
Scalable Single-source SimRank Computation
for Large Graphs

Xingkun Gao, Nianyuan Bao, Jie Liu, Jie Tang, and Gangshan Wu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, P.R. China

{MG1533012, DG1533001, MG1533026}@smail.nju.edu.cn, {tangjie, gswu}@nju.edu.cn

Abstract—SimRank is an effective similarity measure between
vertices in a graph, which has become a fundamental technique in
graph analytics. Despite its popularity, computation of SimRank
is often costly in both space and time, especially with the ever
growing scale of graph data nowadays. In this paper, we focus on
the computation of Single-Source SimRank: given a query vertex,
return the similarities between this vertex and any other vertices
in the graph. The traditional centralized SimRank algorithms
are not efficient for this problem. To fully utilize the computing
power of modern distributed systems, we propose sssSimRank,
an efficient distributed algorithm based on the random walk
model. Our algorithm achieves scalability via minimizing the
total number, the space cost, and the matching time of random
walks. We implement our approach on the popular distributed
processing platform Spark. Experimental results demonstrate the
effectiveness, efficiency and scalability of our method.

Index Terms—graph analytics; big data; SimRank; random
walk; distributed algorithm; Spark;

I. INTRODUCTION

Graph can be used to model complicated relations between
entities from various domains such as the Internet, social
networks and the Internet of Things. With the advent of the Big
Data, the scales of graphs are growing in rapid speed. While
more and more advanced techniques are being developed to
fully exploit the hidden patterns of graph data, the huge scale
poses great challenges in graph mining.

One of the fundamental tasks in graph mining is to evalu-
ate similarities between vertices. It plays an important role
in many applications, including recommender systems [1],
entity resolution [2], information retrieval [3], and so on.
Many similarity measures have been proposed, e.g., Jaccard
similarity [4], cosine similarity [5] and Dice similarity [6], all
of which are motivated by the intuition that two vertices are
more similar if they share more neighbors. However, these
measures cannot capture the topology of the whole graph,
for instance, they fail to assess similarities between vertices
with no common neighbors. To address this problem, SimRank
[7], a new similarity measure based on the intuition that two
vertices are similar if their in-neighbors are similar too was
proposed. Based on random surfer model, SimRank owns a
theoretical foundation stemming from PageRank [8], where
a webpage is important if the webpages pointing to it are
important too. Studies show that for link-based similarity
measures, SimRank outperforms other related measures.

However, the recursive nature in the definition of SimRank
makes it very difficult to be computed both effectively and

efficiently. The time complexity of naive iterative algorithm is
O(kn2d2), where n is the number of vertices, d is the average
in-degree of vertices, and k is the number of iterations. Some
studies give some optimization techniques to speed up the
computation process [9][10]. These techniques are specifically
designed to optimize the running time of computing similarity
scores of all-pair vertices, i.e., all n2 pair-wise similarities.
However, in the situation where only the similarity between
a given vertex u and any other vertex in the graph is re-
quired, all-pair similarities turn out to be cumbersome for
the following reasons: 1) to compute SimRank similarity of
a single pair (u, v), all-pair algorithms need to compute all
the similarity scores between in-neighbors of vertex u and in-
neighbors of vertex v, and this dependency goes on and on
due to the recursive nature of SimRank; 2) all-pair SimRank
is inadaptable when dealing with incremental graphs. In many
real-world applications the topology of the graph changes over
time, any addition or removal of vertices or edges may force
a costly recomputation of similarities of all vertex pairs.

Another problem is that due to the ever increasing scale of
real-world graphs, solutions designed for a single machine are
limited by its restricted computing power and main memory
capacity. For a typical web graph with millions of vertices
and billions of edges, it is difficult to even load the whole
graph into the main memory, thus studying scalable algorithms
that fully exploit the computing power of modern distributed
systems has practical significance.

In this paper, we address these problems and propose
effective and efficient method to compute the single-source
SimRank in a distributed manner. Our main contributions are
summarized as follows.
• We analyze the inefficiency of directly decomposing the

computation of single-source SimRank into single-pair
SimRank problem [11]. From the analysis we educe op-
timization techniques to speed up the computing process,
including reducing the total number of walks generated,
compressing the data representation of walks and speed-
ing up matching of walks by dynamic programming.

• Based on these optimizations we propose our scalable
single-source SimRank computation algorithm, or sss-
SimRank. We also give a thorough analysis of it.

• We manage to implement our algorithm on the popular
data processing system, Spark. We evaluate our method
on real datasets. Experimental results show that our
implementation is effective, efficient and parallelizable.

The rest of paper is organized as follows. We review related
work in Section II and preliminaries in Section III. We show
the details of our algorithm as well as some optimization
techniques in Section IV. We describe our implementation on
top of Spark in Section V, and present experimental results in
Section VI. Section VII concludes this paper.

II. RELATED WORK

The efficiency of computing SimRank is an obstacle to
prevent its applicability on large datasets. Therefore, many
approaches have been proposed to speed up SimRank compu-
tation. These algorithms can be classified into the following
categories. To ease presentation, the number of vertices and
edges of the input directed graph are denoted by n and m. We
also denote by d the average in-degree of the graph, and by
k the iterations required by the algorithm.

