StereoSnakes: Contour Based Consistent Object Extraction For Stereo Images

Ran Ju, Tongwei Ren and Gangshan Wu
State Key Laboratory for Novel Software Technology, Department of Computer Science, Nanjing University, China

Consistent Object Extraction For Stereo Images

- A method for consistent object extraction in stereo images
- Search for consistent contours instead of regions
- Effortlessly make single-image segmentation methods work for stereo scenarios
- Only one view interaction
- Better accuracy and much higher efficiency
- Examples of Graph cuts (left) and GrabCut (right) combined with StereoSnakes

Framework

Given a stereo image pair, we first extract the object-of-interest on either view using single image methods (take graph cuts for example here). Next we transform the extraction result into contours and search for the corresponding contours on the other view. At last, we recover the extraction masks from the contours.

Algorithm

- Extract the object contour on one view, as shown in green in the left image.
- Solve (1) using dynamic programming. The state transition matrix is shown in the middle.
- Search for the minimum weight path in the state transition matrix.
- Map the minimum weight path backward to the other view.
- Extract the object mask according to the contour.

Formulation

\[E(d) = \sum_{p_i \in \mathcal{C}} C_0(p_i, d(p_i)) + \lambda_0 C_0(p_i, d(p_i)) + \lambda_1 \mathcal{N}(p_i, d(p_i)) \] (1)

We formulate the contour correspondence as an energy minimization problem in the disparity space. \(E(d) \) is the objective energy and \(d \) stands for the required disparities. \(C_0 \) denotes the matching cost between corresponding. \(C_0 \) stands for the object boundary cost which pulls contours towards real object boundaries. The last term is a smoothness function between adjacent pixels. \(\lambda_0 \) and \(\lambda_1 \) are two weighting parameters.

Experiments

- Quantitative evaluation
 - Adobe open dataset including 31 stereo images and groundtruth masks
 - Compared with 4 state-of-the-art methods: stereocut (ST), contour tracking (CT), cosegmentation (CO), snapcut (SN)
 - Results given in mislabeled pixels and runtimes
 - Single image methods combined with our method (a)
 - GrabCut
 - Magnetic lasso
 - Single image methods combined with our method (b)
 - Graph cuts
 - Random walks
 - Geodesic star
 - Branch-and-mincut

Applications

Stereo image composition
- Input stereo image
- Single view segmentation
- Contour correspondence
- Consistent extraction

Stereo image retargeting
- Input stereo image
- Foreground mask as importance map
- Resized image and anaglyph

Examples of our results

- Stereo image composition
- Stereo image retargeting

Experiments

<table>
<thead>
<tr>
<th>Method</th>
<th>ST</th>
<th>CT</th>
<th>CO</th>
<th>SN</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error(#)</td>
<td>481</td>
<td>1277</td>
<td>2995</td>
<td>1094</td>
<td>439</td>
</tr>
<tr>
<td>Error(%)</td>
<td>0.23</td>
<td>0.61</td>
<td>1.43</td>
<td>0.53</td>
<td>0.21</td>
</tr>
<tr>
<td>Runtime(s)</td>
<td>0.650</td>
<td>0.413</td>
<td>0.532</td>
<td>0.715</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Funds

This work is supported by the National Science Foundation of China under Grant No.613212491 and No.61202320, Research Project of Excellent State Key Laboratory (No.61223003), Natural Science Foundation of Jiangsu Province (No.BK2012304) and Collaborative Innovation Center of Novel Software Technology and Industrialization.

This research is supported by the National Science Foundation of China under Grant No.613212491 and No.61202320, Research Project of Excellent State Key Laboratory (No.61223003), Natural Science Foundation of Jiangsu Province (No.BK2012304) and Collaborative Innovation Center of Novel Software Technology and Industrialization.