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ABSTRACT 
Marching Cubes is the most frequently used method to 
reconstruct isosurface from a point cloud. However, the point 
clouds are getting denser and denser, thus the efficiency of 
Marching cubes method has become an obstacle. This paper 
presents a novel GPU-based parallel surface reconstruction 
algorithm. The algorithm firstly creates a GPU-based uniform 
grid structure to manage point cloud. Then directed distances 
from vertices of cubes to the point cloud are computed in a newly 
put forwarded parallel way. Finally, after the generation of 
triangles, a space indexing scheme is adopted to reconstruct the 
connectivity of the resulted surface. The results show that our 
algorithm can run more than 10 times faster compared to the 
CPU-based implementations.  

Categories and Subject Descriptors 
I.1.3 [COMPUTER GRAPHICS]: Hardware Architecture -

Graphics processors, Parallel processing. 

General Terms 
Algorithms, Performance. 

Keywords 
GPU, CUDA, Isosurface Extraction, Marching Cubes 

1. INTRODUCTION 
Isosurface extraction, usually from large scale scattered points, is 
widely used in scientific computing visualization, many scalar 
field visualization problems can be summed up as isosurface 
extraction and rendering， such as 3D reconstruction of medical 
images, presentation of molecular surface in molecular chemistry, 
structure analysis of mineral deposits distribution in geology and 
so on. Hoppe[1][2] achieved effective and pioneering work in the 
area. 

The most widely used method of isosurface extraction is 
Marching Cubes (MC) algorithm [3]. MC algorithm has better 
rendering results in higher data density, but tends to generate too 
many triangles, which costs large storage space and transmission 

bandwidth and requires too much longer processing time, leading 
the real time rendering to be impossible. Although the cubes 
which intersect the isosurface in model space are only a small part 
of the total cubes, during the process of extracting isosurface, MC 
algorithm still needs to traverse all cube units to generate the 
surface patches, reducing the efficiency greatly. Furthermore, the 
storage of these cubic units which don't intersect the isosurface 
also wastes a large amount of valuable memory space. 

There are two ways commonly used to improve the efficiency of 
the MC algorithm. The first one adopts octree [4] to organize and 
manage data, reduce the computing consumption of disjoint cubes 
and improve the method efficiency as well as save the memory. 
Another method is to execute the algorithm in a growing way, i.e. 
starting with preprocessing step to select a part of the cubes as 
seed cubes, and then use the regional search algorithm to traverse 
and find cubes intersect seed cubes, until all surface patches are 
found.  

Nowadays, the scale of point clouds is getting larger and larger. 
Thus the algorithm still cannot meet the real-time requirements. 
Fortunately, with the development of modern programmable GPU, 
there appears a new solution for achieving large scale MC 
algorithm in real time or interactively. Löffler et al. [5] parallelize 
the dual marching cubes method [6] to extract manifold surfaces 
from terrain data set. Schmitz et al. [7] implement a modified dual 
contouring on the GPU. Chen [9] proposed a new parallel 
approach to efficiently construct high-quality polygon meshes 
from implicit surface representations. 

In the paper, we present an isosurface extraction algorithm based 
on GPU. The algorithm first divides the model space into a 
uniform grid and distributes each sample point into a cube of the 
uniform grid. Then the directed distances from the vertices of 
each cube to the point cloud are calculated in a way suitable for 
SIMT (single instruction multi threads) parallel model. Finally, 
triangles are generated in all the cubes to form the isosurface in 
parallel.  The experimental results show that the isosurface 
extraction algorithm in this paper can generate reconstructed 
surface efficiently.1 

2. Marching Cubes 
Marching Cubes (MC) is a widely used isosurface extraction 
algorithm. Isosurface is a set in which all the elements share the 
same value of a function, it can be expressed as below, 

{ (x, y, z) | f (x, y, z) = c}, c is a constant value 
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MC algorithm divided the model space into cubes, assuming the 
data are continuously changing along the edges of the cube, which 
means: if the isosurface value is between two vertices of an edge, 
the isosurface will intersect the edge for sure. In order to 
determine the isosurface structure in a cube, a threshold has to be 
set at first. Then the 8 vertices of the cube are classified, 
depending on whether the vertex is inside or outside the 
isosurface. If the vertex value is greater than the threshold, then 
the vertex is set in the isosurface, denoted as "0"; if the vertex 
value is less than the threshold, then vertex is set outside of the 
isosurface, denoted as "1". Since each vertex has two states, each 
cube has a total of 28(256) combination states. From the 
topological point of view, the combination of 256 kinds of state 
will be reduced to 15 after the reversal and rotation 
transformation, as shown in Figure 1. 

