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Abstract

Most previous works on salient object detection concentrate on 2D images. In
this paper, we propose to explore the power of depth cue for predicting salient
regions. Our basic assumption is that a salient object tends to stand out from
its surroundings in 3D space. To measure the object-to-surrounding contrast,
we propose a novel depth feature which works on a single depth map. Besides,
we integrate the 3D spatial prior into our method for saliency refinement. By
sparse sampling and representing the image using superpixels, our method
works very fast, whose complexity is linear to the image resolution. To
segment the salient object, we also develop a saliency based method using
adaptive thresholding and GrabCut. The proposed method is evaluated on
two large datasets designed for depth-aware salient object detection. The
results compared with several state-of-the-art 2D and depth-aware methods
show that our method has the most satisfactory overall performance.
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1. INTRODUCTION

An inherent and powerful ability of human eye is visual attention, which
quickly captures the most conspicuous regions from a scene, and passes them
to high level visual cortexes. The attention selection reduces the complexity
of visual analysis and thus makes human visual system considerably efficient
in complex environments. Computational saliency models, which follow the
attention mechanism of human eye, occupy an important place in image
processing and computer vision society. By saliency analysis, vision tasks
are concentrated on a few regions of interests instead of entire images, which
benefits many applications in both efficiency and effectiveness, e.g. image
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(a) Color image (b) Depth image

(¢) Saliency map (d) Salient object

Figure 1: Salient object detection. (a) Original color image. (b) Depth image of (a).
Pixels appear brighter are nearer, vice versa. (c¢) Saliency map generated by the proposed
method. Higher brightness indicates the location is more conspicuous. (d) Salient object
mask produced by our method. White indicates object and black indicates background.

classification [1, 2], object segmentation [3, 4, 5, 6], image retargeting [7, 8,
9, 10], adaptive image compression [11, 12], content-based image retrieval [13,
14] and quality assessment [15, 16].

There are generally two categories of visual saliency models: fixation
prediction [17] and salient object detection [18]. The former model aims at
predicting the gaze points, i.e. where people look. The prediction results
usually highlight a few spots people are most likely to pay attention to. In
contrast, the goal of salient object detection is to detect the entire object that
appears most distinctive, which could be more useful for high level processing.
In this paper, we focus on the latter model, salient object detection. We give
an example in Figure 1. Given a color image with its depth map (first row),
our goal is to produce a high resolution saliency map, and extract the object
of the greatest interest (second row), which is Statue of David in this example.

Most previous works on salient object detection focus on 2D color images.



However, human perceives the world with not only color but also abundant
3D spatial information. While the saliency researches on 2D color images
have been studied a lot and remarkable achievements have been made, little
attention is paid to the effect of scene depth for saliency analysis. One reason
is that depth data is hard to capture as the devices are expensive in the past.
Fortunately, more and more cheap and convenient 3D devices have been de-
veloped in recent years, which makes it easier to obtain sufficient depth data
to support the research on depth-aware salient object detection. The depth
data, no matter captured by stereo [19], ToF (Time-of-Flight) [20] or struc-
tured light [21], is usually recorded as a depth map like that shown in Figure
1. (b). Recently, a few tentative researches have shown that depth could
be powerful in saliency analysis. For example, Lang [22] et al. integrated
depth prior into existing 2D methods and achieved a 6% to 7% increase in
predictive power. Niu et al. [23] combined depth contrast and stereo photog-
raphy knowledge for salient object detection. The result achieved the best
evaluation score in their stereo saliency dataset. Inspired from all the above,
we further explore the characteristics of depth information for salient object
detection according to the following considerations [24]:

Good detection. A good salient object detection method should both
miss real salient regions and falsely detect background as salient regions in
a low probability. To this end, we propose to measure pixel-wise saliency
according to a basic observation: a salient object usually outstands from its
surroundings or background from a global view. This assumption is common
for natural scenes and daily life, since generally objects in clutters or occluded
by background are unlikely to be the most attention-grabbing. To get the
contrast between a pixel and its surroundings, we search for background
samples in several directions, and measure the center-surround difference as
its saliency value. The background samples are estimated using the depth
prior. We also set a few weighting parameters to highlight the contrasts in
certain directions. Besides, as is well known and usually used in previous
works, salient regions are usually nearer to viewers in 3D space and tend
to locate at the center of an image. We employ the 3D spatial prior in a
probabilistic manner to improve the detection results.

