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Abstract

Recently, very deep convolutional neural networks

(CNNs) have shown great power in single image super-

resolution (SISR) and achieved significant improvements

against traditional methods. Among these CNN-based

methods, the residual connections play a critical role in

boosting the network performance. As the network depth

grows, the residual features gradually focused on different

aspects of the input image, which is very useful for recon-

structing the spatial details. However, existing methods ne-

glect to fully utilize the hierarchical features on the resid-

ual branches. To address this issue, we propose a novel

residual feature aggregation (RFA) framework for more effi-

cient feature extraction. The RFA framework groups several

residual modules together and directly forwards the fea-

tures on each local residual branch by adding skip connec-

tions. Therefore, the RFA framework is capable of aggre-

gating these informative residual features to produce more

representative features. To maximize the power of the RFA

framework, we further propose an enhanced spatial atten-

tion (ESA) block to make the residual features to be more

focused on critical spatial contents. The ESA block is de-

signed to be lightweight and efficient. Our final RFANet is

constructed by applying the proposed RFA framework with

the ESA blocks. Comprehensive experiments demonstrate

the necessity of our RFA framework and the superiority of

our RFANet over state-of-the-art SISR methods.

1. Introduction

The task of single image super-resolution (SISR) is to

map a degraded low-resolution (LR) image to a visually

high-resolution (HR) image, which is a highly ill-posed pro-

cedure since multiple HR solutions can map to one LR

input. Many image SR methods have been proposed to

tackle this inverse problem, including early interpolation-

based [37], reconstruction-based [34], and recent learning

based methods [27, 28, 22, 4, 12, 13, 36, 3].
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Figure 1. (a) A chain of residual modules. A residual module con-

sists of a residual block (RB) and an identity connection. (b) The

residual feature aggregation (RFA) framework.

Recent deep convolutional neural network based meth-

ods have made great progress in reconstructing the HR im-

ages. The first successful attempt was done by Dong et

al. [4], who proposed the three-layer SRCNN for SISR

and achieved superior performance against conventional

methods. Kim et al. further increased the depth to 20 in

VDSR [13] and DRCN [14] by introducing residual learn-

ing to ease the training difficulty. Following these pioneer-

ing works, many CNN-based methods have been proposed

and achieved state-of-the-art results in SISR [15, 18, 40, 38,

3, 17, 7, 9, 39].

Although considerable improvements have been

achieved in SISR, existing CNN-based models are still

faced with some limitations. As the network depth grows,

the features in each convolutional layer would be hier-

archical with different receptive fields. Most existing

CNN-based models do not make fully use of the infor-

mation from the intermediate layers. Especially, residual

learning is widely used in CNN-based models to extract

the residual information of input features, while almost all

the existing SR models only use the residual learning as a

strategy to ease the training difficulty. For clarity, we call

the entire residual construct as a residual module and the

residual branch as a residual block. Usually, a SR model

is made by stacking a bunch of residual modules, where

the residual features are fused with the identity features

before propagating to the next module (Fig. 1(a)). As a
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result, later residual blocks can only see the complex fused

features. These methods neglect to make fully use of the

cleaner residual features, thereby leading to performance

degradation. The residual features, however, are extremely

helpful for reconstructing the HR images.

To address these problems, we propose a residual fea-

ture aggregation (RFA) framework, which aggregates the

local residual features for more powerful feature represen-

tation. Fig. 1(a) shows a common network design where

multiple residual modules are stacked together to build a

deep network. Under this design, the residual features of

preceding blocks must go through a long path to propagate

to subsequent blocks. After a series of addition and convo-

lutional operations, these features are quickly merged with

the identity features to form more complex features. There-

fore, these highly representative residual features are used

very locally, which limits the representational power of the

network. As depicted in Fig. 1(b), the proposed RFA frame-

work reorganizes the stacked residual modules, where the

last residual module is extended to cover the fist three resid-

ual modules to ease the training difficulty. Then the resid-

ual features of the first three blocks are sent directly to the

output of the last residual block. Finally, these hierarchical

features are concatenated together and sent to a 1×1 convo-

lutional layer to generate a more representative feature. The

only overhead is a 1 × 1 convolution every four residual

blocks, which is negligible compared with the whole very

deep networks.