Matrix-multiplication-based Algorithms. Jeh and Widom
[7] proposed the first iterative algorithm to compute SimRank
similarities by matrix computations. It computes the SimRank
similarities between all pairs of vertices in O(kn2d2) time.
[9] improved the computational complexity of the iterative
algorithm to O(kn2d) by pruning, partial sum memorization,
and local access reduction techniques, and [10] speeded up the
algorithm by fast matrix multiplication. [12] further improved
the time complexity to O(kd′n2) time, where d′ < d. In [13],
a non-iterative SimRank matrix formula has been established
based on the Kronecker product and singular vector decom-
position (SVD). It first pre-computes some auxiliary matrices
offline in O(r4n2) time and then retrieves the SimRank
between a given vertex and all other vertices in O(r4n) time,
where r is the rank of the adjacency matrix of the graph.
[14] employed GPU to speed up SimRank computation. All
the above algorithms require O(n2) space and come at great
cost — they need to perform expensive matrix operations
and maintain all n2 similarities simultaneously, which makes
it impossible to query individual single-pair or single-source
SimRank without querying the rest. For single-pair Sim-
Rank computation problem, [11] gave an algorithm with time
complexity O(kd2 ·min {n2, dk}). [15] further improved the
running time to O(km2−m) by utilizing position probabilities.
Although these algorithms both use random walks model to
help formulate their final solutions, their actual computation
are still based on matrix operations. As a result, they still
require O(n2) space.

Random-walk-based Algorithms. The SimRank similarity
between two vertices u and v can be represented in the form of
the expectation of probabilities that two random walks starting
form u and v, respectively, meet at the same vertex for the
first time. [16] gave the first random walk based algorithm by
first building as an index of size O(nN) the fingerprints of
N random walks and then querying the single-pair SimRank
similarities based on this index. [17] reinterpreted the SimRank
computation via linearization and then developed sampling
techniques based on random walks to compute single pair
SimRank similarity. [18] studied top-k most similar vertices
measured by SimRank of single vertex, where k is typically

very small. It transformed the single-source problem on graph
G to finding the authorities on the product graph G×G. The
above mentioned algorithms are designed for a single machine,
and are therefore far from acceptable for large problems due
to restricted computing power and limited storage capacity.

Distributed SimRank Algorithms. Cal et al. [19] pro-
posed a MapReduce method to compute all-pair SimRank.
The amount of data transferred from mappers to reducers in
each iteration is O(d2n2), so the overall communication cost
is O(kd2n2), which is inefficient for single-source SimRank.

III. PRELIMINARIES

In this section we review some preliminary knowledge,
including the SimRank similarity measure, random walks on
graph, and the Spark distributed data processing platform.

We first list some notations used throughout this paper. A
graph is a pair (V,E), where V is the set of vertices and E ⊆
V ×V is the set of edges. We denote by n and m the number
of vertices and number of edges in the graph respectively. In
this paper, we consider directed graphs. A vertex u is said
to be an in-neighbor (or an out-neighbor) of a vertex v if
(u, v)(or (v, u)) is an edge in G. The sets of in-neighbors
and out-neighbors of a vertex u are denoted by I(u) = {v :
(v, u) ∈ E} and O(u) = {v : (u, v) ∈ E} respectively. The
average in-degree (also out-degree) of the vertices in the graph
is denoted by d. The SimRank similarity between vertices u
and v is denoted by s(u, v), and the n×n SimRank similarity
matrix of the whole graph is denoted by S with Suv = s(u, v).
The single-source SimRank of vertex u is denoted by s(u, ∗).

A. SimRank

SimRank [7] is a structural-context similarity measure for
vertices in a directed graph which is designed based on the
intuition that two vertices are similar if their in-neighbors are
similar too. Mathematically, the similarity of vertices u and v
is defined as:

s(u, v) =

1, u = v;

c

|I(u)||I(v)|
∑

u′∈I(u),v′∈I(v)

s(u′, v′), u 6= v.

(1)
where 0 < c < 1 is called the decay factor. [7] proved that a
unique solution to Eq. (1) always exists and can be computed
iteratively. Suppose Sk is the computed SimRank matrix after
kth iteration, given that S0 is initialized with Suv = 1 for
u = v and Suv = 0 otherwise. Then to compute Sk+1, we
use the following recursion:

Sk+1
uv =

1, u = v;

c

|I(u)||I(v)|
∑

u′∈I(u),v′∈I(v)

Sk
u′v′ , u 6= v. (2)

It has been proven that limk→∞ Sk
uv = s(u, v) in [7]. The

naive iterative matrix-multiplication-based SimRank algorithm
computes the similarities by iterating over all pairs of vertices,
thus each iteration requires O(n2) space and O(n2d2) time.

B. Random Walk Model

Another generalization of SimRank is based on the Random
Walk Model. A walk on G is defined as a sequence of vertices
W = v0v1v2 . . . vl such that (vi, vi+1) is an edge in G for
0 ≤ i ≤ l − 1. A walk on graph is called random walk if it
satisfies Markov’s property:

Pr(Xi = vi|X0 = v0, . . . , Xi−1 = vi−1)

= Pr(Xi = vi|Xi−1 = vi−1) (3)

for all i ≥ 1 and all v0, v1, . . . , vi ∈ V , where Xi is the
random variable of the vertex the walk will be on at time i.
For any u, v ∈ V , Pr(Xi = v|Xi−1 = u) is the transition
probability that the random walk will make a transition onto
vertex v in the next step if it is on vertex u at time i− 1.

