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ABSTRACT

The goal of objectness estimation is to predict a moderate
number of proposals of all possible objects in a given image
with high efficiency. Most existing works solve this problem
solely in conventional 2D color images. In this paper, we
demonstrate that the depth information could benefit the
estimation as a complementary cue to color information.
After detailed analysis of depth characteristics, we present an
adaptively integrated description for generic objects, which
could take full advantages of both depth and color. With
the proposed objectness description, the ambiguous area,
especially the highly textured regions in original color maps,
can be effectively discriminated. Meanwhile, the object
boundary areas could be further emphasized, which leads
to a more powerful objectness description. To evaluate
the performance of the proposed approach, we conduct the
experiments on two challenging datasets. The experimental
results show that our proposed objectness description is more
powerful and effective than state-of-the-art alternatives.

Index Terms— Objectness estimation, object proposal,
depth map, generic object description

1. INTRODUCTION

Object detection, which aims to detect and localize objects in
images, is widely embraced in many multimedia applications,
including content analysis [1], image retrieval [2] and
object-level editing [3]. Various efforts have been geared
according to different processing paradigms, which can be
roughly divided into two categories: exhausting sliding
windows searching [4, 5] and objectness estimation [6, 7,
8]. Compared with sliding windows approaches, objectness
estimation highly reduces the number of returned object
proposals which substantially improves the subsequent object
classifiers’ efficiency. And the distractive false positives
could be declined accordingly. Furthermore, the classification
accuracy can be increased by enabling more complicated and
discriminative classifiers owing to the reduced search space.

Most of the existing objectness estimation methods work
on the conventional 2D color images. Though many

encouraging achievements [6, 7, 8] have been achieved,
it is still very difficult to discriminate real objects from
high textures, or to detect objects in complicated scenes.
For instance, in Fig. 1(a), the ambulance has many inner
distractions in the color map for its complex painting, which
may split the ambulance into several parts during objectness
estimation. In comparison, the depth cue provides a clean
view of object structure, which is considerably powerful in
predicting potential objects. As in Fig. 1(b) and (d), we could
effortlessly infer that there are at least two objects. And the
whole object body can be retained in this scene regardless of
its color map. This is mainly owing to the obvious object
boundaries, layered structures and cleanness of the object
bodies in depth map. Moreover, depth cue has shown its
superior effect in many recent applications, like salient object
detection [9, 10, 11], image segmentation [12, 13] and activity
recognition [14, 15]. Consequently, we consider to introduce
the depth information into the objectness estimation task.

Meanwhile, it should be noted that depth is not perfect for
general object description. First, the discriminative power of
depth decays when the distance between the object and viewer
increases. For example, the depth of trees is hard to read in
Fig. 1(b) as it is too far from the viewer. On the other hand, it
fails to detect the boundaries when the objects are in contact
with background or each other, such as the boundaries of the
van’s wheels since they are in contact with the ground (Fig.
1(b) and (d)). Moreover, accurate depth map is still difficult to
obtain with current techniques. The inaccuracy of depth map
will inevitably bring in noises in object boundary description,
such as the front of the van in depth map in Fig. 1(b).

Motivated by the above, we propose a novel adaptively
integrated objectness description approach which takes full
advantages of both the depth and color cues for objectness
estimation. It is based on a recently developed promising
objectness estimation method named BING [7]. In our
proposed description, depth will contribute more when it has
strong intensity, and the inner colored parts of objects (as
Fig. 1(e) “blue” bounding box) are successfully suppressed.
Furthermore, object boundaries will be emphasized by
corresponding depth and color cues. Contrarily, as the
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Fig. 1. First row shows a color image and its depth map
(0 in depth map refers to infinity, 255 is nearest). Their
corresponding gradient maps locate in the middle, which
followed by some bounding boxes’ 8 × 8 normed gradients
(NG) features in color and depth space. The last row
showcases the schematization of our proposed approach.

distance between object and viewer increases, the effect of
the depth cue adaptively decays and the color will dominate
the proposal prediction at places far away.

To evaluate the performance of the proposed approach,
we build a large image dataset including more than 1000
stereo images with depth maps and manually labeled object
bounding boxes. Besides, we also evaluate our method on
a recently published RGBD dataset [16]. On these two
challenging datasets, we compare the proposed method with a
baseline which uses only depth as input and two state-of-the-
art objectness estimation methods [7, 8]. The experimental
results show that our proposed approach is superior to the
existing methods. In summary, our major contributions
include:

• We are the first to reveal the depth intrinsic charac-
teristics in objectness estimation, which could greatly
benefit predicting object proposals;

• We propose a novel generic object description approach

by adaptively integrating depth and color information
for objectness estimation, which outperforms the state-
of-the-art methods;

• We build a stereo image dataset for objectness
estimation consisting of a great diversity of images and
manually labeled groundtruth1, which can be used as a
benchmark for further objectness estimation study.