As shown in Fig. 8, the residual features of different

residual blocks can reflect different aspects of the spatial

contents. But these residual features are not highlighted

enough. It is necessary to enhance the spatial distribution

of residual features with spatial attention mechanism so that

the performance of our RFA framework could be further im-

proved. However, existing spatial attention mechanisms in

image SR are either less powerful or computationally inten-

sive. For example, the plain spatial attention in [10] lacks

of a large receptive field which is essential for image SR

and the Non-Local mechanisms in [19, 3] consume a lot of

computational resource. To solve this issue, we propose a

lightweight and efficient enhanced spatial attention (ESA)

block. The ESA block enables a large receptive field by the

joint use of a strided convolution and a max-pooling with

large window size. To keep the body of the ESA block

lightweight enough, we apply a 1 × 1 convolution at the

beginning of the ESA block for channel dimension reduc-

tion.

To verify the effectiveness of the proposed methods, we

build a very deep network RFANet by combining the RFA

framework with the ESA block. The RFANet achieves

comparable or superior results compared with RCAN [38]

(16M) and SAN [3] (15.7M) by using much fewer parame-

ters (11M). In summary, the main contributions of this paper

are as follows:

• We propose a general residual feature aggregation

(RFA) framework for more accurate image SR. Com-

prehensive ablation study shows that the performance

of residual networks as well as dense networks can get

a substantial improvement.

• We propose an enhanced spatial attention (ESA) block

to adaptively rescale features according to the spatial

context. The ESA block allows the network to learn

more discriminative features. Besides, it is lightweight

and has better performance than the plain spatial atten-

tion block.

• We propose a residual feature aggregation network

(RFANet) which is constructed by incorporating the

proposed RFA framework with the powerful ESA

block. Thanks to the enhanced spatial attention mech-

anism, the RFA framework can aggregate more repre-

sentative features, thus generating more accurate SR

results.

2. Related Work

Super-resolution can be broadly divided into two main

categories: traditional and deep learning based methods.

Due to the powerful learning ability, the classical methods

have been outperformed by their deep learning based coun-

terparts. In this section, we briefly review the works related

to deep neural networks for single image super-resolution.

2.1. CNN­based Networks

Dong et al. [4] first proposed a shallow three-layer con-

volutional neural network (SRCNN) for image SR and

achieved superior performance against previous works. In-

spired by this pioneering work, Kim et al. designed deeper

VDSR [13] and DRCN [14] with 20 layers based on resid-

ual learning. Later, Tai et al. introduced recursive blocks

in DRRN [24] and memory blocks in MemNet [25]. These

methods extract features from the interpolated LR images,

which consumes a lot of memory and computation time. To

address this problem, Shi et al. proposed an efficient sub-

pixel convolutional layer in ESPCN [23], where LR feature

maps are upscaled into HR output at the end of the network.

Thanks to the efficient sub-pixel layer, many very deep net-

works have been proposed for a better performance. Lim et

al. proposed a very deep and wide network EDSR [18] by

stacking modified residual blocks in which the batch nor-

malization (BN) layers are removed. Ledig et al. introduced

the SRResNet in [16] and are further improved in [31] by

introducing the dense connections. Zhang et al. also used

dense connections in RDN [40] to utilize all the hierarchi-

cal features from all the convolutional layers.
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Figure 2. Basic architecture of a SR network. The red dotted rectangle represents the trunk part of the network, which consists of T base

modules (BM).

2.2. Attention­based Networks

Attention mechanism are widely used in recent computer

vision tasks, such as image captioning [32, 2], image and

video classification [8, 30]. It can be interpreted as a way to

bias the allocation of available resources towards the most

informative parts of an input signal [8]. Wang et al. [29]

proposed a powerful trunk-and-mask attention mechanism

inserted between the intermediate stages of deep residual

networks. Hu et al. [8] proposed the squeeze-and-excitation

network (SENet) to exploit channel-wise relationships and

achieved a significant improvement for image classification.

Recently, some attention-based models are also proposed

to further improve the SR performance. Zhang et al. [38]

proposed the residual channel attention network (RCAN)

by introducing the channel attention mechanism into a mod-

ified residual block for image SR. The channel attention

mechanism uses global average pooling to extract channel

statistics which are called first-order statistics. On the con-

trary, Dai et al. [3] proposed the second-order attention net-

work (SAN) to explore more powerful feature expression

by using second-order feature statistics. RCAN and SAN

are the two best performing methods among all currently

published methods in terms of PSNR.

3. Methodology

3.1. Basic Network Architecture for Image SR

Many recent SR networks have similar network archi-

tectures. Here we introduce one of the basic architecture

used by some state-of-the-art methods [18, 40, 38, 3]. As

shown in Fig. 2, a basic image SR network usually consists

of three parts: the head part, the trunk part and the recon-

struction part. The head part is responsible for initial feature

extraction with only one convolutional layer. Given the LR

input ILR, we can get the shallow feature F0 through this

layer

F0 = H(ILR) (1)

where H stands for the shallow feature extraction function

of the head part. Then the extracted feature F0 is sent to the

trunk part for deep feature learning. The trunk part is made

up of T base modules (BM), which can be formulated as

Ft = Bt(Ft−1) = Bt(Bt−1(. . . (B0(F0)) . . . )) (2)

where Bt denotes the t-th base module function. Ft−1 is the

input of the t-th module and Ft is the corresponding output.

Finally, the extracted deep feature Ft is upscaled through

the reconstruction part

ISR = R(Ft + F0) = G(ILR) (3)

where ISR is the super-resolved image, R denotes the re-

construction function and G denotes the function of the SR

network. Here, global residual learning is used to ease the

training difficulty, so the input to R is the element-wise ad-

dition of Ft and F0. The key module of the reconstruction

part is the upscale module, where appropriate number of

sub-pixel [23] convolutions are applied.

The SR network will be optimized with L1 loss function.

Given a training set of N LR image patches ILR and their

HR counterparts IHR, the loss function of the basic network

with the parameter set Θ is

L(Θ) =
1

N

N∑

i=1

||G(IiLR)− IiHR||1 (4)

3.2. Residual Feature Aggregation Framework

Residual learning has demonstrated its significance for

the image classification problem. Recently, residual learn-

ing is also introduced in image SR to further boost the

performance. Fig. 3(Left) depicts a basic residual mod-

ule used in EDSR [18] and ESRGAN [31]. The residual

modules are often stacked together to form the trunk part of

the SR network (Fig. 2). Each residual module consists of

two branches:the residual branch (i.e. residual block) and

the identity branch. In the task of image SR, the residual

block can produce some useful hierarchical features focus-

ing on different aspects of the original LR image. Consider

the scenario of several consecutive residual modules (e.g.

Fig. 1(a)), the feature of the first residual block must go

though a long path to reach the last module via repetitive
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Figure 3. Left: A basic residual module. Right: Details of the RFA module, which contains 4 residual blocks (RB) and a 1×1 convolutional

layer.

addition and convolution operations. As a result, the resid-

ual feature is hard to be fully utilized and plays a very local

role in the learning process of the entire network.

To solve this issue, we propose a residual feature aggre-

gation (RFA) framework to make a better use of the local

residual features. Fig. 3(Right) shows the details of an RFA

module which contains four residual blocks. As we can see,

the residual features of the first three blocks are sent directly

to the end of the RFA module and then concatenated to-

gether with the output of the last residual block. Finally, a

1×1 convolution is applied to fuse these features before the

element-wise addition with the identity feature. Compared

with the way of simply stacking multiple residual modules,

our RFA framework enables non-local use of the residual

features. The useful hierarchical information that preceding

residual blocks contain can be propagated to the end of the

RFA module without any loss or interference, thus leading

to a more discriminative feature representation.

The proposed residual feature aggregation methodology

is a general framework that can be easily applied with exist-

ing SR blocks (e.g. dense block [40]). We will investigate

the effects in detail when our RFA framework is used in

conjunction with the state-of-the-art blocks.

3.3. Enhanced Spatial Attention Block
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Figure 4. Left: The enhanced spatial attention (ESA) block.

Right: Details of the ESA mechanism.

In order to maximize the effectiveness of our RFA frame-

work, it is best to be used in conjunction with the spatial at-

tention mechanism, since we need the residual features to be

focused on spatial contents of key importance. To this end,

we design an enhanced spatial attention (ESA) block that is

more powerful than the plain one in [10]. The ESA mech-

anism works at the end of the residual block (Fig.4(Left))

to force the features to be more focused on the regions of

interest. We can get a more representative feature when ag-

gregating these highlighted features together. In the design

of an attention block, several elements have to be carefully

considered. First, the attention block must be lightweight

enough since it will be inserted into every residual module

of the network. Second, a large receptive field is required

for the attention block to work well for the task of image

SR.