In the random walk model interpretation of SimRank, a
random surfer surfs by following the edges backwards, i.e.,
moves to one of the in-neighbors of the vertex it is currently
on in each step. The transition probability is define as:

Pr(Xi = vi|Xi−1 = vi−1) =

{ 1
|I(vi−1)| , (vi, vi−1) ∈ E;

0, otherwise.
(4)

Accordingly, the walk probability of W is formulated by:

Pr(W) =

l∏
i=1

Pr(Xi = vi|Xi−1 = vi−1) (5)

If two random surfers start from vertex u and v respectively
at the same time, walk stepwise, meet for the first time at an
arbitrary vertex x and then stop at x, we call the corresponding
two walks Wu and Wv they produced a pair of meeting walks
or matching walks. The length of a pair of meeting walks is
the length when they stopped. We also define their meeting
probability as:

Pr
(
(Wu,Wv)

)
= Pr(Wu)Pr(Wv) (6)

[7] revealed that s(u, v) can be interpreted as the expectation
of meeting probabilities of random walks as:

s(u, v) =
∑

Wu,Wv

clPr
(
(Wu,Wv)

)
(7)

where (Wu, Wv) is an arbitrary pair of meeting walks starting
from u and v respectively, l is their length, and c is the decay
factor. Note that here l could be arbitrarily large.

C. Spark

In principle, our algorithm can be implemented on any
general-purpose distributed data processing platforms. We
choose Spark [20] simply for its generality, efficiency and
user friendliness. One of the core concepts in Spark is the
in-memory storage abstraction known as Resilient Distributed
Datasets (RDDs) [20], which fully utilize the memory of each
computing node in the cluster. An RDD can be seen as a
collection of records, where two types of operations over
RDDs are available: transformations, which create new RDD
by applying some transformations on old RDDs; and actions,

which return some global statistics or computed results of
RDDs to the driver program. All transformations are lazy,
in the sense that the transformations to be applied would
not take actual effect until an action is triggered. RDDs
are fault-tolerant since Spark automatically keeps the lineage
information, i.e., the transformation history of the data for fast
recovery from data losses. A job submitted to Spark is divided
into several stages according to the dependency between the
series of transformations applied to the RDD, and a stage
is further divided into multiple computing units which are
executed in parallel.

Transformations used in this paper include map, flatMap,
filter, reduceByKey, leftOuterJoin and join. In detail,
map applies a one-to-one mapping of the records of the input
RDD to form a new one (similar to the map operation in
MapReduce), and flatMap applies a one-to-many mapping in
a similar way; filter as the name suggests, produces a new
RDD composing the records satisfying the predicate specified
by user; reduceByKey aggregates the records with the same
key using the user-provided reduce function (similar to the
reduce operation in MapReduce); join performs a join over
two RDDs, and so does leftOuterJoin. Among the above
mentioned transformations, reduceBykey, leftOuterJoin
and join will shuffle data between different machines. Other
transformations perform their computations locally. The only
action we use in this paper is collect, which returns all
the records distributed over the cluster to the driver program
in master node. Spark also provides broadcast interface to
allow programmers to keep a read-only variable cached on
each machine rather than shipping a copy of it with tasks.

IV. SCALABLE SINGLE-SOURCE SIMRANK

Given the definition of SimRank and its random walk
model interpretation, the way to compute single-source Sim-
Rank s(u, ∗) is straightforward. Intuitively the computation of
s(u, ∗) can be decomposed into subproblems of computing
s(u, v) for all v ∈ G. To compute s(u, v), we first find all
pairs of meeting walks starting from u and v respectively,
then we aggregate their meeting probabilities according to Eq.
(7). Note that enumeration of meeting walks arbitrarily long
(till infinity) is impossible, therefore in practice only meeting
walks of length up to a limit are considered.

With this line of reasoning, we now describe the details of
our single-source SimRank algorithm, or sssSimRank. To ease
presentation, we let u be the query vertex, i.e., the ‘source’ in
‘single-source’. We also assume that the maximum length of
random walks is set as k. Random walks starting from u are
called master walks, and other walks are called slave walks.

A. A Naive Method

Our work is motivated by the single-pair SimRank algorithm
spSimRank proposed in [11]. The core idea of spSimRank is
that to compute the SimRank similarity between vertex pair
(u, v), two random surfers starting from vertex u and vertex
v respectively move backwards by following their in-edges. A
walk will split into |I(t)| different walks after passing a vertex

Algorithm 1 Naive Single-source SimRank

1: procedure SINGLESOURCESIMRANK(G, u, k)
2: for l = 1 to k do
3: Wu[l]← all walks of length l starting from u;
4: for v ∈ V (G) do
5: s(u, v)← SPSIMRANK(G,Wu[], v, k);
6: return s(u, ∗).
7: procedure SPSIMRANK(G,Wu[], v, k)
8: s(u, v)← 0;
9: for l = 1 to k do

10: Wv[l]← all walks of length l starting from v;
11: sl(u, v)← 0;
12: for wu in Wu[l] do
13: for wv in Wv[l] do
14: if wv and wu first meet at index l then
15: add score(wu, wv) to sl(u, v);
16: . According to Eq. (7)
17: add sl(u, v) to s(u, v);
18: return s(u, v).

t. Therefore after k moves, a total of O(dk) various walks of
length up to k existing in the graph topology are generated
in a brute force manner. A data structure called Path-Tree is
used to compress all the random walks to save space. Then
all the master walks and slave walks in the resulting two path
trees are matched to select the meeting walks. Finally s(u, v)
is computed based on their meeting probabilities. Compared
to all-pair SimRank, in spSimRank similarity scores of other
unrelated vertex pairs do not need to be computed. As a result,
the computational cost of this algorithm does not increase if
the underneath graph becomes large. Intuitively, we can invoke
spSimRank for all vertex pairs (u, ∗) to get the single-source
SimRank. We call it Naive Single-source SimRank algorithm
as listed in Algorithm 1.

The Naive Single-source SimRank algorithm is inefficient
for the following reasons: 1) A total of O(dk) walks are
generated for each v, but the majority of them cannot match
a master walk at all; 2) Although the data structure Path-
Tree is used to save memory, the space cost is still high. This
will incur high network communication overhead in distributed
environments since we need to exchange lots of data between
different computing nodes; and 3) In the matching process of
the algorithm, walks of the same length are compared in a
brute force way, which will degrade the overall performance.
We address these problems and try to improve the efficiency
in the following aspects: fewer total number of walks, more
compact representation of walks, and faster matching process.