2. RELATED WORK

The goal of our work is to introduce the depth cue to
objectness estimation. In this section, we firstly outline the
representative objectness estimation works briefly, which are
performed on traditional 2D color images. After that, we will
review the researches on depth-incorporated salient object
detection, which are strongly related to our work.

Objectness estimation task aims to generate moderate
generic-over-classes object proposals and is expected to
cover all objects in an image [6, 7, 8]. According to the
object distinctive characteristics, Alexe et al. [6] explored
five window cues for measuring the objectness, such as
multi-scale saliency, color contrast, edge density, superpixels
straddling and window location and size. These cues are
formulated in a Bayesian framework and each proposal is
scored. But this framework costs much time to train and
predict. With the similar manner, Cheng et al. [7] and Zitnick
et al. [8] tried to assess each potential window with carefully
defined “objectness” score in near real-time. Surprisingly,
they all share a common idea that the object borders or
edges in the image play a much more important role in
objectness estimation and should be incorporated in this task.
However, the edges of object inner parts are distractive in
object judgement. Hence, in this paper, we adopt the depth
map to address this problem.

Depth-incorporated salient object detection has be-
come an active research topic these years. Owing to the
convenience of depth acquisition, depth information has
been introduced into saliency or salient object analysis
[17, 11, 18, 16]. In [17, 11], the authors investigated
the matters of the stereopsis for salient object detection by
leveraging stereo image pairs with implicit depth, which
should be recovered by stereo matching, e.g., [19]. In
[18, 16], RGBD data with explicit depth information,
which directly read from depth cameras (such as Microsoft
Kinect), was incorporated in saliency analysis and the authors
demonstrated that the saliency models can be consistently
improved by incorporating the depth priors. These salient
object analysis works are dedicated to detect and segment
the most salient object in each image, but this is not what
objectness estimation desires, which tries to recall all objects
from an image, not just the most salient one.

1Stereo objectness dataset: http://mcg.nju.edu.cn/en/
resource.html



3. METHODOLOGY

Inspired by the observation that objects are stand-alone things
with well-defined closed boundaries and centers such as
vehicles, animals and so on [6], Cheng et al. [7] argued
that the objects share strong correlation in the small normed
gradient space, e.g., 8 × 8, as the “bounded” boxes shown
in Fig. 1(e). Nevertheless, the “blue” van window, a part
of the van, is a suspicious false positive object in color
space. In comparison with color map, the “blue” bounding
box can be inhibited with great confidence in depth map
(Fig. 1(f)). On the other hand, it is hard to read the depth
difference if the objects are in contact with backgrounds or
others, such as the van chassis and the ground. Moreover, the
discriminative power of depth decays as the distance to viewer
increases. Consequently, we develop an adaptively integrated
description of generic objects for further object proposal
predicting and the approach’s schematization is illustrated in
Fig. 1(g).

3.1. Preliminaries

In [7], Cheng et al. proposed a surprisingly simple but very
effective feature to describe objects, Normed Gradients (NG).
Gradients gx and gy at each potential location are calculated
along X and Y axes separately with the convolution mask
[−1, 0, 1], and then the 64-dimensional (64D) NG feature gl
is defined as:

gl = min(|gx|+ |gy|, 255), (1)
l = (i, x, y), (2)

where l is the window location, i is scale and (x, y) is
position. These 64D NG features are fed into a two-stage
cascade linear SVMs [20]. The first SVM is utilized to learn
a generic object model m with groundtruth object bounding
boxes as positive instances and randomly generated back-
ground windows as negative ones, respectively. According
to PASCAL VOC criterion [21], if Intersection-over-Union
(IoU) values between instances and groundtruth are not less
than 0.5, the instances are treated as positives and vise versa.
Due to the facts that different scales have different probability
to cover an object, the second linear SVM is applied to learn
the calibrated filter score at each window location l, which is
referred to indicate how likely a window contains an object,
i.e., objectness score ol:

ol = vi · sl + ti, (3)
sl = ⟨m, gl⟩, (4)

where sl is 1D filter score, ⟨·, ·⟩ indicates vector dot-
product and vi and ti are the learnt term. Remarkably,
the approximate binarized model m and normed gradient
bitmap bk,l are used to accelerate sl calculation via bitwise
operations, e.g., BITAND, BITCOUNT, etc. And specifically,
the 64D m is approximated by a set of basis, aj ∈ {−1, 1}64

and aj = a+j − a+j (a+j ∈ {0, 1}64), so based on simple
deduction, sl can be rewrote as following:

sl = ⟨m, gl⟩ ≈ ⟨
Nm∑
j=1

βjaj ,

Ng∑
k=1

28−kbk,l⟩

=

Nm∑
j=1

βj

Ng∑
k=1

28−k(2⟨a+j , bk,l⟩ − |bk,l|), (5)

where Nm is the number of basis, Ng is the number of
bitmaps and βj is corresponding coefficient, and more details
can be found in [22, 7].