As shown in Fig. 4(Right), the proposed ESA mech-

anism starts with a 1 × 1 convolutional layer to reduce

channel dimensions, so that the whole block can be ex-

tremely lightweight. Then to enlarge the receptive field we

use one strided convolution (with stride 2) followed by a

max-pooling layer. The combination of strided convolu-

tion and max-pooling is widely used in image classification

to quickly reduce the spatial dimensions at the beginning

of the network. However, the receptive field enlargement

brought by a regular 2 × 2 max-pooling layer is still very

limited. So we choose to apply the max-pooling operation

with a larger window (e.g. 7 × 7) and stride (e.g. stride 3).

Corresponding to the front, an up-sampling layer is added

to recover the spatial dimensions and a 1× 1 convolutional

layer is used to recover the channel dimensions. Finally, the

attention mask is generated via a sigmoid layer. We also

use a skip connection to forward the high-resolution fea-

tures before spatial dimension reduction directly to the end

of the block.

Put aside the amount of calculation, a potentially bet-

ter way to implement the spatial attention block is to use

the Non-Local block. Actually, there are works [19, 3]

that have attempted to use the Non-Local block to model

pixel-wise similarities in image SR. Though it brings per-

formance boost, the huge computation overhead is unac-

ceptable which violates the first element of our design prin-

ciple.

3.4. Implementation Details

We apply the RFA framework with the ESA block to

build our final SR network (RFANet). RFANet uses 30 RFA

modules and each RFA module contains 4 ESA blocks. In

the ESA block, the reduction ratio of the 1×1 convolutional

layer is set to 4 and we use three 3 × 3 convolutions in the

convolutional groups. For other convolution filters outside

the ESA block, the number of filters are set to 64.
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3.5. Discussions

Difference to MemNet. MemNet stands for the very deep

persistent memory network proposed by Tai et al. [25]. The

most crucial part of MemNet is the stacked memory blocks.

A memory block consists of a recursive unit and a gate unit

to explicitly mine persistent memory though an adaptive

learning process. The recursive unit is implemented by a

residual building block and this residual building block is

executed in each recursion to generate multi-level represen-

tations. The gate unit is responsible for adaptively learning

these representations. The unfolded memory block has a

similar connection pattern with our RFA framework. The

key difference is that memory block aggregates the output

features of a whole residual module while our RFA frame-

work concentrates on the feature of the residual branch.

Moreover, the memory block operates in a recursive manner

very locally. In RFA framework, the basic building blocks

are organized in a chain way so that each residual branch

can focus on different aspects of the LR image, so the ag-

gregated residual features would be more diverse and dis-

criminative.

Difference to RDN. The main building block of RDN [40]

is called residual dense block (RDB). RDB combines resid-

ual skip connections with dense connections. The motiva-

tion of RDB is that the hierarchical feature representations

should be fully used to learn local patterns. In a dense block,

each layer can have direct access to its subsequent layers.

Before merging with the identity branch, a 1 × 1 convolu-

tional layer is also used to fuse features coming from all the

intermediate layers. Though shares a similar motivation be-

hind the block design, our RFA module operates in a quite

different way. A RFA module contains several residual

modules and mainly aggregates features from the residual

branches. In contrast, the RDB collects intermediate fea-

tures between plain convolutional layers. The dense block is

very computationally intensive because of the dense feature

fusion strategy. Our RFA module is much more lightweight

since the feature aggregation only happens at the end of the

module. In general, the proposed RFA module works at a

higher level than the dense block and the performance can

be further boosted when applying our RFA framework to

the dense block (Table 1).

4. Experiments

4.1. Settings

Following previous works [40, 38, 3], we use 800 high-

resolution training images from DIV2K [26] dataset as

training set. During training, data augmentation is per-

formed by randomly rotating 90◦, 180◦, 270◦ and horizon-

tally flipping. In each training mini-batch, 16 LR color

patches with size 48 × 48 are used. For testing, we use

five standard benchmark datasets: Set5 [1], Set14 [33],

B100 [20], Urban100 [12], and Manga109 [21]. Bicubic

(BI) and blur-downscale (BD) degradation models [36] are

used when conducting experiments. The SR results are

evaluated by PSNR and SSIM metrics on Y channel of

transformed YCbCr space. Our model is trained by ADAM

optimizer with β1 = 0.9, β2 = 0.99, and ǫ = 10−8. The

learning rate is initialized as 5×10−4 and then decreases to

half every 2×105 iterations. We use PyTorch framework to

implement our models with a Titan Xp GPU.