B. Fewer Walks

In Naive Single-source SimRank, a total of O(ndk) walks
are generated. But only a fraction of them will ever meet with

u,w1, w2, w3, . . . , x, . . . x, . . . , w3, w2, w1, u, . . .

v, w′1, w
′
2, w

′
3, . . . , x, . . . x, . . . , w′3, w

′
2, w

′
1, v, . . .

Fig. 1: The left are two walks starting from u and v respec-
tively, first meeting at x; the right are reversed walks starting
from x, passing u and v respectively.

a master walk within k steps. If we could reduce the factor n
to a smaller value C such that C � n, the quantity of walks
will drastically decline. We now discuss how to achieve this.

We first give the definition of reversed walk as the reversed
vertex sequence of the random walk defined in Section III.
It is easy to see that there is a one-to-one correspondence
between the original random walk and its reverse walk. Recall
in the random walk model interpretation of SimRank, random
walks are generated by following the in-edges of the G.
Accordingly, a reverse walk can be generated in the similar
way by following the out-edges. As a result, the transition
probability in a reversed walk should be rewritten as:

Pr(Xi = v|Xi−1 = vi−1) =

{ 1
|I(vi)| , (vi−1, vi) ∈ E;

0, otherwise.
(8)

From Eq. (5) we see that the probability of a random walk
and its reversed walk are exactly the same. Given the definition
of reverse walk, we have the following observation:

Observation 1. Suppose two random walks starting from u
and v respectively, say Wu and Wv , met at vertex x after
following in-edges for l steps. Then if we start from x and
follow the out-edges in the graph to generate the set of all
possible reversed walks of length l, reversed walks of Wu and
Wv must be in it.

For example, in Fig. 1 the left two walks are Wu and Wv ,
and the right are the corresponding two reversed walks starting
from x, passing u and v respectively. Observation 1 says that
if the left two walks do exist in the graph topology, then their
reversed walks on the right always exist.

Motivated by this, and because of the one-to-one corre-
spondence between reversed walk and random walk, SimRank
can be computed based on reversed walks. The benefit here
is that although the time costs of generating random walks
and reversed walks are almost equal, the number of vertices
starting from which we need to generate reversed walks could
be reduced greatly based on the following observation:

Observation 2. Let Wu = uw1w2 . . . wl be a master walk.
Then slave walks with length l could only meet with Wu at
one of {w1, w2, . . . , wl}. In other words, If we denote by Nei
the set of vertices reachable from u in k steps by following
in-edges, it suffices to generate reversed walks starting from
vertices in Nei rather than V to compute s(u, ∗).

The correctness of this observation is evident. Based on the
two observations, it is easy to see that now the total number
of reversed walks needed is O(|Nei|dk) rather than O(ndk).

d u e f

a b c
v

(a) NG(v, 4).

v

a

d

u

u

b

e

f

u

c

f

(b) Path-tree of NG(v, 4).

Fig. 2: (a) A neighborhood of v. (b) The corresponding Path-
Tree representation of the neighborhood.

In fact, |Nei| is roughly O(dk), which is much smaller than n
and is independent of the scale of the underneath graph. This
guarantees efficiency when handling huge web graphs.

So now we give our new algorithm flow. We first generate
master walks of length up to k and update the reachable
vertex set Nei along the way. These master walks are carefully
recorded and will be shared by other vertices in the matching
process later. Then for each vertex in Nei, we take it as
starting point and generate all slave reversed walks. Note that
master walks are generated by following in-edges of the graph,
while slave walks move along out-edges. In the following
subsections, we discuss for each master walk, how we can
find all its matching slave walks and finally compute s(u, ∗)
based on their meeting probabilities.

C. More Compact Representation of Walks

Although the number of reversed walks needed has been
reduced, it still grows exponentially with the average in-
degree d. Storing so many reversed walks is costly. Besides,
there also exist redundancies as lots of walks share common
subsequences. For instance, any prefix or suffix of the vertex
sequence of a walk could also form another walk.

Our method addresses this problem and do as follows. For
an arbitrary vertex v in the graph, we do not store reversed
walks in any specially designed data structure at all. Instead,
starting from v we let a surfer walk k steps by following
the out-edges of the graph and collect a portion of the input
graph — a neighborhood of v denoted by NG(v, k). Formally,
NG(v, k) is an induced subgraph formed by all the vertices
that are up to k steps away from v. For example, Fig. 2(a)
shows a neighborhood of vertex v. Its corresponding Path-
Tree representation is shown in Fig. 2(b). The vertex in gray
is the query vertex u. Note that NG(v, k) is itself a compressed
representation of all the reversed walks, and its graph structure
is much more compact than the Path-Tree structure.

We pay special attention to low space complexity because in
distributed environments, the process of generating (reversed)
walks will inevitably incur network communication overhead
since a single computing node has no random access to the
whole graph. But in most cases, data communication via
network is one of the leading factors that degrade performance
of distributed applications. In the next subsection, we will
show that although the information of all walks is hidden in a
compact neighborhood, we can still achieve fast matching of
walks.

D. Faster Matching Process

After each vertex in Nei collects all reversed walks starting
from itself, we need to match them with the master walks
to compute the final SimRank score. Assume that all master
walks can be accessed by all vertices. Note that each vertex is
responsible for the reversed walk collections of his own, so the
whole computation can be distributed across the cluster easily.
To ease presentation, we take vertex v as an example. In the
matching process, only the reversed walks that share the first
common vertex v, and differ in all remaining vertex sequences
with the master walk are of our interest. For example, in
Fig. 2(b) paths vau and vbe are a pair of meeting walks
which contributes to s(u, e). Meeting walks of vau also
include vbu and vcf . But vad and vau are not meeting pair
because they first meet at vertex a rather than v (actually, in a
distributed environment their contribution will be recognized
by a somewhere else). These observations immediately tell us
that, if the query vertex u resides at some level of the Path-
Tree of the neighborhood, then all other vertices w at that
level satisfying LCA(u,w) = v will contribute to s(u,w) by
clPr(Wu)Pr(Ww), where LCA means the Lowest Common
Ancestor, Wu and Wv are the reversed walks corresponding
to the root-to-node path formed by w and v in the tree.

We search for all meeting pairs by Depth First Searching
(DFS) the neighborhood starting from v. During DFS, the
probability of the root-to-node path so far is maintained. When
the recursion depth approaches l, the length of the matched
master walk, DFS procedure stops and the probability of the
corresponding reversed walk is recorded in a global hash map.
When we go on to match reversed walks of length l + 1,
we no longer need to start DFS from v anymore. Because
probabilities of reversed walks shorter than l + 1 could have
been recorded before. For example, in Fig. 2(b) the only
matching walks of vadu is vbef . To get its probability, we
only need to choose the third vertex e as the staring point of
DFS, because the probability of vbe has been recorded when
searching for the meeting walks of vau.

It is not hard to see that our way of matching is a Dy-
namic Programming approach. We use memorization to avoid
recomputing overlapping subproblems. The details are shown
in Algorithm 2. Procedure LevelMatch shows how a vertex
v computes meeting probabilities for master walks of length
l. Among the parameters, Wl is a collection of master walks
of length l. N is the neighborhood of v. Ml′ is the previous
memorized meeting probabilities for master walks of length l′.
In detail, Ml′ is a hash map composed of (key, value) pairs,
where key could be one of the neighbors of v in N , and
value is a list of pairs each representing the ending vertex
and probability of a matching reversed walk belonging to the
subtree with root key. Similarly Ml is an empty hash map
to be filled for Wl. The last parameter δ is the probability
threshold we will describe in the following subsections. We
first loop the master walk p in Wl, and get to know in which
subtree p resides (line 2-3). Then we start to DFS all other
different subtrees if Ml contains no information about that

Algorithm 2 Dynamic Programming Path Matching

1: procedure LEVELMATCH(Wl, N, v,Ml′ ,Ml, δ)
2: for p ∈Wl do
3: br ← second last vertex of p;
4: for t ∈ (vN .neighbors− br) & t /∈Ml do
5: if !Ml′ .contains(t) then
6: DFS(N, t, l,Ml, δ, t, 1, 1);
7: else
8: for w ∈Ml′ do
9: for nei ∈ wN .neighbors do

10: DFS(N,nei, l,Ml, δ, br, w.mul, l
′);

11: return Ml.
12: procedure DFS(N, v, l,M, δ, br,mul, depth)
13: mul← mul ∗ vN .indegree;
14: if mul > δ then
15: return; . Early termination.
16: if depth = l then
17: add (v,mul) to M(br); . Record probability.
18: else
19: for nei ∈ vN .neighbors do
20: DFS(N,nei, l,M, δ, br,mul, depth+ 1);
21: return M .

subtree (line 4). If Ml′ does not contain information of that
subtree, we start DFS right from its root (line 5-6). Otherwise,
we choose to start DFS from those vertices recorded in Ml′

(line 8-10). Procedure DFS show the detailed search process.
We first check if we can terminate the search process early,
which will be discussed in detail in next subsection (line 13-
15). Then we check if the depth limit of DFS is reached.
If so we stop there and record the probability (line 16-17).
Otherwise, we go on to DFS the next level (line 19-20). By
invoking LevelMatch for all Wl (l ≤ k), we can compute
meeting probabilities efficiently.

E. Early Termination of Walks

Many real-world graphs are scale-free [21], which means
that a small portion of the vertices in the graph have very
large degrees. Our algorithm could suffer a lot from the
presence of these high degree vertices, since higher degree
means more splits of walks. Thus, we adopt probability sieve
[9] to filter out the walks whose probability is already small
enough caused by containing many high degree vertices. The
filtered walks will no longer advance any further because the
contribution of subsequent walks are insignificant. The value
of the probability threshold δ can be set manually to achieve a
balance between tolerance of accuracy loss and improvement
of computing efficiency. Note that this optimization generally
can be applied to every walk generation process, e.g., in line
(13-15) of the DFS procedure of Algorithm 2.

F. sssSimRank: Putting it All Together

Given all the techniques that we described in the previous
subsections, we now list the framework of our sssSimRank
algorithm as the following phases:

1) Find the set of vertices Nei that are reachable from u
by following in-edges, and at the same time maintain
corresponding master walks. All master walks are then
broadcast to all machines in the cluster;

2) Each vertex in Nei collects its neighborhood by follow-
ing out-edges;

3) Each above vertex then computes meeting probabilities
based on its own copy of master walks and the reversed
walks extracted from its own neighborhood;

4) All meeting probabilities scores are aggregated to get
the final s(u, ∗).

In a typical distributed environment, most of the network
communication happens in phase 1 and especially phase 2,
as neighbor information needs to be exchanged between all
machines. Phase 4 will also incur some communication cost.
Most of the computations, including searching for meeting
walks and calculating their probabilities, are conducted locally
by each machine in the cluster.

We analyze the complexity of our algorithm in all respects.
The total amount of vertices reachable from u is O(dk).
For each of the reachable vertices, it has a neighborhood
of size O(dk) containing structure information of all O(dk)
reversed walks. So the total space complexity is O(d2k). The
communication cost involved in Phase 1 and Phase 2 is also
O(d2k) because at most all walks are transferred. Phase 3 uses
memorization technique to compute meeting probabilities, thus
for a single neighborhood at most all O(dk) reversed walks
are matched. This leads to a total computation cost of O(d2k).
A tight bound of communication cost of phase 4 is hard to
give, but we can assert that it only depends on the topology
rather than the scale of the graph. In summary, our approach
of computing single-source SimRank is highly efficient and
allows for high parallelism.

V. IMPLEMENTATION ON SPARK

In this section, we describe the implementation of sssSim-
Rank on Spark. Note that phase 1 and phase 2 of our algorithm
are quite similar. In both cases we start from some vertices
and find their reachable neighbors. The only differences lie in
the number of starting vertices (1 vs. |Nei|) and the direction
of movement (following in-edge vs. out-edges). So we omit
phase 1 and explain the other three in detail.

A. Collect Neighborhood

The process of collecting neighborhood for each vertex
v ∈ Nei is shown in Algorithm 3. The algorithm takes 3
input parameter. edgeRDD is the RDD of the graph, u is
the query vertex, and k is the maximum walk length. First
we convert the graph from plain edge format to adjacent
list format (line 2-3). We then initialize nbrhdRDD from
graphRDD by filtering out the vertices not in Nei, which
contains the one-step neighborhood of each vertex. And cache

Algorithm 3 Collect Neighborhood

1: procedure COLLECT(edgeRDD, u, k)
2: graphRDD ← edgeRDD
3: .reduceByKey().cache();
4: nbrhdRDD ← graphRDD.map().cache();
5: nbrRDD ← graphRDD.filter().cache();
6: for l = 2 to k do
7: nbrRDD ← nbrDD
8: .join(graphRDD).map();
9: nbrhdRDD ← nbrhdRDD

10: .leftOuterJoin(nbrRDD).map();
11: return nbrhdRDD.

is called to persist nbrhdRDD into memory for later iterations
(line 4). At the very beginning, the neighborhood only covers
the out-neighbors of the vertex. In the following iterations, the
neighborhood will expand larger by advancing a step further
from the out-most vertices. nbrRDD is the RDD that contains
the out-most vertices of neighborhood of each vertex. It is
initialized as out-neighbors of u from graphRDD (line 5).
We now begin to expand all the neighborhoods iteratively.
In each iteration, first the out-most neighbors are updated by
joining the underneath graph (line 7-8). Then the new out-most
neighbors are transferred to neighborhoods who can reach
them (line 9-10). Finally, we get the neighborhood for each
starting vertex after k iterations.

B. Compute and Aggregate Meeting Probabilities

After all neighborhoods of each starting vertex have been
collected, we begin to match all master walks and slave
walks. The details are listed in Algorithm 4. The algorithm
takes 4 parameters. The first parameter nbrhdRDD is the
output of Algorithm 3, the RDD containing pairs of vertex
and its neighborhood. The second parameter MW is the
output of phase 1, i.e., all the master walks starting from
u. MW is represented as a hash map of (key, value) pairs,
where key is the ending vertex of each master walk (note
that key ∈ Nei), and value is a list of the random walks
ending with key. The remaining two parameters are the given
query vertex and maximum walk length, respectively. For each
record (v, nbrhd) in hbrhdRDD, we invoke LevelMatch in
Algorithm 2 to compute meeting probabilities of all meeting
walks in nbrhd for v. The results are appended into the list
MP (line 5-7). Then all meeting probabilities are emitted by
flatMap (line 8-9). In the end, reduceByKey aggregates all
the probabilities to form the final SimRank score, which are
subsequently collected to the driver program (line 11-12).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate our implementation of sssSim-
Rank experimentally. We first describe our running environ-
ments, datasets used, and parameter settings. Then we analyze
our results in terms of effectiveness, efficiency and scalability.

Algorithm 4 Compute SimRank

1: procedure COMPUTE(nbrhdRDD,MW,u, k)
2: simRankRDD ← hbrhdRDD
3: .flatMap((v, nbrhd)⇒ {
4: create MP ;
5: for Wl in MW do
6: M ← LEVELMATCH(Wl, . . .);
7: extend MP with all elemetns in M ;
8: for (v, score(u, v)) in MP do
9: yield (v, score(u, v));

10: })
11: s(u, ∗)← simRankRDD.reduceByKey().collect();
12: return s(u, ∗).

TABLE I: Description of Datasets

Dataset #Nodes #Edges Avg Deg Size
p2p-gnutella08 1 6,301 20,777 3.29 215.2KB

wiki-vote 2 7,115 103.689 14.57 1.1MB

eu-2005 3 862,664 19,235,140 22.29 256.4MB

ljournal-2008 4 5,363,260 79,023,142 14.73 1.2GB

arabic-2005 5 22,744,080 639,999,458 28.14 10.9GB

A. Setup

1) Running Environment: We do all experiments on a
cluster of 6 machines, each has two 12-core Intel Xeon E5-
2650 2.10 GHz processors, 64 GB RAM, and 1TB hard
disk. Each of them are connected via a Gigabit network. All
machines are running Ubuntu 14.04. The version of Spark and
underlying HDFS deployed are 1.6.2 and 2.6.0 respectively.
All machines are configured as slave node, and one of them
also plays the role of master node. Each executor in Spark is
allocated with 10GB memory.

2) Datasets: We use 5 real-word datasets of various scales.
The details of each dataset are listed in Table I. Each graph
is stored as plain text format, one edge per line. All datasets
are uploaded into the HDFS beforehand.

3) Parameters: As discussed by [9], the maximum steps
k is determined by c and the accuracy we want. if we want
make the error loss s∗(u, v)−sk(u, v) smaller than ε, we need
to set k = blogc εc. In our experiments, we choose ε = 0.01,
which is accurate enough for most real-world applications. c
is set to be 0.5 and as a result, k = 6.

For the optimization technique using threshold to ignore
walks with small probabilities, we set δ = 0.002. Notice that
here δ is for a single walk. For a pair of meeting walks, the
equivalent threshold for the meeting probability would roughly
be δ2 according to Eq. (6). After multiplying a factor of cl,

1https://snap.stanford.edu/data/p2p-Gnutella08.html
2https://snap.stanford.edu/data/wiki-Vote.html
3http://law.di.unimi.it/webdata/eu-2005/
4http://law.di.unimi.it/webdata/ljournal-2008/
5http://law.di.unimi.it/webdata/arabic-2005/

1 2 3 4 5 6
1E-6

1E-5

1E-4

1E-3

m
ea

n
er

ro
r

the value of k

 apSimRank
 sssSimRank

0.0 0.2 0.4 0.6 0.8 1.0

1E-3

1E-4

1E-5

1E-6

Y
Ax

is
 T

itle

X Axis Title

(a) Comparison of accuracy between sssSimRank
and apSimRank on p2p-gnutella08.

1 2 3 4 5 6
1E-6

1E-5

1E-4

1E-3

m
ea

n
er

ro
r

the value of k

 apSimRank
 sssSimRank

0.0 0.2 0.4 0.6 0.8 1.0

1E-3

1E-4

1E-5

1E-6

Y
Ax

is
 T

itl
e

X Axis Title

(b) Comparison of accuracy between sssSimRank
and apSimRank on wiki-vote.

p2p-gnutella08 eu-2005 ljournal-2008 arabic-2005
0

100
200
300
400
500
600
700

10000
20000
30000
40000

5000000
10000000
15000000
20000000
25000000

nu
m

be
r o

f n
ei

gh
bo

rs

datasets

 nssSimRank
 sssSimRank()
 sssSimRank()
 sssSimRank()
 sssSimRank()
 sssSimRank()

(c) Comparison of |Nei| between nssSimRank and
sssSimRank with varying probability threshold.

-2500 0 2500 5000 7500 10000 12500

20

30

40

50

60

70

80

90

100

110

ru
nn

in
g

tim
e(

s)

graph size(MB)

(d) Running time with varying graph sizes.

1 2 3 4 5 6 7
0

20
40
60
80

100
120
140
160
180
200
220

ru
nn

in
g

tim
e(

s)

number of nodes

 p2p-gnutella08
 eu-2005
 ljournal-2008
 arabic-2005

(e) Running time with varying number of nodes.

Fig. 3: Results of accuracy loss and convergence rate, efficiency and scalability.

it will be extremely small and therefore could be reasonably
ignored.

To avoid particularity, all experiments are conducted mul-
tiple times with the query vertex chosen randomly from the
graph. If not otherwise specified, for small graphs (< 10MB)
we repeat 100 times and present the average results while for
large graphs the repetition is 1000.

B. Effectiveness

We compare the accuracy and convergence rate between
all-pair SimRank (apSimRank) and sssSimRank algorithm.
We evaluate the effectiveness by computing the mean error
ME = 1

n

∑
v∈V |s(u, v)− sk(u, v)|, where s(u, v) is the

ground truth given by Eq. (2) until convergence, and sk(u, v)
is the output of algorithms running k iterations (or within k
steps). The comparison is conducted on two small graphs, p2p-
gnutella08 and wiki-vote. P2p-gnutella08 is a sparse graph
(d = 3.29) while wiki-vote is much denser (d = 14.57). The
results are shown in Fig. 3(a) and 3(b). We can see that both
apSimRank and sssSimRank converge within 6 iterations. In
both Fig. 3(a) and Fig. 3(b), sssSimRank achieves a faster
convergence rate, with accuracy loss less than 10−4 after 3
iterations. Another thing to notice is that apSimRank shows
greater comparative advantages in terms of accuracy in Fig.
3(b) than in Fig. 3(a). This is because sssSimRank uses a
threshold δ to filter out walks with very small probabilities,
which is particularly effective for scale-free graphs like wiki-
vote. By doing so we improved efficiency at the cost of some
accuracy. But such a small accuracy loss (< 10−4) is ignorable
for most real-world applications.

C. Efficiency

We implement all-pair SimRank (apSimRank) based on Eq.
(2), and Naive Single-source SimRank (nssSimRank) based on

single-source similarity discussed in [11]. Both of them are
implemented as distributed algorithms on Spark. We find that
a straight comparison between them and our algorithm on all
graph datasets is impractical because computing apSimRank
and nssSimRank is extremely time-consuming even for small
graphs. For apSimRank, the smallest graph p2p-gnutella08
takes about 2.1 hour to finish. We think this fact is enough
to prove that our algorithm outperforms apSimRank greatly.
For nssSimRank, it takes 1.1 hour. Note that the running time
of random-walk-based algorithms mainly depends on the total
number of random walks generated, which further depends on
the number of neighborhoods. Thus, we compare the size of
Nei for both nssSimRank and sssSimRank with different δ.
The results are shown in Fig. 3(c). In nssSimRank, |Nei| is
equal to n, because all vertices in the graph need to collect
its neighborhood. In contract, our algorithm reduce |Nei|
drastically. When δ is 0, which means no probability sieve
is used, sssSimRank generates several order of magnitude (up
to 1500x) fewer neighborhoods. As δ becomes larger, which
means our probability sieve is more fine-meshed, number of
survivors decreases accordingly. Fig. 3(c) also indicates that
the reduction ratio for eu-2005 and arabic-2005 are higher
than that of p2p-gnutella08 and ljournal-2008. This shows that
probability sieve works better for denser graphs, which is in
line with our expectations.

D. Scalability

In this section, we investigate the scalability of our proposed
algorithm. The input graphs used are p2p-gnutella08, eu-
2005, ljournal-2008 and arabic-2005. We first evaluate the
performance when the data size increases. The running time of
sssSimRank with different δ on the four graphs are shown in
Fig. 3(d). We can see that our algorithm scales well as the size

of graph increases thousands of times. Fig. 3(d) also suggests
that for a fixed graph, a larger δ will bring about larger amount
of walks, causing increased running time.

We also evaluate the performance when the number of
computing machines increases. The number of computing
nodes increases from 2 to 6. The configurations for all datasets
are the same, with k = 6 and δ = 1E-4. We adopt a small
δ to increase the overall computing load, because with small
workload Spark initialization will dominate the running time.
The results are shown in Fig. 3(e). The nature of the curve
indicates that, as the number of nodes increases the running
time decreases as expected for strong scalability.

VII. CONCLUSION

We have proposed and implemented a highly parallelizable
algorithm, sssSimRank, for the computation of single-source
SimRank. Our algorithm is based on the random walk model.
It achieves good performance by minimizing the number of
walks, compressing representation of intermediate data, and
fast matching via dynamic programming. Experimental results
verify the effectiveness, efficiency of our approach.

ACKNOWLEDGMENT

This paper is partly funded by National Science and Tech-
nology Major Project of the Ministry of Science and Tech-
nology of China under grant 2011ZX05035-004-004HZ. The
corresponding author of this paper is Jie Tang. We thank the
reviewers for helping us refine this paper.

REFERENCES

[1] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens,
“Random-walk computation of similarities between
nodes of a graph with application to collaborative recom-
mendation,” IEEE Transactions on knowledge and data
engineering, vol. 19, no. 3, pp. 355–369, 2007.

[2] I. Bhattacharya and L. Getoor, “Entity resolution in
graphs,” Mining graph data, p. 311, 2006.

[3] J. Dean and M. R. Henzinger, “Finding related pages in
the world wide web,” Computer networks, vol. 31, no. 11,
pp. 1467–1479, 1999.

[4] P. Jaccard, Etude comparative de la distribution florale
dans une portion des Alpes et du Jura. Impr. Corbaz,
1901.

[5] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern informa-
tion retrieval. ACM press New York, 1999, vol. 463.

[6] L. R. Dice, “Measures of the amount of ecologic as-
sociation between species,” Ecology, vol. 26, no. 3, pp.
297–302, 1945.

[7] G. Jeh and J. Widom, “Simrank: a measure of structural-
context similarity,” in Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discov-
ery and data mining. ACM, 2002, pp. 538–543.

[8] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: bringing order to the web.”
1999.

[9] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov,
“Accuracy estimate and optimization techniques for sim-
rank computation,” Proceedings of the VLDB Endow-
ment, vol. 1, no. 1, pp. 422–433, 2008.

[10] W. Yu, W. Zhang, X. Lin, Q. Zhang, and J. Le, “A space
and time efficient algorithm for simrank computation,”
World Wide Web, vol. 15, no. 3, pp. 327–353, 2012.

[11] P. Li, H. Liu, J. X. Yu, J. He, and X. Du, “Fast single-
pair simrank computation.” in SDM. SIAM, 2010, pp.
571–582.

[12] W. Yu, X. Lin, and W. Zhang, “Towards efficient simrank
computation on large networks,” in Data Engineering
(ICDE), 2013 IEEE 29th International Conference on.
IEEE, 2013, pp. 601–612.

[13] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and
T. Wu, “Fast computation of simrank for static and
dynamic information networks,” in Proceedings of the
13th International Conference on Extending Database
Technology. ACM, 2010, pp. 465–476.

[14] G. He, H. Feng, C. Li, and H. Chen, “Parallel simrank
computation on large graphs with iterative aggregation,”
in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2010, pp. 543–552.

[15] J. He, H. Liu, J. X. Yu, P. Li, W. He, and X. Du, “As-
sessing single-pair similarity over graphs by aggregating
first-meeting probabilities,” Information Systems, vol. 42,
pp. 107–122, 2014.

[16] D. Fogaras and B. Rácz, “Scaling link-based similarity
search,” in Proceedings of the 14th international confer-
ence on World Wide Web. ACM, 2005, pp. 641–650.

[17] M. Kusumoto, T. Maehara, and K.-i. Kawarabayashi,
“Scalable similarity search for simrank,” in Proceedings
of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 325–336.

[18] P. Lee, L. V. Lakshmanan, and J. X. Yu, “On top-k struc-
tural similarity search,” in 2012 IEEE 28th International
Conference on Data Engineering. IEEE, 2012, pp. 774–
785.

[19] L. Cao, B. Cho, H. D. Kim, Z. Li, M.-H. Tsai, and
I. Gupta, “Delta-simrank computing on mapreduce,” in
Proceedings of the 1st International Workshop on Big
Data, Streams and Heterogeneous Source Mining: Algo-
rithms, Systems, Programming Models and Applications.
ACM, 2012, pp. 28–35.

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Proceedings
of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association,
2012, pp. 2–2.

[21] L. Li, D. Alderson, J. C. Doyle, and W. Willinger,
“Towards a theory of scale-free graphs: Definition, prop-
erties, and implications,” Internet Mathematics, vol. 2,
no. 4, pp. 431–523, 2005.