3.2. Adaptively integrated description for objects

It is mentioned that depth information encodes the structure
evidence but the discrimination power decays with the
distance increasing. Besides, the gradients of object inner
parts in color space should be prohibited in predicting object
proposals. Therefore, we reformulate the object window
gradient gl:

gl =
1

wp

∑
c∈{D,C}

wc · gcl , (6)

where gcl and wc (c ∈ {D,C}) are the gradient in depth
and color space and their corresponding weight maps and
normalizer wp = wD + wC .

For the depth gradient map, if there is a strong intensity,
it can be interpreted as a border of an object with great
confidence. Hence, we formulate wD using the Bayes’ rule:

wD = Ph(p ∈ O|D) =
Ph(p ∈ O,D)

Ph(D)

=
Ph(D|p ∈ O)Ph(p ∈ O)

Ph(D)
. (7)

In practice, for each depth map, its histogram distribution
varies a lot responsible for that objects may occur in great
range of depth, so we group the depth histograms into
N clusters. And then the Ph(p ∈ O) = #(p∈GT)

#p (GT
means object groundtruth, O refers to the object area and
h ∈ {1, · · · , N}) which indicates how likely the point p in
the depth map belongs to the object. Likewise, the priori
Ph(D|p ∈ O) is counted according the object groundtruth
bounding boxes in each cluster and depth distribution Ph(D)
is also cluster dependent. It should be noted that this depth
prior wD is evaluated on the training set. According to wD,
the importance of depth cue to the objectness estimation will
be adaptively tuned during testing.

For the color gradient, the inner parts are possibly
distractive and should be suppressed according to the depth
prior, so a 2D Gaussian distribution function is a well-suited
choice:

wC = 1− δ ·G(x, y, σx, σy)

= 1− δ ·A exp(− x2

2σ2
x

− y2

2σ2
y

), (8)



where σx and σy equal to half width and height of the
object window respectively, A is a constant scalar and δ is
an indicator function:

δ =

{
1, #(p > GRA TH) > 0.5PER
0, otherwise

(9)

where the number of “strong” points p in the window’s
depth normed gradient map should be larger than half of the
window’s perimeter PER, and GRA TH is a depth gradient
threshold.

Our proposed objectness description has several ad-
vantages. First of all, when depth has strong intensity,
wD will contribute more and the inner parts of color
normed gradient map (as “blue” bounding box in Fig. 1(c))
are successfully suppressed. Meanwhile, object bounding
borders can be emphasized by corresponding depth and color
normed gradient map. What’s more, as the distance between
object and viewer increases, wD adaptively decays and the
color normed gradient will dominate the proposal prediction
at faraway places. Exceptionally, without depth prior δ, the
normed gradient inner parts will always be suppressed by the
Gaussian kernel even when the depth normed gradient map is
less informative. And the “yellow” ground in Fig. 1(a) will
result in a false positive proposal.

4. EXPERIMENTAL EVALUATION

To evaluate the proposed approach, we extensively conduct
the experiments on two datasets, a self-built stereo image
dataset and an RGBD image dataset [16]. By taking into
account objectness estimation’s efficiency requirement, we
compare our approach with two state-of-the-art methods,
BING [7] and EDGE [8], which are both near real-time
in processing. We also treat BING-DEPTH as a baseline
in comparison, which directly uses depth maps as input
for BING. In all experiments, we adopt the authors’ public
source codes with suggested parameters in their papers. The
detection rate (DR) with given number of windows (#WIN)
(DR-#WIN) evaluation metric is utilized to evaluate the
methods, which is defined as:

DR-#WIN =
#(IoU ≥ 0.5)@#WIN

#GT
, (10)

where IoU is the intersection-over-union score that is widely
adopted to determine whether a proposal covers an object, and
GT means object groundtruth bounding boxes.

4.1. Datasets and Experimental Settings

Due to lacking an image dataset with depth maps for
objectness estimation, we collect over 1300 stereo images
from three sources, daily photographs from a variety of
outdoor and indoor places, sharing from Flickr2 and the

2https://www.flickr.com/

snapped frames from 3D videos, to keep the high diversity.
Then we take a preprocessing on the collected stereo images,
which includes rescaling, duplicates removing and stereo
rectification. Since the depth information is implicitly
encoded in stereo images, Sun et al.’s optical flow method
[19] is employed for its accuracy, robustness and well edge-
preserving in stereo matching. It is worth noting that the flow
(disparity in our scenario) only occurs along the horizontal
direction in calibrated stereo images, so we modify Sun’s
model to eliminate the vertical displacement. Apart from
the self-built stereo objectness dataset, we also conduct
experiments on another challenging dataset [16], which is
collected by Microsoft Kinect and contains 1000 RGBD
images.

With the unavailability of object groundtruth bounding
boxes, these two datasets cannot be straightly adopted in
objectness estimation task. According to PASCAL VOC2007
annotation guidelines3, five participants (three males and two
females) are asked to draw the object bounding boxes for each
image in these two datasets. If three out of five participants
reach consensus, the object bounding boxes are averaged and
the corresponding image are kept for subsequent evaluation.
Finally, 1032 stereo images (about 2.98 objects per image)
and 958 RGBD images (about 1.73 objects per image) are
survived.

All the experiments are performed on a PC with two
Intel Xeon E5540 CPUs and 12GB memory. The number
of clusters N and depth gradient threshold GRA TH are
empirically set to 6 and 7, respectively. The constant scalar
A is set to 0.75. We adopt 10 times repeated random sub-
sampling validation to randomly spilt each dataset into two
parts, in which 800 images are used as training set and the rest
are treated as testing set. Finally, the average performance is
recorded.

4.2. Experimental results and analysis

The quantitative performances in stereo objectness dataset
and RGBD dataset are illustrated in Fig. 2 and Fig. 3,
respectively. When truncated at small #WIN, e.g., not more
than 100, the depth-only input method, BING-DEPTH, is
comparable with color based methods. Top object proposals
often locate near the camera where depth information
comes with strong indications, so these objects can be well
differentiated with depth maps. Yet despite all that, with
the #WIN increasing, the color based methods catch up with
the depth-only method and even perform better. We have
made remarks on depth in Section 1 that depth map is a
layered structure, and the larger depth, the less discriminant
power. Therefore, the larger #WIN, the objects at larger
distance can be returned by the color based methods, while
the depth-only method becomes more and more incapable
of. Nonetheless, by adaptively integrating the advantages

3http://pascallin.ecs.soton.ac.uk/challenges/
VOC/voc2007/guidelines.html
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Fig. 2. Comparison of various approaches in stereo objectness
dataset.
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Fig. 3. Comparison of various approaches in RGBD dataset.

of depth and color, given small #WIN, the object borders
are complementarily enhanced by depth and color gradient
and the inner ambiguous parts of color gradient map are
effectively suppressed by the Gaussian kernel with depth prior
expressed in Equation (6) and (8). Although the depth’s
discrimination adaptively decays as #WIN increasing, the
color cue still works. Therefore, the proposed adaptive
integration approach performs superior to state-of-the-art
competitors at any truncated level in stereo objectness dataset.

However, in RGBD dataset, there are lots of “flat” objects,
such as paintings, windows (see Fig. 4) and so on. For
these objects, the depth normed gradient map cannot tell their
boundaries. Then, the proposed approach’s performance gain
in this dataset is not as much as that in stereo objectness
dataset. Another observation for RGBD dataset is that
due to the ambient infrared light influence, the outdoor
scenes’ depths in the RGBD dataset are essentially wrong,
so depth information in this dataset is not discriminating

enough. However, even with these distractions, the proposed
approach’s performance is still comparable, especially at
small truncated level.

As for the computational performance, the proposed
method inherits the computation superiority of BING [7].
Therefore, our approach is more powerful and effective with
the adaptively integrated description. Some qualitative results
are demonstrated in Fig. 4. The positive proposals closest to
the groundtruth are highlighted.

5. CONCLUSION AND FUTURE WORK

In this paper, by adaptively integrating depth and color
cues, we propose a generic object description approach
for objectness estimation. Based on the depth priors,
object inner distractive regions can be effectively suppressed.
Meanwhile, the object boundaries can be emphasized by
the complementarily informative parts in depth and color
gradient map. On the contrary, as the distance between
object and viewer increases, the effect of the depth cue
adaptively decays and the color will dominate the proposal
prediction at places far away. Experimental results on
two challenge datasets, stereo objectness dataset and RGBD
dataset, show that the proposed approach outperforms state-
of-the-art alternatives.

However, our method is based on the observation that
bounded objects share strong correlation in the normed
gradient space. It seems to be incapable of some special
shaped objects, such as snakes and “T-shaped” objects.
Moreover, the depth discrimination power decays for “flat”
objects or those locate far away. Nonetheless, our proposed
description can perform at least as good as color-only
methods. Furthermore, we will investigate how to integrate
depth into other stages of objectness estimation as opposed to
the current generic object description stage in the future.
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