 

Figure 1. The 15 Basic Combinations of Cubes 

MC algorithm checks each cube, determines its topological type, 
and looks for to which edge the cube vertices belong to, compute 
the intersected points by using the linear interpolation method, 
then form the corresponding triangles. After examining all 
possible triangles of the cubes, we can get the equivalent triangle 
meshes of the isosurface. 

The algorithm of Hoppe [1] takes each sample point's tangent 
plane as the local linear approximation of the surface to be 
reconstructed, thus a directed distance function f(c) can be 
constructed from a space point c to the interface to be 
reconstructed: 

f (c) = (c - oi) ni 

Where oi is the nearest tangent plane center to c, and ni is the the 
normal vector of the tangent plane.  

The zero set of f(c), which is denominated as Z(f), forms an 
isosurface. When we apply the MC algorithm to extract the 
triangles, the 256 different cube triangle structures are stored in a 
table at first. Then, the directed distance f(c)  between the eight 
vertices of each cube and the interface to be reconstructed are 
calculated, classifying the cube according to directed distances, a 
vertex with distance bigger than zero is labeled as "1", otherwise 
is labeled as "0". According to the data classification result of the 
cube, look up the related data in the table, use linear interpolation 
method to calculate the intersection point between the isosurface 
to be reconstructed and the cube, and finally output the 
corresponding triangle meshes. 

3. Marching Cubes on GPU 
For a large scale of point cloud which has over half million points, 
computing directed distance runs very slowly, which is caused by  

two reasons: first, the number of cubes which actually intersect 
isosurface are only part of the total cubes, most of the calculation 
of directed distance is invalid computation; second, to compute 
directed distance, a search for the nearest tangent plane center oi 
to each vertex c is needed, which will traverse all the sampling 
points, but the sampling points are randomly distributed around 
each vertex, the distribution of each vertex is different. Therefore, 
this paper presents an efficient directed distance calculation 
method based on GPU. 

3.1 Cube Indexing 
MC algorithm divides the model space into small cubes, among 
which only a small part intersect the surfaces to be reconstructed, 
so how to quickly locate these cubes is the key to improve the 
efficiency of the algorithm. Assuming a point cloud X as the 
sampling points set of the surface M to be reconstructed, and the 
density is ρ, the noise is δ, the projection of a vertex c on the 
surface M is z. When d(z, X)>ρ+δ, in which, d(z, X) denotes the 
nearest distance between z and certain point in the point cloud X. 
the cube is considered to have no intersection with the surface. 
Also, according to the principles of MC algorithm, if all 8 vertices 
of a cube are on the same side of the surface, they won't intersect, 
either. From the above two properties, it's not hard to conclude, 
only in the cubes crossing the sampling points can isosurface 
triangles be generated. 

Each cube has a three-dimensional subscript (x, y, z) in the model 
space to indicate its position in space. In order to save the storage 
space, the three-dimensional subscript of a cube is coded in a 32 
bit unsigned integer, the first 10 bits denote X, the second 10 bits 
denote Y, and the third 10 bits denote Z. We call this number 
Cube Key, as shown in Figure 2. The maximum length of each 
dimension is 210, so the model space can be divided into 230 (1G) 
cubes. 

 

Figure 2. The Denotation of Cube Key 

3.2 Locating Sample Points 
In order to improve the efficiency of searching the sampling 
points, we take a strategy similar to Uniform Grid[7][12] to put 
sampling points into cubes. Different from those two methods, the 
cubes are not only used to improve the searching efficiency, but 
also to serve as the cubes in the MC algorithm to extract triangle 
meshes. When the length of edge for each cube is decided, the 
Cube Key of each cube to which every sampling point belongs 
can be computed parallel on GPU. As more than one sampling 
point falls into a cube, we use parallel primitive to sort [8] the 
sampling points by Cube Key, moving the points within the same 
cube together. Then we use parallel primitive compaction [10] to 
remove the duplicate Cube Key, the cubes left are called seed 
cube, preparing for the next region diffusion. A tag array is set to 
be the cut-off point, as shown in Figure 3. This series of actions 
are completed by the parallel primitives, so it has very high 
efficiency on GPU. 



 

Figure 3. Allocating the sample points into each cube 

3.3 Directed Distance 
Directed distance is usually computed by sequential searching the 
nearest tangent plane center oi of sampling points for each vertex 
c. Since the sampling points are randomly distributed, the 
distribution of sampling sites around each vertex is different. 
CUDA is an SIMT (single instruction multi threads) parallel 
computing model, inconsistent behavior in parallel threads will 
produce branches, which will cause the execution paths running 
serially and reducing the program's parallel degree. On the other 
hand, reading random sampling data is not suitable for CUDA's 
combined global memory access mode. 

To solve the problem, we present a new method to compute the 
directed distance for cube vertices. Instead of searching the 
nearest sampling points center oi around cube vertex c, we 
compute the directed distance between tangent plane center oi of 
each sampling point and 8 vertices of the cube it locates. Because 
of the determined position of vertices and their regular 
distribution, the parallel processing is more intuitive and efficient. 
With the cube, where sampling points are, being the center, a 
subspace is formed by spreading one layer out, which composes 
of 33 cubes and 44 cube vertices. Thus the model space is divided 
into a number of subspaces according to the seed cube's position. 
Figure 4. Shows a 2D explanation. 

 

Figure 4. 2D Explanation of Dividing the Model Space 
 

This algorithm maps each subspace into a block in CUDA, which 
means each block consists of 64 threads, and each thread 
processes one cube vertex. The sampling data is saved in the 
Shared Memory, shared by all thread in subspace, which greatly 
reduces the times of global memory access. Every subspace 
contains more than one sampling point, each cube vertex only 
calculates directed distance to the nearest sampling point center. 
In this way, the local directed distance within the subspace can be 
parallel obtained, the algorithm is as follows. 

Algorithm 1 Algorithm to Compute the Directed Distance 

1: 
procedure __global__ void ComputeOriDist 
kernel() 

2: 
decode the Cube Key of seed cube, save in Shared 

Memory; 

3: 
get the subscript of sampling point in subspace, 

save in Shared Memory; 
4: synchronize the data in Shared Memory; 
5: compute the subscript of each vertex in subspace;
6: for p ∈ Samplingpoint do 

7: 
get the tangent plane center and the normal 

vector of p, save in Shared Memory; 
8: synchronize the data in Shared Memory; 

9: 
compute the directed distance between a 

vertex and certain sampling point center; 
10: record the nearest sampling point info; 
11: end for; 

12:
compute the directed distance function between 

the vertex and the sampling point; 
13: end procedure 

 
A vertex of cubes in the original model space may be mapped into 
more than one subspace, and be calculated many times, therefore 
an optimal value should be selected in the global scope, which is 
the nearest directed function between c and the sampling point 
center oi. For each cube vertex, similar to the Cube Key in Figure 
2, we set a key called Vertex Key, and then sort the Vertex Keys 
by parallel primitives, thus the directed distance of the same cube 
will be put together, the directed distance corresponding to the 
nearest sampling point center is chosen to be the finally distance. 
At the same time, we use parallel primitives of sorting and 
compaction to remove duplicate cubes. 

 

Figure 5. Density of sample points and hole 

In the algorithm of this paper, sampling points are distributed into 
seed cubes. Only those key values of the first layer of 
neighborhood of the seed cubes (which shares the common vertex 
Cube) are retained, other key values will not be stored, thus we 
can both improve the computational efficiency and save the 
storage space. However, there is a risk of producing holes in the 
surface. Assuming that the cube edge length is ω, in the point 
cloud with density ρ, noise δ, if 3ω<=ρ+δ, a surface may be 



reconstructed with holes, as shown in Figure 5, otherwise as long 
as 3ω>ρ+δ, our method will not produce any holes in the 
reconstructed surface. 

3.4 Marching Cubes 
With the directed distance of vertex, the cubes can be classified 
by the combination of the signs of 8 directed distances. After 
looking up in the pre-set table by the cube classification, through 
linear interpolation, triangle meshes can be created inside a cub 
according to the information looked up in the table. As the 
treatment for each cube is independent from each other, the 
generation of triangles in cubes is performed on GPU. 

The intersection points of cubes and reconstructed surface lie on 
the edges of cube. Their positions could be obtained by linear 
interpolation between the two vertex of the edge, the indices of 
vertices and edges are shown in Figure 6. 

 

Figure 6. The indexing of Vertices and Edges 

For example, in a certain cube, vertex 3 is inside the isosurface, 
and the other vertices are outside of the isosurface, as can be seen 
from Figure 6, the cube will generate a triangle, and its three 
vertices are located in edge 3, 11 and 2, therefore, a table called 
triTable is needed to record the edge set of triangle vertices for 
each classification of cubs. There are at most 5 triangles in one 
cube, as shown in Figure 1, so each vertex has up to 3*5=15 
triangle vertex, which can be denoted by a 16 bytes array. For 
those with only 3 vertex, they can be donated as: {3,11,2, x, x, x, 
x, x, x, x, x, x, x, x, x, x}, in which x can be set to any number 
greater than the maximum number of edges, such as 255. 

