]
In this way, the final large image data sort time will be reduced. We only
need to sort the keys in each reduce task in parallel and this further reduces
the application execution time.
6. Reducing: According to the output < key, filename#offset > pairs

which are sent by map tasks, we read HDFS files according to filename,
offset and aggregate them with the same key comes from different nodes.
All the reduce tasks run in parallel. Besides, the number of the reduce tasks
is set by the user, user can adjust this number to get the best performance.
7. Outputting: Each reduce task produces an output < key, value > pairs,

we sort these keys in each reduce task, then write them to a binary file, the file
name contains the minimum key in each reduce task. All the sort operations
are run in parallel.



8. Image Output: According to the reduce output files, we sort these file
names with the minimum key, this only take a little time, then write them
into only one image binary file sequentially. This image file is the finally
imaging file to show to the professionals.

The program’s running architecture shown in Fig.3.(a) and its flowchart
shown in Fig.3.(b). In the flowchart, the steps exact match the steps in the
algorithm above.

(a) Running on Hadoop (b) Flowchart of Kirchhoff

Fig. 3: Kirchhoff Implementation on Hadoop

3.2 PKTM on Spark

Spark provides RDD which shields a lot of interactions with the HDFS and
achieve better efficiency for application with lots of iterations. Spark develops
the ApplicationMaster which acts much more appropriate with Yarn. Hence we
develop a new algorithm with Spark system on Yarn framework.

1. Acquiring cluster environment variables: The program on Spark need to
read data from HDFS, we just simply read splits from HDFS using newAPI-
HadoopFile with whatever splits, producing < key, value > pairs as records
of RDD. RDD can be partitioned according to user’s wishes. One partition
corresponds to an executor which is similar to mapper. In addition, Spark
provides the command—”spark-submit” to submit an application. Users can
set the number of task executors N, the memory of each executor and the
CPU cores of each executor through the command line. This is very conve-
nient compared to Hadoop. So we just read the environment variables from
the command line, which is very convenience. Then the partitions of the



RDD will be set as:

fpars = k ∗min

(
N,

∑n
i=1 Mi

Mmin

)
2. Inputting data: Because we run the Spark on Yarn and HDFS frame-

work, we need to read files from HDFS. Spark provides several functions
to read input files from HDFS and return them in RDD model. Each RDD
contains many records of < key, value > pairs, key represents the offset of
the input trace and value represents the coordinate samples of the corre-
sponding key. One record combines many traces.
Moreover, RDD can persist data in memory after the first calculation, so we
persist those RDD records in memory and hard disk(if it’s too large). This
greatly reduces repeatedly reading from HDFS. Then we partition the RDD
with the above formula. These partitions will be calculated in parallel.
3. FlatMapping: In Spark, RDD partitions will be sent to executors. Ex-

ecutor starts to calculate a partition. After it’s done, it continues with the
remaining partitions. All of the executors calculate in parallel. In this map
period, we also use the multi-threads to compute the input traces. Whether a
cluster system opens Hyper-Threading or not, we just set the threads number
as (threads− 2) to ensure a good performance, because Spark uses thread
model while Hadoop uses process model. In Hadoop, when map function
running to a proper percentage(such as 5%, this can be set by the configu-
ration), reduce tasks will be launched to collect output pairs from mappers.
But in Spark, reduce tasks wait until all mappers finish and return with
RDD. This feature make the program on Spark more efficient as reduce task
do not occupy the resources used by mappers. It’s worth to mention that the
partitions of RDD do not change until you invoke the repartition function.
4. Partitioning: Firstly, we get the total number of output trace onx. Then

we divide these keys depending on the number of reduce partitions Rn.
Smaller keys correspond to the smaller reduce task id. This helps the later
sort operation. Each record in RDD applies a mapping operation to choose
into which the reduce partition goes. The formula is as follows:

fpartition = [
key(
onx
Rn

) ]
5. ReduceByKey: Spark ensures that the same key pairs will be sent to the

same reduce task. According to this feature, the RDD datasets that come
from a map operation are sent to the reduce tasks with the same key. So
we aggregate the values by the same key in each reduce task. Each reduce
task return an RDD partition which will be aggregated into a total RDD
to the user, however, its partitions still exist. The important point of the
ReduceByKey function is that the operation firstly merges map output pairs
in the same node, then send pairs to the correspond reduce tasks. This
feature greatly reduces the load of network traffic.



6. SortByKey: This function sorts the keys in each RDD partition which
reduce tasks returned. The sort operation is also executed in parallel among
different RDD partitions.
7. Image Output: According to the sorted keys, we write the corresponding

values to a binary file to HDFS for permanent preservation.

The program’s running architecture shown in Fig.4.(a) and its flow chart
shown in Fig.4.(b). The steps of the flow chart corresponds to the steps of the
algorithm above.

The program flowchart shown in Fig.4.

(a) Running on Spark (b) Flowchart of Kirchhoff

Fig. 4: Kirchhoff Implementation on Spark

4 Results and analysis

We have run our two implementations on a cluster with six nodes, the details of
which are shown in Table.1.

