Saliency Cuts Based On Adaptive Triple Thresholding
Shuzhen Li, Ran Ju, Tongwei Ren, Gangshan Wu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China

Abstract: Our segmentation approach using unsupervised seeds generation and GrabCut. We take a saliency map as input, and produce four kind seeds using adaptive triple thresholding. Then we fed these seeds to GrabCut framework. A high quality object mask is generated by iteratively optimization. Our approach can fit in well with the state-of-the-art saliency object detection methods. The experiments show the effectiveness of our method.

Key idea:
We introduce global threshold t_m and local threshold t_l, t_h. t_m segment the gray histogram into set T_{cb}, T_{pb}, T_{pf}, T_{cf}.

$$t_m = \arg \max [w_p (u_t - u_b)^2]$$

$$\{t_l, t_h\} = \arg \max \sum w_{cb} w_{pb} (u_{cb} - u_{pb})^2 + w_{pf} w_{cf} (u_{pf} - u_{cf})^2$$

where w_i is the weight of T_i, and u_i are the mean saliency values of T_i. The saliency map is segmented by three threshold into fourfold graph. Use fourfold graph to initial the Grab Cut algorithm and get the segmentation results.

Experiments: We evaluate our method on MSRA 10k dataset [1] and compare it with: Otsu [2], frequency-tuned (FT) [3], auto-labeling [4], automatic salient region extraction (ASRE) [1]. Fig.1 are some examples of our segmentation results. Fig.2. gives the precision, recall and F_β values of different methods. Comprehensively, our ASRE is higher than other three methods except ASER. But experiments show that ASRE is subject to missing part of salient object (Fig.3.third row) and our method (fourth row) can avoid such problem and get integral salient object.

Reference: