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Abstract—With the big success of deep convolutional neural
networks (CNN) in image classification task, many proposal
based networks are proposed to detect given objects in an image.
Faster R-CNN is such a network that uses a region proposal
network (RPN) to generate nearly cost-free region proposals,
which has shown excellent performance in ILSVRC and MS
COCO datasets. However, Faster R-CNN does not behave so
well for the task of pedestrian detection since the images in
popular pedestrian detection datasets have more complicated
background and contain a lot of small foreground objects. In this
work, we leverage the RPN architecture of Faster R-CNN and
extend it to a multi-layer version combined with skip pooling
to tackle the pedestrian detection problem. Skip pooling is a
kind of network connection that combines multiple ROI pooling
results from lower layers to form a single input to a higher
layer while bypassing intermediate layers. We comprehensively
evaluate our network, referred to as SP-CNN, on the Caltech
pedestrian detection benchmark and KITTI object detection
benchmark. Our method achieves state-of-the-art accuracy on
Caltech dataset and presents a comparable result on KITTI
dataset while maintaining a good speed.

I. INTRODUCTION

Pedestrian detection has been exhaustively explored in re-
cent years because of its growing importance in realistic appli-
cations, including automatic driving, road scene understanding
or intelligent surveillance. Despite the extensive research on
pedestrian detection, recent papers still show significant im-
provements, suggesting that we have a long way to go before
reaching a saturation point.

Over the past years, a wide variety of methods have been
applied to pedestrian detection. After the success of integral
channel feature (ICF) detector [1], many variants [2], [3], [4],
[5], [6] were proposed and showed excellent performance.
A recent review of pedestrian detection [7] concludes that
improved features have been driving performance and are
likely to continue doing so. Recently, there has been interest
in detectors derived from deep convolutional neural networks.
Driven by the success of R-CNN [8] for general object detec-
tion, a series of methods adopt a two-stage pipeline for pedes-
trian detection. TA-CNN [9] employs the ACF detector [10]
to generate proposals, and trains a R-CNN like network to
jointly optimize pedestrian detection with semantic tasks; the
DeepParts [11] method applies the LDCF detector [12] to
generate proposals and learns a set of complementary parts
by neural networks.

Despite of these hybrid pedestrian detectors, [13] uses a
cascaded deep neural network to achieve real-time pedestrian

detection. MS-CNN [14] proposed a multi-scale object pro-
posal network with satisfactory detection accuracy and speed.
The MS-CNN consists of a Region Proposal Network (RPN)
established on multiple output layers. This architecture lever-
ages the property that receptive fields of different layers have
different scales thus providing more accurate proposals for
subsequent detector and classifier. But as noted in [15], with
100 proposals per image, the RPN can achieve more than
95% recall at an IOU of 0.7, which means that there has
limited space for us to further optimize the proposal quality.
In contrast to the region proposal sub-network, downstream
detection and classification network suffers more from the
mismatch between receptive field and object size. As a result,
[15] replaced the downstream detection network with boosted
forests but got limited improvement on more complicated
dataset like KITTI [16].

In this paper, we propose to combine faster R-CNN with
skip pooling for pedestrian detection. Our work is also inspired
by the work of [17] which aims at detecting small objects,
but we remove the recurrent neural networks and adjust the
downstream detection network to make it adapted for the task
of pedestrian detection. We use VGG16 [18] net as the baseline
of our network. The object detection network pools ROI
from conv3, conv4 and conv5 of VGG16 simultaneously, the
pooled features are then normalized, concatenated and scaled
to form a fixed-length descriptor. We extensively explore the
design space of our network on the popular Caltech and
KITTI validation sets and evaluate it using the test sets. The
evaluation results show that our network achieves the state-of-
the-art performance on both Caltech and KITTI datasets.

II. RELATED WORK

In the previous section, we have introduced many traditional
methods for pedestrian detection. In this section we refer to
some CNN based methods and briefly analyze their relation-
ships with our network.

A. Faster R-CNN

Many advanced object detection networks depend on region
proposal algorithms to provide object location candidates such
as R-CNN, Fast R-CNN [19] and SPPnet [20], where region
proposal computation has been exposed as a bottleneck. Faster
R-CNN [21] introduces a Region Proposal Network (RPN)
that shares convolutional features with the object detection
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network thus eliminating almost all the region proposal com-
putation cost. An RPN is a fully convolutional network which
simultaneously predicts object bounding boxes and objectness
scores at each location. The Faster R-CNN is a combination
of RPN and Fast R-CNN. Our network expands the RPN
architecture of Faster R-CNN to a multi-scale version.

B. RPN+BF

In [15], they argue that the original Faster R-CNN is
not suited for pedestrian detection due to the downstream
object detection network which degrades the detection results.
They attribute this results to the insufficient resolution of
feature maps for handling small objects and the lack of any
bootstrapping strategy for mining hard negative examples. As a
result, they propose to use an RPN followed by boosted forests
on shared high-resolution feature maps. In this work, we
found that the RPN+BF [15] design has limited improvement
on KITTI dataset and our method outperforms RPN+BF by
around 15% using the metric of average precision in moderate
mode.

C. MS-CNN

The MS-CNN consists of a proposal sub-network and a
detection sub-network. The proposal sub-network is a multi-
scale version of the RPN in Faster R-CNN, where detection is
performed at multiple output layers thus receptive fields match
objects of different scales. This multi-scale RPN can provide
better proposals for small objects than that of Faster R-CNN
so that they made a big improvement on the KITTI dataset
which contains many small objects. Our work shows that the
detection sub-network is a bottleneck of MS-CNN and we
propose a new detection sub-network which further improves
the pedestrian detection results on KITTI dataset.

III. ARCHITECTURE

In this section, we introduce SP-CNN, a detector with skip
ROI pooling for pedestrian detection.

A. Complementary region proposal networks

Inspired by MS-CNN, as shown in Fig. 1, we decide
to enhance the region proposal network by establishing an
independent RPN on different layers respectively such that
each RPN can only be responsible for training samples with
a given scale. During training, the weights W of the RPN are
learned from a set of training samples S = {(Ii, yi, Bi)}Ni=1. Ii
is a training image patch. yi is the class label of Ii, background
class always has a label of 0. Vector Bi = (bxi , b

y
i , b

w
i , b

h
i ) is

the bounding box coordinates, where bwi and bhi is the width
and height of the bounding box. N corresponds to the number
of training patches. We use a multi-task loss L on each image
patch to jointly train for region proposal classification and
bounding box regression:

L(W) =
M∑

m=1

∑
i∈Sm

αml
m(Ii, yi, Bi|W)) (1)
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Fig. 1: The multi-scale region proposal networks. The baseline
network is VGG16 and the three RPNs are established on
conv4-1, conv5-3 and conv6-1 respectively. They work jointly
to provide region proposals for downstream pedestrian detec-
tor. More details can be found in [14].

.

where M is the number of proposal sub-networks, αm is
the weight of loss lm, and S = {S1, S2, . . . , SM} with Sm

the set of training examples of scale m and it’s the only
contribution to the loss of proposal network m. Inspired by
the success of joint learning of classification and bounding
box regression [19], [21], the loss of each proposal network
combines these two objectives:

l(I, y, B|W) = Lcls(p(I), y) + λ[y ≥ 1]Lloc(b, b̂) (2)

Here, p(I) = (p0(I), p1(I), . . . , pC(I)) is the probability
distribution over classes and Lcls(p(I), y) = − log py(I) is
the cross entropy loss. λ is a trade-off coefficient between
classification loss and regression loss. b̂ = (b̂x, b̂y, b̂w, b̂h) is
the regressed bounding box, and

Lloc(b, b̂) =
1

4

∑
j∈{x,y,w,h}

smoothL1(bj , b̂j) (3)

the smoothed bounding box regression loss of [19]. The term
y ≥ 1 means the bounding box loss is activated only for
positive samples since background samples hold y = 0. The
optimal parameters W? = arg minWL(W) are learned by
stochastic gradient descent.

B. Skip-layer Pooling

It’s a classic idea to connect layers with skip paradigm
in neural networks, where activations from a lower layer are
routed directly to a higher layer while bypassing intermediate
layers. The specifics of the wiring and combination method
differ between models and applications. Our usage of skip
connections is most closely related to those used by Sermanet
et al. [22]. In [22], they directly combine activations from
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Fig. 2: Object detection sub-network with skip pooling. We
pool from conv3, conv4 and conv5 simultaneously and the
activations are L2 normalized, concatenated and scaled to form
a fixed-length feature descriptor.

different layers together, but in section V-A we argue that it
is essential to L2 normalize the activations prior to combining
them. The activation normalization trick when combining
features across layers was recently noted by ParseNet [23]
in a model for semantic segmentation that makes use of
global image context features. Skip connections have also been
applied in recent models for semantic segmentation, such as
the “fully convolutional networks” in [24], and for object
instance segmentation, such as the “hypercolumn features”
in [25].

The skip pooling architecture of our detection network is
depicted in Fig. 2. Different from prior networks such as Fast
R-CNN, Faster R-CNN, and SPPnet, which pool from the
last convolutional layer (“conv5-3”) in VGG16, we pool from
multiple layers (“conv3-3, conv4-3, conv5-3”) for each ROI.
These pooled features are then L2-normalized, concatenated
and rescaled to produce a fixed-length feature descriptor.
In [17], they feed the fixed-length feature descriptor into a 1x1
convolution layer to produce a matched shape that previously
trained VGG16 network holds. They preserve the existing
layer shapes to benefit from pre-training, but in turn, it limits
the design space of downstream detector’s architecture. We
propose a new detector that has different layers and dimensions
from VGG16, thus there is no need to keep the layer shape
compatible with VGG16. As a result, we modify the filter of
the convolutional layer, following scale layer, to be of size 3x3.
To compensate the loss of amplitudes after L2 normalization,
our scale layer uses a fixed scale of 1000.

C. Sampling

We adopt the bootstrapping sampling strategy described
in [14] to generate the training set S = {P,N} for each
proposal detector, where P is the positive samples and N the

negative samples. A bounding box B is considered as positive
if its IoU (Intersection over Union) Biou is beyond 0.5, where

Biou = max
i∈Q

IoU(B,B?
i ) (4)

Q is the set of ground truth and IoU the intersection over
union between anchor B and ground truth bounding box B?

i .
The corresponding class label and ground truth bounding box
of anchor B is yj and B?

j ,where j = arg maxj∈QIoU(B,B?
j )

and (I, yj , B) is added to the positive set P . All the positive
samples in P with y ≥ 1 contribute to the loss. Samples with
IoU less than 0.2 are considered as negative training sample
candidates and the remaining samples are discarded. With the
strategy of bootstrapping, the final negative training samples
N are γ times the size of P .

IV. EXPERIMENTS

A. Experimental setup

We train and evaluate our model on two popular
datasets: Caltech [26] and KITTI [16]. We use caffe [27]
framework to train the multi-scale region proposal network
and the pedestrian detection network. All the experiments use
a pre-trained VGG16 model downloaded from the Caffe model
zoo. The training process consists of two stages. The first stage
uses random sampling and a small trade-off coefficient λ to
train the RPN. We train the fist stage for 10k iterations with a
base learning rate of 0.00005. The second stage is initialized
using the weights trained in the first stage. In the second stage
bootstrapping sampling is used and we set λ = 1.

name hr vr ar overlap filter

All [20 inf] [0.2 inf] 0 0.5 1.25
Reasonable [50 inf] [0.65 inf] 0 0.5 1.25
Scale=near [80 inf] [inf inf] 0 0.5 1.25

Scale=medium [30 80] [inf inf] 0 0.5 1.25
Scale=large [100 inf] [inf inf] 0 0.5 1.25

Ar=all [50 inf] [inf inf] 0 0.5 1.25
Ar=typical [50 inf] [inf inf] 0 0.5 1.25
Occ=partial [50 inf] [0.65 1] 0 0.5 1.25
Occ=heavy [50 inf] [0.2 0.65] 0 0.5 1.25
Overlap=25 [50 inf] [0.65 inf] 0 0.25 1.25
Overlap=50 [50 inf] [0.65 inf] 0 0.5 1.25
Expand=125 [50 inf] [0.65 inf] 0 0.5 1.25
Expand=150 [50 inf] [0.65 inf] 0 0.5 1.50

TABLE I: Testing Scenarios (part). name: experiment name,
hr: height range to test, vr: visibility range to test, ar: aspect
ratio range to test, overlap: overlap threshold for evaluation,
filter: expanded filtering.

