
Parallel Surface Reconstruction on GPU
Heng Gao

State Key Laboratory for Novel
Software Technology,

Department of Computer
Science And Technology,

Nanjing University
Nanjing, China

Jie Tang*
State Key Laboratory for Novel

Software Technology,
Department of Computer
Science And Technology,

Nanjing University
Nanjing, China

Gangshan Wu
State Key Laboratory for Novel

Software Technology,
Department of Computer
Science And Technology,

Nanjing University
Nanjing, China

ABSTRACT
Marching Cubes is the most frequently used method to
reconstruct isosurface from a point cloud. However, the point
clouds are getting denser and denser, thus the efficiency of
Marching cubes method has become an obstacle. This paper
presents a novel GPU-based parallel surface reconstruction
algorithm. The algorithm firstly creates a GPU-based uniform
grid structure to manage point cloud. Then directed distances
from vertices of cubes to the point cloud are computed in a newly
put forwarded parallel way. Finally, after the generation of
triangles, a space indexing scheme is adopted to reconstruct the
connectivity of the resulted surface. The results show that our
algorithm can run more than 10 times faster compared to the
CPU-based implementations.

Categories and Subject Descriptors
I.1.3 [COMPUTER GRAPHICS]: Hardware Architecture -

Graphics processors, Parallel processing.

General Terms
Algorithms, Performance.

Keywords
GPU, CUDA, Isosurface Extraction, Marching Cubes

1. INTRODUCTION
Isosurface extraction, usually from large scale scattered points, is
widely used in scientific computing visualization, many scalar
field visualization problems can be summed up as isosurface
extraction and rendering， such as 3D reconstruction of medical
images, presentation of molecular surface in molecular chemistry,
structure analysis of mineral deposits distribution in geology and
so on. Hoppe[1][2] achieved effective and pioneering work in the
area.

The most widely used method of isosurface extraction is
Marching Cubes (MC) algorithm [3]. MC algorithm has better
rendering results in higher data density, but tends to generate too
many triangles, which costs large storage space and transmission

bandwidth and requires too much longer processing time, leading
the real time rendering to be impossible. Although the cubes
which intersect the isosurface in model space are only a small part
of the total cubes, during the process of extracting isosurface, MC
algorithm still needs to traverse all cube units to generate the
surface patches, reducing the efficiency greatly. Furthermore, the
storage of these cubic units which don't intersect the isosurface
also wastes a large amount of valuable memory space.

There are two ways commonly used to improve the efficiency of
the MC algorithm. The first one adopts octree [4] to organize and
manage data, reduce the computing consumption of disjoint cubes
and improve the method efficiency as well as save the memory.
Another method is to execute the algorithm in a growing way, i.e.
starting with preprocessing step to select a part of the cubes as
seed cubes, and then use the regional search algorithm to traverse
and find cubes intersect seed cubes, until all surface patches are
found.

Nowadays, the scale of point clouds is getting larger and larger.
Thus the algorithm still cannot meet the real-time requirements.
Fortunately, with the development of modern programmable GPU,
there appears a new solution for achieving large scale MC
algorithm in real time or interactively. Löffler et al. [5] parallelize
the dual marching cubes method [6] to extract manifold surfaces
from terrain data set. Schmitz et al. [7] implement a modified dual
contouring on the GPU. Chen [9] proposed a new parallel
approach to efficiently construct high-quality polygon meshes
from implicit surface representations.

In the paper, we present an isosurface extraction algorithm based
on GPU. The algorithm first divides the model space into a
uniform grid and distributes each sample point into a cube of the
uniform grid. Then the directed distances from the vertices of
each cube to the point cloud are calculated in a way suitable for
SIMT (single instruction multi threads) parallel model. Finally,
triangles are generated in all the cubes to form the isosurface in
parallel. The experimental results show that the isosurface
extraction algorithm in this paper can generate reconstructed
surface efficiently.1

2. Marching Cubes
Marching Cubes (MC) is a widely used isosurface extraction
algorithm. Isosurface is a set in which all the elements share the
same value of a function, it can be expressed as below,

{ (x, y, z) | f (x, y, z) = c}, c is a constant value

∗ corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICIMCS’15, August 19–21, 2015, Zhangjiajie City, Hunan, China.
Copyright 2015 ACM 978-1-4503-3528-7/15/08 …$15.00.