4.2. Combination with Residual Block

In this section, we investigate the combination of our

RFA framework with the basic residual block used in

EDSR [18]. Different from the original residual block used

in image classification, EDSR removes the Batch Normal-

ization layers and achieved substantial improvements. The

baseline model contains 120 residual modules and we refer

to this model as “EDSR-Baseline”. Our RFA model adopts

30 RFA modules to keep the number of residual blocks the

same as EDSR-Baseline for a fair comparison. We refer

to this model as “RFA-EDSR” for short. As shown in the

second column of Table 1, the PSNR of EDSR-Baseline is

32.40 dB which demonstrates a strong baseline for image

SR. When deploying our RFA framework with the resid-

ual block (RFA-EDSR), the PSNR reaches 32.50 dB. Com-

pared with the EDSR-Baseline, the RFA-EDSR has only

one more 1×1 convolution every four residual blocks while

boosting the PSNR by 0.1 dB. We attribute this considerable

improvement to the effective design of our RFA framework

where the residual feature in each residual block can be bet-

ter utilized by the network. These comparisons demonstrate

that the proposed RFA framework is essential to very deep

networks for Image SR.

4.3. Combination with Dense Block

The motivation behind dense block [40] is also to com-

bine hierarchical cues available along the network depth

to get richer feature representations. But the combina-

tion happens inside a single residual module. In contrast,

our RFA framework aims to combining the residual fea-

tures at a higher level. It is reasonable to apply the RFA

framework in conjunction with the dense block to further

improve the performance. In this ablation study, we use

42 dense blocks to maintain similar number of parameters

with EDSR-Baseline and RFA-EDSR. We refer to the dense

block baseline model as “Dense-Baseline”. When applying

RFA framework with dense blocks (RFA-Dense), we use

14 RFA modules to make these two models comparable.

As shown in the third column of Table 1, RFA-Dense im-

proves the performance of Dense-Baseline from 32.42 dB to

32.51 dB. This indicates that the proposed RFA framework

can further combine the hierarchical information against the

dense block. Note that this semi-trained RRA-Dense model
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Table 1. Ablation results of different blocks combined with the RFA framework. We report the best PSNR (dB) values on Set5 (×4) in

4× 10
5 iterations.

Name EDSR-Baseline RFA-EDSR Dense-Baseline RFA-Dense CA SA ESA RFA-CA RFA-SA RFA-ESA (RFANet)

Residual Block
√ √

Dense Block
√ √

Channel Attention Block
√ √

Spatial Attention Block
√ √

Enhanced Spatial Attention Block
√ √

Residual Feature Aggregation
√ √ √ √ √

PSNR 32.40 32.50 32.42 32.51 32.56 32.48 32.56 32.56 32.54 32.65
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PSNR/SSIM

Bicubic

25.12/0.8003

FSRCNN

28.40/0.8921
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29.75/0.9245
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31.27/0.9408

DBPN

31.80/0.9463

SRFBN

31.94/0.9479

RCAN

31.94/0.9482

SAN

32.04/0.9485

RFA(Ours)

32.33/0.9502

Manga109(4x):

HeiseiJimen
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Figure 5. Visual comparisons for ×4 SR with BI degradation model.

already has higher PSNR than the original RDN [40].

4.4. Combination with Attention Block

By using attention mechanism, the performance of im-

age SR has achieved significant improvements. Here, we

will comprehensively investigate the effects of applying our

RFA framework to the attention blocks. Table 1 shows the

ablation results including channel attention (CA) [38], spa-

tial attention (SA) [10], enhanced spatial attention (ESA)

and their combinations (i.e. RFA-CA, RFA-SA and RFA-

ESA) with the RFA framework. As we can see, by using

channel attention block alone, the PSNR already achieves

32.56 dB, which demonstrates the excellent performance of

channel attention mechanism. The plain SA has a much

lower PSNR than CA, but when equipped with our RFA

framework, the RFA-SA achieves a comparable PSNR with

CA. On the contrary, RFA-CA does not show any consid-

erable improvement compared with CA. This indicates that

the RFA framework is best to be used with spatial attention

mechanism. To this end, we design an enhanced spatial at-

tention block and it achieves the same PSNR as CA, which

indicates its effectiveness for image SR. Furthermore, The

RFA-ESA solution improved the ESA from 32.56 dB to

32.65 dB. This shows that the proposed RFA framework

can further boost the performance of spatial attention mech-

anism by a large margin. Among all the investigated meth-

ods, the proposed RFA-ESA method achieves the best per-

formance and we will use it to compare with the state-of-

the-art methods. From now on, we use the name “RFANet”

to represent the RFA-ESA network.