Table 1: Cluster Configuration

Name CPUs Cores Per CPU Thread Per Core Memory(G)

Master 2 8 4 32

Slave1 2 6 4 32

Slave2 2 6 4 32

Slave3 2 6 4 32

Slave4 2 6 4 32

Slave5 2 6 4 32



4.1 Experiment Configuration

The node ”Master” acts as the Hadoop Master node and the remaining nodes
act as Hadoop Slave nodes. ”Master” is not only the master of the HDFS frame-
work(NameNode), but also the master of the Yarn framework(act as ResourceM-
anager). Five nodes, ”Slave1”, ”Slave2”, ”Slave3”, ”Slave4”, ”Slave5”, are used
as the DataNode and the NodeManager.

4.2 Data Preparation

We use Sigsbee2 Models to test our proposed PKTM methods on Hadoop and
Spark. The model could be downloaded from http://www.reproducibility.org/
RSF/book/data/sigsbee/paper html/. PKTM includes the following three main
steps: data preprocessing, migration and output. PKTM use two input data
file formats including ”meta” files and ”data” files[13]. The input files in this
program contains input trace meta file(shot.meta), input trace seismic source
meta file(fsxy.meta), input trace detector location meta file(fgxy.meta), input
trace center points meta file(fcxy.meta), velocity meta file(rmsv.meta). Each
of the meta file has a corresponding data file(*.data), such as shot.data(about
30GB), fsxy.data, fgxy.data, fcxy.data, rmsv.data.

4.3 Experimental Results

We experiment our program from the following aspects:

(1). Experiments on Hadoop:
a. We firstly test how the memory of a mapper’s container affects the

performance of the program. The test results shown in Fig.5.(a). It can
be seen that when the consumed memory exceeds over some threshold,
the number of mappers reduces accordingly, which causes the execution
time getting longer. The reason is that the number of active parallel tasks
is constrained by the the total memory of these mappers.
b. Secondly, we test how the number of mappers affects the perfor-

mance. The test results are shown in Fig.5.(b). In the figure, it can be
seen that the executing time is smallest when the mapper’s number fits
to the cluster’s resources. If the number of mappers is small, the capacity
of the cluster is not fully utilized, and results in a longer execution time.
If the number of mappers is too large, the scheduling time usually will
increase, which also results in a longer execution time.
c. Finally, in Hadoop, the cluster will start Reduce tasks to receive

map output files even when some Mappers still not finished. In this
situation, the started Reduce tasks occupy the resources of memory and
CPUs which affects other mappers’ execution. Therefore, we try to test
how reduce task numbers affects the performance. The results are shown



in Fig.5.(c). In the figure, it can be seen that when the numbers of
reduce tasks match the number and output pairs of mappers, the best
performance will be achieved.
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Fig. 5: Kirchhoff Experiment on Hadoop

(2). Experiments on Spark: in Spark, the contribution of two factors, mem-
ory of each execution(container) and number of RDD partitions, are inves-
tigated.

a. We adjust the configuration of the container’s memory and evaluate
the performance of the system. The results are shown in Fig.6.(a). Like
Hadoop, if the memory of a container exceeds to a proper value, the ex-
ecution time grows longer. Because the large memory affects the parallel
number of tasks. When the number of parallel tasks is small, the execute
time all the tasks also increases.
b. In this part, we test the RDD partitions about the input traces, hope

to find out the best partitions. The test results are shown in Fig.6.(b).
The figure indicates that when the number of RDD partitions is not
enough to the cluster, it takes a longer time, but when partitions grows, it
tends to a less and stable execution time. The reason of this phenomenon
is that when RDD partition is more than the cluster resources can have,



it makes the cluster run busy to handle RDDs with the same amount of
time.
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Fig. 6: Kirchhoff Experiment on Spark

(3). Experiments of comparison between Hadoop and Spark: We mainly
from three aspects to compare the Hadoop algorithm and Spark algorithm.

a. Firstly, we compare the yarn container memory between Hadoop
and Spark. On Yarn, the tasks of Hadoop or Spark jobs are started in
container, one task correspond to a container. The comparison figure is
shown in Fig.7.(a). As shown in the figure, we know that with the same
memory of container, Spark shows a better performance, Because Spark
use the RDDs to read input traces and persists data in memory, the
computation of RDDs is in memory, so it runs fast.

b. Secondly, we compare the reading and writing time of Hadoop and
Spark I/O capacity. The results are shown in Fig.7.(b). We can see that
when we access the same capacity of I/O data, the Spark algorithm runs
faster than the Hadoop’s. During the same period, Spark’s I/O capacity
is larger than Hadoop’s I/O capacity.

c. Lastly, we compare the running time of the Kirchhoff application on
Hadoop and Spark framework. The results are shown in Fig.7.(c). We can
see that with the RDD mechanism and the optimum of the algorithm,
PKTM on SparK achieve better efficiency than that on Hadoop.
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Fig. 7: Kirchhoff Hadoop vs Spark

5 Conclusion

In this paper, we proposed two parallel algorithms of pre-stack Kirchhoff time
migration based on Hadoop and Sark respectively. The results show that both
of the implementations are efficient and scalable. And PKTM on Spark exhibits
better performance than the one on Hadoop.

The future work includes how to improve the data transferring speed in both
Hadoop and Spark, since the efficiency of these 2 programs are closely related to
the data preparing speed. If the machine has a high throughput of the network
and the high-speed hard disk I/O, the program will run faster. In Hadoop, we can
apply RDMA(Remote Direct Memory Access) in HDFS through Infiniband[14].
This will greatly promote the acceleration of HDFS read and write time. We
hope we can also apply Infiniband Network Interface Card to accelerate the
network transfer in Spark.
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