MC algorithm divided the model space into cubes, assuming the
data are continuously changing along the edges of the cube, which
means: if the isosurface value is between two vertices of an edge,
the isosurface will intersect the edge for sure. In order to
determine the isosurface structure in a cube, a threshold has to be
set at first. Then the 8 vertices of the cube are classified,
depending on whether the vertex is inside or outside the
isosurface. If the vertex value is greater than the threshold, then
the vertex is set in the isosurface, denoted as "0"; if the vertex
value is less than the threshold, then vertex is set outside of the
isosurface, denoted as "1". Since each vertex has two states, each
cube has a total of 28(256) combination states. From the
topological point of view, the combination of 256 kinds of state
will be reduced to 15 after the reversal and rotation
transformation, as shown in Figure 1.

Figure 1. The 15 Basic Combinations of Cubes

MC algorithm checks each cube, determines its topological type,
and looks for to which edge the cube vertices belong to, compute
the intersected points by using the linear interpolation method,
then form the corresponding triangles. After examining all
possible triangles of the cubes, we can get the equivalent triangle
meshes of the isosurface.

The algorithm of Hoppe [1] takes each sample point's tangent
plane as the local linear approximation of the surface to be
reconstructed, thus a directed distance function f(c) can be
constructed from a space point c to the interface to be
reconstructed:

f (c) = (c - oi) ni

Where oi is the nearest tangent plane center to c, and ni is the the
normal vector of the tangent plane.

The zero set of f(c), which is denominated as Z(f), forms an
isosurface. When we apply the MC algorithm to extract the
triangles, the 256 different cube triangle structures are stored in a
table at first. Then, the directed distance f(c) between the eight
vertices of each cube and the interface to be reconstructed are
calculated, classifying the cube according to directed distances, a
vertex with distance bigger than zero is labeled as "1", otherwise
is labeled as "0". According to the data classification result of the
cube, look up the related data in the table, use linear interpolation
method to calculate the intersection point between the isosurface
to be reconstructed and the cube, and finally output the
corresponding triangle meshes.

3. Marching Cubes on GPU
For a large scale of point cloud which has over half million points,
computing directed distance runs very slowly, which is caused by

two reasons: first, the number of cubes which actually intersect
isosurface are only part of the total cubes, most of the calculation
of directed distance is invalid computation; second, to compute
directed distance, a search for the nearest tangent plane center oi
to each vertex c is needed, which will traverse all the sampling
points, but the sampling points are randomly distributed around
each vertex, the distribution of each vertex is different. Therefore,
this paper presents an efficient directed distance calculation
method based on GPU.

3.1 Cube Indexing
MC algorithm divides the model space into small cubes, among
which only a small part intersect the surfaces to be reconstructed,
so how to quickly locate these cubes is the key to improve the
efficiency of the algorithm. Assuming a point cloud X as the
sampling points set of the surface M to be reconstructed, and the
density is ρ, the noise is δ, the projection of a vertex c on the
surface M is z. When d(z, X)>ρ+δ, in which, d(z, X) denotes the
nearest distance between z and certain point in the point cloud X.
the cube is considered to have no intersection with the surface.
Also, according to the principles of MC algorithm, if all 8 vertices
of a cube are on the same side of the surface, they won't intersect,
either. From the above two properties, it's not hard to conclude,
only in the cubes crossing the sampling points can isosurface
triangles be generated.

Each cube has a three-dimensional subscript (x, y, z) in the model
space to indicate its position in space. In order to save the storage
space, the three-dimensional subscript of a cube is coded in a 32
bit unsigned integer, the first 10 bits denote X, the second 10 bits
denote Y, and the third 10 bits denote Z. We call this number
Cube Key, as shown in Figure 2. The maximum length of each
dimension is 210, so the model space can be divided into 230 (1G)
cubes.