High resolution. Salient object detection methods should produce full
resolution saliency maps and retain clear object boundaries. To this end we
perform saliency computation in the superpixel granularity, which could both
retain the object boundaries and avoid the noises of depth images.
Computational efficiency. Salient object detection is usually regarded



as an early process for vision tasks. High efficiency is required to allow
large scale, highly complex computation of following process. Owing to the
simple but effective feature we used, our method works very fast and the
computational complexity is linear to the image resolution.

For evaluation we compare our method with 8 state-of-the-art 2D meth-
ods and 5 representative depth-aware methods. We first built a benchmark
including 2000 stereo images with computer generated depth maps and man-
ually labeled groundtruth, which is the largest at present to our knowledge.
For a comprehensive evaluation we also compare our method with the others
on another large dataset [25] including 1000 RGBD images and groundtruth.
In both datasets our method shows superior overall performance to the oth-
ers. We have also developed an object segmentation method using adaptive
thresholding and GrabCut [26]. The segmentation method produces highly
accurate binary maps, which shows that our method is competent for salient
object detection task.

The contribution of this paper can be briefly stated as follows.

e We proposed a new depth feature for salient object detection, which
combines both depth based background estimation and learning based
direction contrast weighting.

e We employed the 3D spatial prior to improve the initial saliency map
using Bayes method.

e We proposed a new object segmentation method using adaptive thresh-
olding and GrabCut.

e We built a 2000 images dataset for evaluation, which is the largest at
present to our knowledge. We also compared the related methods on
another large dataset [25] for a comprehensive evaluation.

The rest of this paper is organized as following. In Sect. 2 we give a
review of related works on both 2D and depth-aware salient object detection.
Then we introduce the proposed saliency model in Sect. 3 and the object
segmentation method in Sect. 4. Next, we demonstrate the experimental
results and give some discussions of the results in Sect. 5. At last, we give a
brief conclusion of our work in Sect. 6.



2. RELATED WORK

Computational saliency models originate from last 80s [27, 28, 29, 30],
which is represented by Itti’s work [17]. Two research waves were generated
from then: attention prediction and salient object detection. The former
model concerns predicting where people look. Itti et al. combined cognitive
psychology, neuroscience and computer vision to model the problem as a
bottom-up, task-independent, feature integration process. After that people
began to study human visual attention with the help of eye tracking de-
vices [31, 32, 33]. The fruitful researches on this topic can be found in a few
recently published surveys [34, 35].

In this paper we focus on salient object detection, which aims at detecting
the most conspicuous object from an image. Achanta et al. [18] first define the
task as a binary segmentation problem. They propose to obtain pixel-wise
saliency by simply measuring the difference between a pixel’s color and the
image’s mean color. Cheng et al. [36] propose a more sophisticated method
using global contrast and iterative GrabCut. These methods are essentially
searching for regions with high color distinctness. Some methods [37, 3§]
also search for regions with high texture distinctness. A different thought is
to find background regions instead of salient objects, or use the background
priors for salient object detection [39, 40, 41, 42]. These methods usually
represent an image as a tree or graph using appearance, spatial information
and boundary priors, and then perform salient region selection using path
planning or center-surround scheme. Recently, owing to the emergence of
several large datasets, some learning based methods [43, 44] try to detect
which patches of an image are more likely to be a part of an object. Besides,
a few methods try to explore some other cues for salient object detection,
like scale [45] and color space [46].

The above methods mostly consider only 2D color information, which is
different from human who perceives the world in 3D space. Early in the 2000
Ouerhani et al. [47] have investigated the effect of depth on saliency analysis
and found that depth cue can be powerful in predicting human gazes. Jeong
et al. [48] directly take depth as a complement cue for saliency detection.
In recent years some researchers try to study the effect of depth in saliency
analysis with the help of modern depth capturing devices. For example, Lang
et al. [22]. built a 3D eye fixation dataset using Kinect [49] to study the power
of depth in attention prediction. They integrated depth into 2D methods as a
probabilistic posterior and found that the predictive power could be increased



by 6% to 7%. These methods, however, only consider absolute depth while
neglecting local structure information. Niu et al. [23] proposed to employ
global contrast and photography knowledge to detect salient objects. They
built a stereo saliency dataset where the images are taken by stereo cameras
and collected from Internet. The results in their dataset showed a significant
improvement in both precision and recall measure. However, it searches
for regions with highly distinct depth, which may easily miss flat regions
inside objects. Peng et al. [25] built an RGBD dataset using Kinect and
combined depth and existing 2D models for improvement. For the depth
cue, they proposed a multi-contextual feature combining local, global and
background contrast to measure pixel-wise saliency. The feature performs
a fixed, passive measurement of depth contrast. Differently, our method
actively and selectively searches for background samples to measure saliency,
which is better adapted for different depth structures and more efficient.

3. DEPTH-AWARE SALIENCY MODEL

Our method arises from a basic observation: a salient object tends to out-
stand from its surroundings in 3D space. This can be easily interpreted since
any object has a definite volume, and a salient object should be different from
surroundings in 3D space. Consequently, a salient object usually shows ob-
vious contrast with its surroundings or background in 3D space. To measure
the contrast, we developed a depth feature called anisotropic center-surround
difference. Furthermore, we employ the spatial prior to improve the results.
Our method is applied on a single depth image, which can be captured by
stereo, RGBD or other manners.

3.1. Anisotropic Center-Surround Difference

According to our basic assumption, the pixel-wise saliency is measured
as the center to background difference:

Sip)= > Pple)I(p) - I(q)) (1)

qeN(p)

where S;(p) is the pixel-wise saliency and I(p) is the image attributes, e.g.
RGB or depth value, in pixel p. N(p) is a neighboring area of p which
supplies background candidates. Pg(p) is a background selection function,



which is supposed to be:

Pala) = {éf] o ©)

where ¢ € B and ¢ € O indicate ¢ is a pixel belonging to background and
salient object respectively. The function is unknown yet since it is right
the solution for salient object detection. Fortunately, we can estimate Pg
according to some priors, e.g. regarding image boundary as background [39].
In this paper, we take a more powerful prior by estimating Pg(q) using the
conditional probability of background given depth:

P(q € B,d(q))
P(d(q))

where ¢ € B indicates that pixel ¢ belongs to background. d(q) is the depth
value of pixel g. One can also use other methods to estimate Pg(q), e.g. color
prior, color-depth joint distribution, location etc. Since generally salient
object shows obvious difference to background in some attributes, Eq. (1)
highlights salient object and suppresses background.

It should be noted that the proposed saliency measurement differs from
existing contrast based methods [36, 23, 25] in two aspects. First, they fixed-
ly select a few samples to measure center-surround contrast. Different from
them, we actively search for surrounding samples using the conditional prob-
ability of background. Second, they perform indiscriminate summation of
different samples. In contrast, we weight the center-surround difference us-
ing the background probability to emphasize inter-class contrast and suppress
intra-class difference.

We now consider how to improve the computational efficiency of Eq. (1)
since the complexity is O(N) for each pixel and O(N?) for entire image,
where N is the number of image pixels. Fortunately, it can be easily found
that the computation is highly redundant. First, according to our basic
assumption, we can measure the saliency for each pixel in a local area instead
of entire image, since the pixels too distant seem to be effectless. Second,
depth image is featured with large areas of nearly constant or smooth values,
which enables us to make a sparse sampling around the central pixel for
acceleration. Suppose the surrounding area of p is divided into infinite small
sections. The depth distribution between neighboring sections are highly
similar. Therefore, we select only a few radiuses emitting from p within

Py(q) = P(q € Bld(q)) =

(3)
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Figure 2: Example of the anisotropic center-surround difference operator. Red arrow line
indicates the scan radiuses R;(p). Yellow circles are the pixels with maximum background
probabilities.

length L as background candidates, which is shown in Fig. 2. Now the pixel-
wise saliency can be written as:

Salp) = Y Pe(@)I(p) — 1(a)) (4)

q€R(p)

where R(p) = {R1(p), R2(p), ... Rk (p)} indicates K radiuses emitting from
p, each of them is limited to length L. In our experiments we set L as a half
of the image’s diagonal length. We further reduce the sampling by selecting
the pixel with the maximum probability to be background along each radius.
Finally, given I(p) = d(p) for a depth image, the saliency is computed as an
anisotropic center-surround difference (ACSD):

Sa(p) =Y _Ps(q)(d(p) — d(q)),

q = argmax Pg(R;(p)),i € [1, K]

(5)

Now the computational complexity for each pixel is O(KL). We will show
how to further reduce the complexity using superpixels in Sect. 3.4.
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An example of ACSD with 8 scan radiuses is shown in Fig. 2. In each
radius, the pixel with maximum background probability Ppg is shown in yellow
circle. The center point gets a high saliency score as it appears outstanding
in all the radiuses. What we concerns more is the ground that extends from
far to near. Obviously the distant background gets very low ACSD value and
thus looks inapparent. The nearer part of the ground, which is located at the
bottom of the image, has a definitely high depth value. However, it shows
less conspicuity because it gets high ACSD values only in the upper three
directions. In the horizontal and lower directions it is suppressed effectively.

3.2. Weighted ACSD

Generally the center-surround differences may contribute different salien-
cy scores in different directions. For example, humans are more likely to
notice the depth difference in horizontal direction than in vertical direction
because human eyes are arranged horizontally. To simulate the property, we
improve the original ACSD measure using a weighting function:

Su(p) =Y wiPs(q)(d(p) — d(q)),

q = argmax Pg(R;(p)),i € [1, K]

where w; is a weighting parameter to control the power of contribution in ra-
dius 4, as illustrated in Fig. 3. We learn the parameter w = (wy, wsy, ..., wg)T
from a training dataset with groundtruth salient object masks. The weighted
ACSD in Eq. (6) can be rewritten as:

Su(p) = > wD(p.i) (7)

i€[1,K]

D(p, i) =Pp(q)(d(p) — d(q)),
q = argmazPp(R;(p))

(6)

(8)

Then the desired w is supposed to minimize the error between S, (p) and
groundtruth G(p):

w = argminZHwTD(p) —G(p)2
p )

st. w; >=0,i€[1,K]

where D(p) = (D(p,1), D(p,2),...,D(p, K))T and w is forced to be non-
negative. The minimization problem is solved using the fast non-negative
least square method [50]. For details please refer to our experiments.

9



315 Wo 45°
W~
. We V1 o
270 = » 90
W»
W5
W4_ W3
225° 135°
180°

Figure 3: An example of w with 8 radiuses. The length of each blue arrow line indicates
the weight in each direction.

3.3. Saliency Refinement With 3D Spatial Prior

Spatial priors are well known and frequently used for saliency analysis [48,
32, 22, 51, 4]. For example, in 3D space nearer regions appear more salient
than distant ones. Besides, people like to place the object of interest near the
center of a photograph. The spatial priors are integrated into our method in a
probabilistic manner. Given the 3D location (p,,,,d,) of a pixel p, where p, ,
represents its 2D image coordinate, the salient object posterior probability
can be estimated as:

Sp(p) =Ppe O|px,yv dp) (10)

where p € O indicates pixel p belongs to the salient object. Suppose p , is
independent of d,,, the posterior probability based saliency can be written as:

_ Ppaylp € O)P(dylp € O)P(p € O)
Slp) = Ploey) P(0D) )

Then we refine the weighted ACSD saliency by multiplying S,:
S(p) = Suw(p)Sy(p) (12)

where S(p) is the final saliency score.

10
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Figure 4: Superpixel segmentation. The ACSD score is calculated at the centroid of each
superpixel.

3.4. Implementation details

To deal with noises and errors in depth images, we perform saliency detec-
tion on the granularity of superpixels, which is generated using SLIC [52] on
the color images. We show an example in Fig. 4. The superpixels are regular
regions which preserve local structures well. Therefore, an average operation
would restrain the influence of noises and errors effectively while keeping the
saliency precision well. For each superpixel, we compute its saliency accord-
ing to Eq. (12) at the centroid. The depth value of the centroid is calculated
as the mean depth over the superpixel.

The number of superpixels has a considerable influence to the perfor-
mance, since large superpixels tend to miss the details of salient objects
while small superpixels introduce more depth noises and take more compu-
tation time. To this problem we set the number of superpixels as the length
of diagonal to fit in with the image size. After computing the saliency value
for each superpixel, the final saliency is rescaled to [0,255] and assigned to
each pixel.

3.5. Complexity Analysis

SLIC [52] is O(N) complex and generate O(X) superpixls where X equals
to the diagonal length. Saliency computation is also O(X) complex as the
scan length is limited to L. And thus the saliency computation is O(X?)
complex. Suppose the aspect ratio of the image is r, we can get X? = ”27,—+1N .
Therefore, we conclude that our method works within an O(V) complexity.

11
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Figure 5: Salient object segmentation.

4. SALIENT OBJECT SEGMENTATION USING ADAPTIVE
THRESHOLDING AND GRABCUT

Given the saliency map, the next end is to cut the salient object out.
The result is given in the form of a binarized salient object mask. In some
previous works the segmentation is done by fixed thresholding [18], where
the threshold is supposed to give an optimum trade-off between precision
and recall. However, due to the inaccuracy and irregularity of saliency maps,
the segmentation result would be poor by simply fixed thresholding. Besides,
in a large collection of images it is difficult to select a fixed threshold that
fits every image well. To solve the problem, we perform the segmentation
similar to [53] and [36] but differed in seeds generation. We first calculate an
adaptive threshold T}, using Otsu [54] for each image on its saliency map. For
a good saliency map, the salient object and background usually distribute on
separate sides in gray levels. Consequently, the adaptive thresholding gives
a coarse estimation of object and background. Then we generate a tri-map
according to Tj, to handle the errors in saliency maps:

O, Sp) >T,
Lp)=4B, Sp) <T, (13)

U, otherwise

where L(p) is the label of pixel p. O and B are object and background seeds
respectively. U indicates the labeling is unsure. The threshold 7, and T,
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Figure 6: Examples of the two datasets for evaluation. (a) NJUDS2000. (b) RGB-
D1000. First row: color image. Second row: depth map. Third row: manually labeled
groundtruth.

are used to adjust the size of the unsure region, which can be set manually.
In our experiments, we set the two thresholds adaptively according to Tj. At
last, we feed the tri-map to the GrabCut [26] framework to produce a high
quality salient object mask.

We give an example of our salient object segmentation process in Fig. 5.
In both depth and saliency maps there are errors. However, we can get a
coarse estimation by adaptive thresholding since the saliency map highlights
most salient regions and suppresses most background. Then a tri-map is
generated and fed to GrabCut as seeds. Owing to the high quality seeds
labeling, an accurate binary segmentation is produced.

5. EXPERIMENTS AND ANALYSIS

5.1. Datasets and Experimental Settings

We evaluate our method on two datasets designed for depth-aware salient
object detection: NJUDS2000 and RGBD1000 [25]. The former one includes
2000 stereo images, which is an extension of the previous version of this
work [55]. We extend the dataset to increase the diversity of objects and
scenes and to cover more complex and challenging cases. The images are col-
lected from Internet, 3D movies and photographs taken by a Fuji W3 stereo
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camera. We recover the depth maps using Sun’s optical flow method [56].
Then we invite four volunteers to label the groundtruth salient object masks
according to the procedure introduced in [43]. To our knowledge it is the
biggest dataset for depth-aware salient object detection at present. The sec-
ond dataset is built by Peng et al. [25], which includes 1000 RGBD images
captured by Kinect, along with manually labeled groundtruth masks. We
give a few examples of the two datasets in Fig. 6. It should be noted that
in both datasets some depth maps are quite misleading (The 6th and 9th
column in Fig. 6 (a), and the 3rd and last column in Fig. 6 (b)), which is a
limitation of current depth perception techniques. Fortunately, for most im-
ages in the datasets the depth information is sufficiently accurate for salient
object detection.

We compare our method with 8 state-of-the-art 2D methods: FT [18],
RC [36], PCA [37], CA [38], AMC [41], MR [40], UL [44], HS [45], and 5 rep-
resentative depth-aware saliency methods namely DM (original depth map,
which has been employed in [48]), CV [57], SS [23], DP [22], SD [25]. Our
method is implemented in C++. For the other methods, we use the authors’
source codes for evaluation except for CV, SS and DP. We realize the three al-
gorithms as we failed to get the authors’ implementations. For saliency map
comparison we employ the widely used precision-recall curve. Specifically, we
obtain a binary image from each saliency map using a gradually increasing
threshold d; from 0 to 255, and then compare with the groundtruth salient
object mask to get a precision and recall:

[{pild(pi) > di} N {py}|
[{pild(pi) = di}|

H{pild(p:) > di} N {pg}|
[{pg }

where {p;|d(p;) > d;} indicates the set that binarized from a saliency map
using threshold d;. {p,} is the set of pixels belonging to groundtruth salient
object. The precision-recall curve is plotted by connecting the P-R scores for
all thresholds. We use Cheng’s evaluation code [58] to get the P-R curves of
different methods. For segmentation evaluation we use precision, recall and
F-measure, where F-measure is defined as:

Precision =

(14)

Recall =

(15)

(1+ B3?) - Precision - Recall
[5?% - Precision + Recall

Fy = (16)

14



Table 1: 16 direction weights trained in 100 randomly selected depth images.
Direction 0° 22.5° 45° 67.5° 90° 112.5° | 135° | 157.5°
Weight | 0.0657 | 0.0587 | 0.0162 | 0.0922 | 0.1900 | 0.0789 | 0.0503 | 0.0243
Direction | 180° | 202.5° | 225° | 247.5° | 270° | 292.5° | 315° | 337.5°
Weight | 0.0375 | 0.0884 | 0.0000 | 0.0967 | 0.2111 | 0.0000 | 0.0549 | 0.0671

where (3% is set to 0.3 according to [36] to favor precision more than recall.
Throughout our experiments the evaluation is performed on a machine with
a 2GHz Intel Xeon E5-2620 CPU and 32GB memory. In the running time
evaluation, all parallel executions are disabled for the sake of fairness.

Our C++ source code and evaluation dataset including original stereo
images, depth maps and manually labeled groundtruth masks are available
at http://mcg.nju.edu.cn/member/jur/index.html.

5.2. Parameter Settings

We set the number of scan radiuses as 16 to make a trade-off between
efficiency and accuracy. To learn the weight for each direction, we randomly
select 100 depth images with groundtruth as training set. We first calculate
D(p) in all directions. G(p) is obtained from the groundtruth images. Then
we solve for the optimal w in Eq. 9 using [50]. A typical result is given in
Table 1. The result shows that generally contrasts in horizontal directions
are stronger than those in vertical directions, and thus contribute more in
salient object detection.

We calculate the background prior Pg(q) and the spatial posterior prob-
ability S,(p) on the same training set as above. Each image is resized to
100 x 100 for coordinates normalization. Then we compute the two proba-
bilities according to Eq. 3 and Eq. 11. The background prior is illustrated in
Fig. 7 (a). We can find that the smaller depth, the more likely a pixel turns
to be background. It should be noted that when d(q) < 50 the probabilities
are very close to 1, which gives very strong predictions of background. The
3D spatial distribution of salient object are shown in Fig. 7 (b). It can be
observed that salient object tends to locate at the center of an image, and
nearer to viewers in depth.

The two thresholds 7, and 7, for salient object segmentation are set
according to the following rule. Suppose a saliency map is divided into two
sets by Tj,, where the higher part Or indicates salient object and the lower
part Br stands for background. We set T," to make the threshold range

15
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Figure 7: Background and 3D spatial priors.

(Ty, T,] recall 60% pixels of Or. Similarly, for T, we set the range (7}, , T3] to
cover 30% pixels of Br. The unsure region also contributes to color modeling
but will be relabeled after GrabCut [26].

5.3. Saliency Map Results and Discussion

We show a few saliency maps generated by different methods in Fig. 8.
Due to space limitation we only show the results of some representative and
most recent 2D and depth-aware methods. From the figure we can find that
it is difficult to extract the entire salient objects using only color information
due to the interference of background, textures and shading. For example,
in the first row, the fighters are cluttered in the blue sky with white clouds
in the color image, which makes the 2D methods quite confusing. And in
the second row, each component of the car has a different color. This leads
to an incomplete detection of salient objects using only color information.
In certain cases, even the salient object has an uniform color itself, it may
be under different illuminations such as in the 5th row. This also results in
false negatives. However, in the depth images it is clear to see the salient
region since the depth information is free from texture and illumination,
which makes it easier to detect entire salient objects.

We further give the precision-recall curves in Fig. 9. The evaluations on
RGBD1000 [25] and our NJUDS2000 dataset are shown in the left and right
column respectively. In the first row we show the comparison with state-
of-the-art 2D methods. The P-R curves of depth-aware methods are shown
in the second row. From the statistical evaluation we can find our method

16
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Figure 8: Saliency maps generated by different methods.

outperforms all the other competitors on NJUDS2000 and is top ranked on
RGBD1000. For the RGBD1000 dataset, when the recall increases, SD, AMC
and MR have less false positives than our method. This is mainly caused by
misleading depth maps and flat images. The former case makes depth-aware
methods completely confusing, which usually happens in outdoor scenes as
Kinect can’t work well under strong sunlight. A few examples are given in
the 3rd and last column of Fig. 6 (b). The latter case supplies little depth
information of the salient object, such as a poster pasted on a wall, or like
those shown in 8th and 11th column of Fig. 6 (b). The two cases could be
regarded as the limitation of depth-aware methods. However, our method
still produces comparable results with the other top ranked methods, which
shows that our method can explore the power of depth more effectively. On
NJUDS2000 our method greatly improves the performance over the other
methods because most stereo images supply sufficient depth information for
display. The 2D methods are limited in detecting salient object with different
colors and shading, especially in complex scenes. The depth-aware methods
DM and DP assume nearer regions are more salient, which fails to handle near
background. CV detects corners and edges with high depth curvatures and
thus is incapable for salient object detection. SS and SD also take relative
depth difference into consideration. However, they tend to improve detection
precision at the cost of generating many false negatives, as shown in Fig. 8.

Running time comparison. We give the running times of different meth-
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Figure 9: Precision-recall curves of different methods. (a) Comparison with 2D meth-
ods on RGBD1000. (b) Comparison with 2D methods on NJUDS2000. (¢) Comparison
with depth-aware methods on RGBD1000. (d) Comparison with depth-aware methods on
NJUDS2000.

ods in Table. 2. The result is averaged over all images of the two datasets.
The average image resolution for NJUDS2000 is 500 x 726, and 528 x 592
for RGBD1000. Our method takes 0.672s in average. Specifically, the super-
pixel segmentation takes 0.597s and saliency computation takes 0.075s. DP,
CV, FT, RC, AMC and our method all run very fast and take less than one
second in average. Among these methods, DP, CV, F'T perform poorly in the
two datasets though they work very fast. Considering of both detection re-
sults and running time, our method gives the most satisfactory performance
overall.
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Table 2: Average running time comparison.

Method | FT [18] | RC [36] | PCA [37] | CA [38] | AMC [41] | MR [40] | UL [44]
Time(s) 0.585 0.727 29.614 108.6 0.951 4.839 449.14
Code Matlab C++ Matlab Matlab Matlab Matlab | Matlab
Method | HS [45] DM CV [57] | SS[23] | DP [22] | SD [25] Ours
Time(s) 2.007 ¥ 0.133 12.091 0.039 7.537 0.672
Code C++ ¥ Matlab C++ Matlab Matlab C++

* The running time of DM is not given since it directly takes the depth maps as saliency results

without any processing.

I Precision
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(a) Results comparison on
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Figure 10: Statistical comparison of segmentation results.
RGBD1000. (b) Results comparison on NJUDS2000.

5.4. Segmentation Results and Discussion

Our segmentation method is implemented in C++ and the average run-
ning time is 1.164s. The statistical comparison of segmentation results are
shown in Fig 10. It can be found that the statistics are approximately agreed
with the P-R curve evaluation in Fig 9, since generally better saliency map
leads to more accurate object mask. On both datasets, DP and DM are
featured for their abnormal high recalls and low precisions. This is mainly
caused by that they simply assume near regions are salient, which erroneous-
ly highlight lots of near background regions. On the contrary, SD is featured
for its high precision and low recall, as it generates many false negatives in
the saliency map. In contrast, our result shows well-balanced performance in
precision, recall and F-measure. Specifically, on NJUDS2000 and RGBD1000
our method ranks the 1st and 2nd respectively in precision, 3rd and 1st in
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(a) Results on NJUDS2000 (b) Results on NJUDS2000 (c) Results on RGBD1000

Figure 11: Salient object segmentation results. In each group, from left to right: original
color image, depth map, saliency map and salient object mask generated by our method.

recall, and 1st and 2nd in F-measure.

We give a few salient object segmentation results of our method in Fig 11.
It could be found that our method works well not only in simple scenes with
a single salient object, but also in complex cases. In the 1st row of (a) and
(b) the background is cluttered. In the 5th row of (a) the background has
a similar region to the salient object. There are also salient regions with
disconnected components as shown in the 3rd row of (a) and 1st row of
(b). Besides, salient objects may have different shading or components with
different colors, as shown in the last row of (b), 1st row and 3rd row of (c).
Even for the depth maps with serious noises as shown in the 2nd row of (b),
our method shows desirable tolerance to errors.
Limitations. We have explored the power of depth for salient object detec-
tion and demonstrated its effectiveness by experiments. However, it could
fail to work when depth is quite inaccurate, as we have shown in Fig 6. We
give a few failure examples generated by our method in Fig 12. In these
cases, the depth maps are accompanied with serious errors, and thus lead
to unsatisfactory saliency and segmentation results. Fortunately, with the
advance of depth capturing techniques, the problem will be hopefully solved
in the near future.
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a) Color image (b) Depth map (c) Saliency map (d) Segmentation

Figure 12: Failure cases of depth cue. For depth maps with serious noises and errors,
depth based methods will produce suboptimal saliency and segmentation results.

6. CONCLUSION

We proposed a salient object detection method that works on depth im-
ages. The method is based on a simple but effective assumption that salient
objects tend to stand out from surroundings. We developed a new depth
feature called anisotropic center-surround difference to measure the contrast
between a region and its surroundings. Besides, the spatial priors are com-
bined for saliency refinement. We also implemented a salient object segmen-
tation method using adaptive thresholding and GrabCut. Our method is fast
and works within a linear complexity. The experiments demonstrated that
our method can be used for rapid and accurate salient object detection, and
consequently could benefit many high level applications.
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