B. Caltech Pedestrian Dataset

The Caltech Pedestrian Dataset consists of approximately
10 hours of 640x480 30Hz video taken from a vehicle driving
through regular traffic in an urban environment. About 250,000
frames (in 137 approximately minute long segments) with a
total of 350,000 bounding boxes and 2,300 unique pedestrians
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method All Reasonable Scale=near Scale=medium Scale=large Ar=all Ar=typical Occ=partial Occ=heavy Overlap=25 Overlap=50 Expand=125 Expand=150

VJ 99.5 94.7 89.9 99.4 86.2 94.2 93.8 98.7 98.8 91.3 94.7 94.7 96.1
HOG 90.4 68.5 44.0 87.4 37.9 66.5 62.8 84.5 96.0 66.6 68.5 68.5 71.9
SDN 78.4 37.9 23.7 74.6 18.5 36.5 34.1 49.4 78.8 33.8 37.9 37.9 37.9

Checkerboards+ 67.7 17.1 4.9 58.0 2.4 15.1 13.4 31.3 77.9 8.9 17.1 17.1 17.1
DeepParts 64.8 11.9 4.8 56.4 4.4 10.6 8.7 19.9 60.4 13.3 11.9 11.9 11.9

CompACT-Deep 64.4 11.7 4.0 53.2 2.6 9.6 7.0 25.1 65.8 9.1 11.7 11.7 11.7
RPN+BF 64.7 9.6 2.3 53.9 1.2 7.7 6.0 24.2 74.4 7.9 9.6 9.6 9.6
MS-CNN 60.9 10.0 2.6 49.1 2.0 8.2 6.3 19.2 60.0 7.1 10.0 10.0 10.0

SP-CNN(ours) 58.6 9.1 1.8 45.6 1.6 7.2 5.5 21.5 58.0 6.8 9.1 9.1 9.1

TABLE II: Caltech evaluation results (more details). This table shows the results of more evaluation scenarios, our method
achieves state-of-the-art accuracy in most of the scenarios thus is more stable than RPN+BF and MS-CNN. The metric is miss
rate at fppi = 10−1.

(a) All (b) Reasonable

(c) Scale=medium (d) Scale=near

Fig. 3: Evaluation results of “All”, “Reasonable”, “Scale=medium” and “Scale=near” scenarios on the Caltech Pedestrian
Dataset. Our approach is referred to as SP-CNN. The legend is ranked according to the miss rate at fppi = 10−1. Details of
these scenarios are shown in TABLE I.
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Fig. 4: Selected examples of pedestrian detection results on the Caltech test set using our network. The training set is set01-
set05 and the test set is set06-set10. Our network can detect pedestrians with small heights very well. Each bounding box is
associated with a softmax score in [0, 1]. A score threshold of 0.8 is used to display these images.

were annotated. The annotation includes temporal correspon-
dence between bounding boxes and detailed occlusion labels.
The training data (set00-set05) consists of six training sets,
each with 6-13 one-minute long sequence files, along with all
annotation information. The testing data (set06-set10) consists
of five sets and evaluation is performed every 30th video
frame.

We evaluate the results using the Matlab code provided
with the dataset and compare with other methods including
Checkerboards+ [28], CompACT-Deep [29], DeepParts [30],
MS-CNN [14], and RPN+BF [15]. The metric used in evalu-
ation is log-average Miss Rate on False Positive Per Image
(FPPI) in [10−2, 100]. The most relevant working point is
defined as position where FPPI = 10−1, which means, only
one false detection every ten images is allowed. The miss
rate for each of the detectors at this working point is shown
in the legend, more details can be found in [26]. Fig. 3
shows a part of the evaluation results. They correspond to 4
testing scenarios which are “All”, “Reasonable”, “Scale=near”,
and “Scale=medium” respectively. Details of the 4 testing
scenarios are shown in TABLE I and a more detailed results
including most of the testing scenarios are shown in TABLE II.
In the “All” scenario, our method has an MR of 59% ,which
is 2 percentage points lower than MS-CNN and 6 points lower
than RPN+BF. In the “Reasonable” scenario, our method has
a miss rate of 9% which is 1 point lower than MS-CNN and
RPN+BF after rounding. The “All” scenario has more small
pedestrian objects than “Reasonable” as its height range is
from 20 to infinity while “Reasonable” is from 50 to infinity.
Although the visibility range is different between “All” and
“Reasonable”, further experiments show that with the same
visibility range as “All”, our method still has an MR of 9% in
the “Reasonable” scenario. So we can get a conclusion that our
method is more friendly to small objects thus outperforms the

other methods in the “All” scenario. In the “scale=medium”
scenario, our method outperforms the closest competitor by
3 points while in the “scale=near” scenario, the miss rate of
our method is slightly better than RPN+BF and MS-CNN,
which gives a further evidence that our detector misses fewer
small objects. Table III showes the running time on Caltech.
Our method has a comparable test speed while achieving a
lower miss rate than RPN+BF. Selected examples of pedestrian
detection results on the Caltech test set are shown in Fig. 4.

method hardware time/img(s) MR (%)

LDCF[] CPU 0.6 25
CCF[] Titan Z GPU 13 17

CompACT-Deep[] Tesla K40 GPU 0.5 12
RPN+BF[] Tesla K40 GPU 0.5 10

SP-CNN[ours] Tesla K20 GPU 0.36 9

TABLE III: Comparisons of running time on the Caltech
dataset.

C. KITTI

The KITTI dataset consists of video frames from au-
tonomous driving scenes, with 7,481 images for training and
7,518 images for testing. Since the ground truth annotations
of the KITTI test set are not released, we use two strategies
to split the KITTI training set into a train set and a validation
set. MS-CNN and SubCNN [31] are the top two methods on
KITTI dataset in published works so far. To compare with
SubCNN, we split the training set into 3,682 training images
and 3,799 testing images. To compare with MS-CNN. we split
the training set into 3,712 training images and 3,769 testing
images. The metric we use is average precision and there are
three evaluation modes which are shown in TABLE IV. The
validation results are shown in TABLE V and TABLE VI.
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Fig. 5: Selected examples of pedestrian detection results on the KITTI test set using our network. The training set contains
3,712 images and the validation set contains 3,769 images. Our network can detect pedestrians with small heights very well.
Each bounding box is associated with a softmax score in [0, 1]. A score threshold of 0.8 is used to display these images.

The moderate test set contains images with a minimum height
of 25 pixels indicating that there may be many small objects
to detect. Our method leverages skip pooling methodology to
improve the detection accuracy thus achieving better results
than SubCNN and MS-CNN in moderate mode. The other two
modes are also got improved by using our network. Selected
examples of pedestrian detection results on the KITTI dataset
are shown in Fig. 5

mode Min. height (Px) Max. occlusion Max. truncation (%)

easy 40 Fully visible 15
hard 25 Difficult to see 50

moderate 25 Partly occluded 30

TABLE IV: KITTI evaluation modes. Different modes corre-
spond to different difficulties and all methods evaluated on the
benchmark server are ranked based on the moderately difficult
results.

method easy moderate hard

SubCNN 86.43 69.95 64.03
Ours 90.70 86.55 78.52

TABLE V: Comparison between SubCNN and Our network
on the KITTI validation set. Our method outperforms SubCNN
in all three modes.

V. DESIGN EVALUATION

A. Which layers to pool from?

Our network uses skip pooling strategy which pools regions
of interest (ROI) from multiple layers and then normalize,
concatenate and re-scale these features. There are several

method easy moderate hard

MS-CNN 76.38 72.26 64.08
Ours 82.40 77.06 69.16

TABLE VI: Comparison between MS-CNN and Our network
on the KITTI validation set. MS-CNN is the previous state-
of-the-art method on KITTI dataset.All methods submitted to
KITTI benchmark server are ranked based on the moderately
difficult results, our method improves the mAP from 72.26%
to 77.06% in moderate mode.

convolutional layers in VGG16, the problem is that we should
pool from which layers. A straightforward approach is to pool
the ROI from each layer and then use a convolutional layer
to reduce the dimensionality. However, this may not work as
illustrated later. To get a better insight of this problem, we
consider several combinations and evaluate them separately,
the evaluation results are shown in TABLE VII. When pooling
from conv3, conv4 and conv5 simultaneously and using L2
normalization together with a scale layer, we get a miss rate
of 9.8% which is the best among all the combinations. The
normalization and scaling strategy significantly improves the
detection accuracy.

ROI pooling from: Merge features using:
conv3 conv4 conv5 conv L2+scale+conv

√
15.2% 10.0%

√ √
10.8% 10.0%

√ √ √
12.5% 9.1%

TABLE VII: Combining features from different layers. Metric:
miss rate at fppi = 10−1. Training set: set01-set05 of Caltech
dataset. Testing set: set06-set10 of Caltech dataset.
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B. How should we set the scale factor?

In VGG16, the output features at different layers can have
very different amplitudes, so that directly combine them may
lead to unstable learning. It is necessary to normalize the
amplitude such that the features being pooled from multiple
layers have similar magnitude. To compensate for the normal-
ization, we explicitly re-scale the features with a empirically
determined factor. TABLE VIII shows the effects of using
factors with different orders.when scaled by 1000, our network
gets the best results on both of the Caltech and KITTI datasets.

scale factor Caltech (MR) KITTI(mAP)

1 49.4% 31.8%
10 22.3% 19.6%
100 10.4% 73.6%

1000 9.1% 76.3%

TABLE VIII: Evaluation results of different scales. For Cal-
tech the metric is miss rate and for KITTI the metric is mean
average precision.

Input image size Caltech (MR) KITTI (mAP)

384 12.5% 71.2%
576 11.3% 74.3%
768 9.1% 77.1%

TABLE IX: Evaluation results of different input image sizes.
For Caltech the metric is miss rate and for KITTI the metric
is mean average precision.

C. The effect of input image size

The input image size can be a critical factor for object
detection with convolutional neural networks, an appropriate
image size means a better detection accuracy. The selection
of input image size depends on the specifics of each network
structure. With input image up-sampling, we can usually get
feature maps with a higher resolution which is very helpful for
detection small objects. TABLE IX evaluates different input
image size on Caltech and KITTI datasets.

D. Embedded with deconvolution layer

Our network is initialized with a pre-trained ImageNet
classification model. This pre-trained model uses an input
image size of 224x224, we can benefit most from this model
if using a similar image patch size. But images in Caltech or
KITTI dataset are much larger than ImageNet, there are many
small objects in these images. For these small objects, the
corresponding feature maps of higher convolutional layer are
very weak and less discriminative. Fast R-CNN and Faster R-
CNN explicitly up-sample the input images (by ∼2 times) to
get a stronger response for small objects. Our method also
up-samples the original images and get a better detection
accuracy. However the up-sampling strategy does not directly
improve resolution of the convolutional feature maps, a better
approach is to use feature map approximation since it reduces

memory usage and explicitly increases the resolution of feature
maps. When using deconvolution the average precision of
moderately difficult results improves from 74.3% to 76.2%
on the KITTI validation set.

VI. CONCLUSION

In this work, we have presented a deep convolutional
neural network that combines a multi-scale RPN and a novel
object detection network where we leverage the skip pooling
paradigm to improve the detection accuracy for both large
and small objects. To get the final network structure, we
have considered varieties of hyper parameters and evaluated
them on Caltech and KITTI validation sets. Furthermore, we
have also investigated the usage of a deconvolutional layer
before ROI pooling which further improves the performance
of our detector. We comprehensively evaluate our network on
Caltech and KITTI datasets, our method achieves state-of-the-
art performance on Caltech dataset and presents a comparable
result on KITTI dataset while maintaining a good speed.
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