Figure 2. The Denotation of Cube Key

3.2 Locating Sample Points
In order to improve the efficiency of searching the sampling
points, we take a strategy similar to Uniform Grid[7][12] to put
sampling points into cubes. Different from those two methods, the
cubes are not only used to improve the searching efficiency, but
also to serve as the cubes in the MC algorithm to extract triangle
meshes. When the length of edge for each cube is decided, the
Cube Key of each cube to which every sampling point belongs
can be computed parallel on GPU. As more than one sampling
point falls into a cube, we use parallel primitive to sort [8] the
sampling points by Cube Key, moving the points within the same
cube together. Then we use parallel primitive compaction [10] to
remove the duplicate Cube Key, the cubes left are called seed
cube, preparing for the next region diffusion. A tag array is set to
be the cut-off point, as shown in Figure 3. This series of actions
are completed by the parallel primitives, so it has very high
efficiency on GPU.

Figure 3. Allocating the sample points into each cube

3.3 Directed Distance
Directed distance is usually computed by sequential searching the
nearest tangent plane center oi of sampling points for each vertex
c. Since the sampling points are randomly distributed, the
distribution of sampling sites around each vertex is different.
CUDA is an SIMT (single instruction multi threads) parallel
computing model, inconsistent behavior in parallel threads will
produce branches, which will cause the execution paths running
serially and reducing the program's parallel degree. On the other
hand, reading random sampling data is not suitable for CUDA's
combined global memory access mode.

To solve the problem, we present a new method to compute the
directed distance for cube vertices. Instead of searching the
nearest sampling points center oi around cube vertex c, we
compute the directed distance between tangent plane center oi of
each sampling point and 8 vertices of the cube it locates. Because
of the determined position of vertices and their regular
distribution, the parallel processing is more intuitive and efficient.
With the cube, where sampling points are, being the center, a
subspace is formed by spreading one layer out, which composes
of 33 cubes and 44 cube vertices. Thus the model space is divided
into a number of subspaces according to the seed cube's position.
Figure 4. Shows a 2D explanation.

Figure 4. 2D Explanation of Dividing the Model Space

This algorithm maps each subspace into a block in CUDA, which
means each block consists of 64 threads, and each thread
processes one cube vertex. The sampling data is saved in the
Shared Memory, shared by all thread in subspace, which greatly
reduces the times of global memory access. Every subspace
contains more than one sampling point, each cube vertex only
calculates directed distance to the nearest sampling point center.
In this way, the local directed distance within the subspace can be
parallel obtained, the algorithm is as follows.

Algorithm 1 Algorithm to Compute the Directed Distance

1:
procedure __global__ void ComputeOriDist
kernel()

2:
decode the Cube Key of seed cube, save in Shared

Memory;

3:
get the subscript of sampling point in subspace,

save in Shared Memory;
4: synchronize the data in Shared Memory;
5: compute the subscript of each vertex in subspace;
6: for p ∈ Samplingpoint do

7:
get the tangent plane center and the normal

vector of p, save in Shared Memory;
8: synchronize the data in Shared Memory;

9:
compute the directed distance between a

vertex and certain sampling point center;
10: record the nearest sampling point info;
11: end for;

12:
compute the directed distance function between

the vertex and the sampling point;
13: end procedure

A vertex of cubes in the original model space may be mapped into
more than one subspace, and be calculated many times, therefore
an optimal value should be selected in the global scope, which is
the nearest directed function between c and the sampling point
center oi. For each cube vertex, similar to the Cube Key in Figure
2, we set a key called Vertex Key, and then sort the Vertex Keys
by parallel primitives, thus the directed distance of the same cube
will be put together, the directed distance corresponding to the
nearest sampling point center is chosen to be the finally distance.
At the same time, we use parallel primitives of sorting and
compaction to remove duplicate cubes.

Figure 5. Density of sample points and hole

In the algorithm of this paper, sampling points are distributed into
seed cubes. Only those key values of the first layer of
neighborhood of the seed cubes (which shares the common vertex
Cube) are retained, other key values will not be stored, thus we
can both improve the computational efficiency and save the
storage space. However, there is a risk of producing holes in the
surface. Assuming that the cube edge length is ω, in the point
cloud with density ρ, noise δ, if 3ω<=ρ+δ, a surface may be

reconstructed with holes, as shown in Figure 5, otherwise as long
as 3ω>ρ+δ, our method will not produce any holes in the
reconstructed surface.