4.5. Results with Bicubic Degradation (BI)

It is widely used to simulate LR images with BI degra-

dation model in image SR settings. To verify the effective-
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Table 2. Quantitative results with BI degradation model. Best and

second best results are highlighted and underlined.

Method Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9399

SRCNN [4] ×2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN [5] ×2 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020 36.67/0.9710

VDSR [13] ×2 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750

LapSRN [15] ×2 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740

MemNet [25] ×2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740

EDSR [18] ×2 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

SRMD [36] ×2 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761

NLRN [19] ×2 38.00/0.9603 33.46/0.9159 32.19/0.8992 31.81/0.9246 –/–

DBPN [6] ×2 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775

RDN [40] ×2 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780

RCAN [38] ×2 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 39.44/0.9786

SAN [3] ×2 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 39.32/0.9792

RFANet (Ours) ×2 38.26/0.9615 34.16/0.9220 32.41/0.9026 33.33/0.9389 39.44/0.9783

Bicubic ×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

SRCNN [4] ×3 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN [5] ×3 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

VDSR [13] ×3 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340

LapSRN [15] ×3 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350

MemNet [25] ×3 34.09/0.9248 30.01/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369

EDSR [18] ×3 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

SRMD [36] ×3 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403

NLRN [19] ×3 34.27/0.9266 30.16/0.8374 29.06/0.8026 27.93/0.8453 –/–

RDN [40] ×3 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484

RCAN [38] ×3 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702 34.44/0.9499

SAN [3] ×3 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671 34.30/0.9494

RFANet (Ours) ×3 34.79/0.9300 30.67/0.8487 29.34/0.8115 29.15/0.8720 34.59/0.9506

Bicubic ×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN [4] ×4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN [5] ×4 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

VDSR [13] ×4 31.35/0.8830 28.02/0.7680 27.29/0.7260 25.18/0.7540 28.83/0.8870

LapSRN [15] ×4 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900

MemNet [25] ×4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942

EDSR [18] ×4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

SRMD [36] ×4 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024

NLRN [19] ×4 31.92/0.8916 28.36/0.7745 27.48/0.7346 25.79/0.7729 –/–

DBPN [6] ×4 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137

RDN [40] ×4 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151

RCAN [38] ×4 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173

SAN [3] ×4 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169

RFANet (Ours) ×4 32.66/0.9004 28.88/0.7894 27.79/0.7442 26.92/0.8112 31.41/0.9187

Table 3. Quantitative results with BD degradation model. Best and

second best results are highlighted and underlined.

Method Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×3 28.78/0.8308 26.38/0.7271 26.33/0.6918 23.52/0.6862 25.46/0.8149

SPMSR [22] ×3 32.21/0.9001 28.89/0.8105 28.13/0.7740 25.84/0.7856 29.64/0.9003

SRCNN [4] ×3 32.05/0.8944 28.80/0.8074 28.13/0.7736 25.70/0.7770 29.47/0.8924

FSRCNN [5] ×3 26.23/0.8124 24.44/0.7106 24.86/0.6832 22.04/0.6745 23.04/0.7927

VDSR [13] ×3 33.25/0.9150 29.46/0.8244 28.57/0.7893 26.61/0.8136 31.06/0.9234

IRCNN [35] ×3 33.38/0.9182 29.63/0.8281 28.65/0.7922 26.77/0.8154 31.15/0.9245

SRMD [36] ×3 34.01/0.9242 30.11/0.8364 28.98/0.8009 27.50/0.8370 32.97/0.9391

RDN [40] ×3 34.58/0.9280 30.53/0.8447 29.23/0.8079 28.46/0.8582 33.97/0.9465

SRFBN [17] ×3 34.66/0.9283 30.48/0.8439 29.21/0.8069 28.48/0.8581 34.07/0.9466

RCAN [38] ×3 34.70/0.9288 30.63/0.8462 29.32/0.8093 28.81/0.8647 34.38/0.9483

SAN [3] ×3 34.75/0.9290 30.68/0.8466 29.33/0.8101 28.83/0.8646 34.46/0.9487

RFANet (Ours) ×3 34.77/0.9292 30.68/0.8473 29.34/0.8104 28.89/0.8661 34.49/0.9492

ness of our RFANet, we compare RFANet with 12 state-

of-the-art image SR methods: SRCNN [4], FSRCNN [5],

VDSR [13], LapSRN [15], MemNet [25], EDSR [18],

SRMD [36], NLRN [19], DBPN [6], RDN [40], RCAN [38]

and SAN [3]. Table 2 shows all the quantitative results with

BI model. In general, our RFANet can achieve compara-

ble or superior results compared with all the other meth-

ods including the extremely competitive RCAN and SAN.