As there are 256 different cubes in total, a two-dimensional array 
of size 256*16 is allocated to represent the triTable, with records 
to the corresponding edge indices. In order to create the triangle 
in each cube in parallel, we also need to establish a 
numVertsTable to record the number of triangles in each kind of 
cubes, which will be used to determine the subscript of triangles 
in the output for each cube by primitives[11][13].  These two 
tables are both read-only and can be bounded to the GPU texture 
cache to improve the efficiency of the search. 

Each cube is processed by one CUDA thread. The algorithm 
processes 12 edges of each cube one by one. In the parallel 
processing of every thread, the subscripts in the output array of 
generated triangles are needed to be known in advance, which 
means we need to classify the cubes and look up in 
numVertsTable to get the number of triangles. Then the subscript 
in the output array can be generated by scan primitives. The 
parallel generation of triangle algorithm is shown as below: 

Algorithm 2 Algorithm to Generate Triangle 

1: procedure __global__ void generateTriangles kernel()

2: 
decode the number of cube vertex, get the 

coordinates of vertices; 
3: get the directed distance of cube vertex; 

4: 
traverse the vertices of the cube, determine the 

classification of the cube; 

5: 
perform linear interpolation for the 12 edges one 

by one to get the intersection; 

6: 
look up in numVertsTable, get the number of 

triangles; 
7: for all triangles do 

8: 
look up in the triTable, get the number of edge 

on which triangle vertices are; 

9: 
according to be index of edge, get the 

intersection point as the triangle vertex; 

10:
save the triangle vertex to the output array, the 

subscript is computed in advance; 
11: end for; 
12: end procedure 

 

The reconstructed surface is composed of the triangles generated 
in all cubes. The output we need is an array of the vertices of all 
triangles. Every three continuous represents a triangle. As each 
cube generates its own triangle vertex, there will be duplicate 
triangle vertex. It's necessary to remove the duplicate vertex, and 
update the vertex index for each triangle. The duplicate vertices 
are removed by parallel primitives of sort and compaction. And 
the vertex indices of triangles are updated with parallel primitives 
of sort and scan. 

4. RESULTS 
The proposed isosurface extraction algorithm based on GPU is 
implemented on CUDA 7 with Thrust 1.7.0 parallel primitives 
library. The experimental platform is: Windows 7, CPU Intel 
Core (TM) 2 Duo E6550 (dual core), 4GB memory, GPU 
NVIDIA GeForce GTX 660, the CUDA stream processor number 
is 192, the processor frequency is 1.57GHz, the memory is 1GB. 

Figure 7 and Figure 8 show the graphical results of our proposed 
isosurface extraction algorithm working on different point clouds. 
For large scale point clouds, this algorithm can still quickly 
reconstruct a fine mesh surface. The experimental data of Dragon 
and Buddha point clouds are from the Stanford University 3D 
database. We compare the running time of GPU algorithm and 
CPU algorithm. The CPU version algorithm has been optimized, 
Detailed data are shown in Table 1. 

Table 1. Time Results of Isosurface Extraction 

Model #Points
# Output 
Triangles 

GPU CPU SP*

Dragon 437645 244325 10.348s 112.461 11 

Buddha 543625 331225 11.094s 146.023 13 

*Speed Up 



 

Figure 7. Graphical results of reconstructed surface of Budha. The 
left one is a global view. The right one shows a detailed area. 

 

 

Figure 8. The reconstructed surface of Dragon. 

From the results shown in Table 1, we could find that our 
isosurface extraction algorithm based on GPU runs about 10 times 
faster than CPU version does. With the increasing of the number 
of triangles, the speedup gets more obvious. The speedups of 
complex point clouds such as Dragon, Buddha are better than that 
of relatively simple structure such as a fat surface.  

5. CONCLUSION 
Isosurface extraction is an important technique widely used in the 
field of visualization in scientific computing. However, the point 
clouds are getting denser and denser, thus the efficiency of 
Marching cubes method has become an obstacle. This paper 
presents a novel GPU-based parallel surface reconstruction 
algorithm. The algorithm firstly creates a GPU-based uniform 
grid structure to manage point cloud. Then directed distances 
from vertices of cubes to the point cloud are computed in a novel 
parallel way. Finally, after the generation of triangles, a space 
indexing scheme is adopted to output the resulted surface in a ply 

like format. The results show that our algorithm can run more 
than 10 times faster compared to the CPU-based implementations. 

The memory of a GPU is limited which makes it difficult for 
GPU-based reconstruction methods to process extreme large scale 
point cloud. The future work includes streaming reconstruction on 
GPU which could fulfill the reconstruction and data transferring 
between RAM and GPU at the same time.  
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