3.4 Marching Cubes
With the directed distance of vertex, the cubes can be classified
by the combination of the signs of 8 directed distances. After
looking up in the pre-set table by the cube classification, through
linear interpolation, triangle meshes can be created inside a cub
according to the information looked up in the table. As the
treatment for each cube is independent from each other, the
generation of triangles in cubes is performed on GPU.

The intersection points of cubes and reconstructed surface lie on
the edges of cube. Their positions could be obtained by linear
interpolation between the two vertex of the edge, the indices of
vertices and edges are shown in Figure 6.

Figure 6. The indexing of Vertices and Edges

For example, in a certain cube, vertex 3 is inside the isosurface,
and the other vertices are outside of the isosurface, as can be seen
from Figure 6, the cube will generate a triangle, and its three
vertices are located in edge 3, 11 and 2, therefore, a table called
triTable is needed to record the edge set of triangle vertices for
each classification of cubs. There are at most 5 triangles in one
cube, as shown in Figure 1, so each vertex has up to 3*5=15
triangle vertex, which can be denoted by a 16 bytes array. For
those with only 3 vertex, they can be donated as: {3,11,2, x, x, x,
x, x, x, x, x, x, x, x, x, x}, in which x can be set to any number
greater than the maximum number of edges, such as 255.

As there are 256 different cubes in total, a two-dimensional array
of size 256*16 is allocated to represent the triTable, with records
to the corresponding edge indices. In order to create the triangle
in each cube in parallel, we also need to establish a
numVertsTable to record the number of triangles in each kind of
cubes, which will be used to determine the subscript of triangles
in the output for each cube by primitives[11][13]. These two
tables are both read-only and can be bounded to the GPU texture
cache to improve the efficiency of the search.

Each cube is processed by one CUDA thread. The algorithm
processes 12 edges of each cube one by one. In the parallel
processing of every thread, the subscripts in the output array of
generated triangles are needed to be known in advance, which
means we need to classify the cubes and look up in
numVertsTable to get the number of triangles. Then the subscript
in the output array can be generated by scan primitives. The
parallel generation of triangle algorithm is shown as below:

Algorithm 2 Algorithm to Generate Triangle

1: procedure __global__ void generateTriangles kernel()

2:
decode the number of cube vertex, get the

coordinates of vertices;
3: get the directed distance of cube vertex;

4:
traverse the vertices of the cube, determine the

classification of the cube;

5:
perform linear interpolation for the 12 edges one

by one to get the intersection;

6:
look up in numVertsTable, get the number of

triangles;
7: for all triangles do

8:
look up in the triTable, get the number of edge

on which triangle vertices are;

9:
according to be index of edge, get the

intersection point as the triangle vertex;

10:
save the triangle vertex to the output array, the

subscript is computed in advance;
11: end for;
12: end procedure

The reconstructed surface is composed of the triangles generated
in all cubes. The output we need is an array of the vertices of all
triangles. Every three continuous represents a triangle. As each
cube generates its own triangle vertex, there will be duplicate
triangle vertex. It's necessary to remove the duplicate vertex, and
update the vertex index for each triangle. The duplicate vertices
are removed by parallel primitives of sort and compaction. And
the vertex indices of triangles are updated with parallel primitives
of sort and scan.

4. RESULTS
The proposed isosurface extraction algorithm based on GPU is
implemented on CUDA 7 with Thrust 1.7.0 parallel primitives
library. The experimental platform is: Windows 7, CPU Intel
Core (TM) 2 Duo E6550 (dual core), 4GB memory, GPU
NVIDIA GeForce GTX 660, the CUDA stream processor number
is 192, the processor frequency is 1.57GHz, the memory is 1GB.

Figure 7 and Figure 8 show the graphical results of our proposed
isosurface extraction algorithm working on different point clouds.
For large scale point clouds, this algorithm can still quickly
reconstruct a fine mesh surface. The experimental data of Dragon
and Buddha point clouds are from the Stanford University 3D
database. We compare the running time of GPU algorithm and
CPU algorithm. The CPU version algorithm has been optimized,
Detailed data are shown in Table 1.

Table 1. Time Results of Isosurface Extraction

Model #Points
Output
Triangles

GPU CPU SP*

Dragon 437645 244325 10.348s 112.461 11

Buddha 543625 331225 11.094s 146.023 13

*Speed Up

Figure 7. Graphical results of reconstructed surface of Budha. The
left one is a global view. The right one shows a detailed area.

Figure 8. The reconstructed surface of Dragon.

From the results shown in Table 1, we could find that our
isosurface extraction algorithm based on GPU runs about 10 times
faster than CPU version does. With the increasing of the number
of triangles, the speedup gets more obvious. The speedups of
complex point clouds such as Dragon, Buddha are better than that
of relatively simple structure such as a fat surface.

5. CONCLUSION
Isosurface extraction is an important technique widely used in the
field of visualization in scientific computing. However, the point
clouds are getting denser and denser, thus the efficiency of
Marching cubes method has become an obstacle. This paper
presents a novel GPU-based parallel surface reconstruction
algorithm. The algorithm firstly creates a GPU-based uniform
grid structure to manage point cloud. Then directed distances
from vertices of cubes to the point cloud are computed in a novel
parallel way. Finally, after the generation of triangles, a space
indexing scheme is adopted to output the resulted surface in a ply

like format. The results show that our algorithm can run more
than 10 times faster compared to the CPU-based implementations.

The memory of a GPU is limited which makes it difficult for
GPU-based reconstruction methods to process extreme large scale
point cloud. The future work includes streaming reconstruction on
GPU which could fulfill the reconstruction and data transferring
between RAM and GPU at the same time.

ACKNOWLEDGMENTS
This paper is partly funded by National Science and Technology
Major Project of the Ministry of Science and Technology of
China under grant 2011ZX05035-004-004HZ.

REFERENCES
[1] Hoppe H., DeRose T., et al. 1992. Surface reconstruction

from unorganized points. Proc. ACM SIGGRAPH’92, 71-78.

[2] Hoppe H., DeRose T., et al. 1994. Piecewise smooth surface
reconstruction. Proc. ACM SIGGRAPH'94, 295-302.

[3] Lorensen W. E. and Cline H. E. 1987. Marching cubes: A
high resolution 3d surface construction algorithm. Computer
Graphics, 21(4):163-169.

[4] Wilhelms J. and Gelder A. V. 2000. Octrees for faster
isosurface generation. IEEE Transactions on Medical
Imaging, 19:739-758.

[5] Löffler, F., Schumann, H. 2012. Generating smooth high-
quality isosurfaces for interactive modeling and visualization
of complex terrains. In: Proceedings of the Vision, Modeling,
and Visualization Workshop

[6] Nielson, M. 2004. Dual marching cubes. IEEE Visualization,
489–496.

[7] Schmitz, A., Dietrich, A., Comba, D. 2009. Efficient and
high quality contouring of isosurfaces on uniform grids. In:
IEEE XXII Brazilian Symposium on Computer Graphics and
Image Processing (SIBGRAPI), 64–71.

[8] Satish N., Harris M. and Garland M, 2009. Designing
efficient sorting algorithms for manycore gpus. Parallel and
Distributed Processing Symposium, pages 1-10.

[9] Chen J., Jin X., Deng Z. 2015. GPU-based polygonization
and optimization for implicit surfaces. Vis Comput, 31:119–
130..

[10] Nvidia. Cudpp:cuda data-parallel primitives library.
http://www.gpgpu.org/developer/cudpp/, 2015.

[11] Sengupta S., Harris M. and Zhang Y., et al. 2007. Scan
primitives for gpu computing. Graphics Hardware 2007, 97-
106.

[12] Tang J., and Zhang F. 2005. Evaluation of similarity
between arbitrary meshes. Journal of System Simulation,
17:16-19 (in Chinese).

[13] Dotsenko Y., Govindaraju N., et al. 2008. Fast scan
algorithms on graphics processors. In Proceedings of the
22nd Annual International Conference on Supercomputing.
205-213.