Most quantitative results of RFANet are either the best or

the second best. For scale ×2, RFANet achieves the best

reuslts on Set14, the best SSIM on Urban100 and the high-

est PSNR on Manga109. For scale ×3, RFANet outper-

forms the other methods on all the datasets. Our RFANet

also has excellent performance with scale ×4, the best re-

sults are achieved on Set5, B100, Urban100 and Manga109,

respectively. Compared with other methods, we found that
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Figure 6. Visual comparisons for ×4 SR with BD degradation

model.

our RFANet behaves particularly well on Urban100 and

Manga109 datasets. This is mainly because both datasets

contain rich structured contents and our RFANet can grad-

ually aggregate these hierarchical information to form more

representative features. This property can be further verified

from the SSIM scores of our RFANet. The SSIM score is

focused on the visible structures in the image. For example,

on Urban100 (×2) dataset, our PSNR is the second best but

we achieve the best SSIM, which indicates our RFANet can

recover better visible structures. Similar phenomena can

also be found on Set14 (×4) dataset. The visual compar-

isons of Fig. 5 can also prove that our RFANet reconstructs

better structural details.

4.6. Results with Blur­downscale Degradation (BD)

Following [36, 38, 3], we also provide the results with

blur-downscale degradation (BD) model. We compare our

RFANet with 10 state-of-the-art methods: SPMSR [22],

SRCNN [4], FSRCNN [5], VDSR [13], IRCNN [35],

SRMD [36], RDN [40], SRFBN [17], RCAN [38], and

SAN [3]. As shown in Table 3, our RFANet outper-

forms other methods on all the datasets. Specifically, we

achieve 0.06dB PSNR gain over SAN on Urban100 dataset.

Compared with SAN, the PSNR gain on Set14 dataset is

marginal but we can still achieve considerable improvement

in terms of SSIM. The consistently better results of RFANet

indicate that our method can adapt well to scenarios with

multiple degradation models. Fig. 4.4 shows the visual su-

periority of our method.

4.7. Effects of Residual Feature Aggregation (RFA)

We now illustrate how our residual feature aggregation

design affects the output features in different stages of the

network. Inspired by [11], we adopt the weight norm as

an approximate for the dependency of a convolutional layer
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Figure 7. Average norms of filter weights. Each set of histograms

corresponds to one RFA module. There are four blocks inside a

RFA module. The histogram represents the norm of filter weights

in the aggregation convolutional layer w.r.t. the feature map of

each block.
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Figure 8. Average feature maps of residual blocks.

on its preceding layers. The weight norm is calculated by

the corresponding weights from all filters w.r.t. each resid-

ual feature map in the aggregation 1×1 convolutional layer

(see Fig. 3). In general, the larger the norm is, the stronger

dependency it has on this particular feature map. For clarity,

we choose to visualize every two modules in a total of 30

RFA modules. Fig. 7 presents the norm of the filter weights

vs. feature map index. The legend of Fig.7 shows the index

of residual blocks in each RFA module. Several observa-

tions can be made from the plot: (1) The aggregation layers

spread their weights over all the residual blocks which indi-

cates that all the residual features are directly used to pro-

duce the output features of the RFA module. (2) The vari-

ance of weight norms in latter modules are larger than that

of the previous modules. This indicates that the network

gradually learns to distinguish the residual features and as-

sign more weights to the features of critical importance. (3)

At the beginning, the last block contributes most than the

other three blocks. With the depth increases, the other three

blocks also play an important role in feature learning, indi-

cating the necessity of residual feature aggregation.

4.8. Effects of Enhanced Spatial Attention

Fig. 8 visualizes the average feature maps of residual

blocks within a RFA module. The top row is the feature

maps before attention mechanism and the bottom row is the

feature maps after attention mechanism. We can get some
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Figure 9. PSNR vs. Parameters on Urban100 (×4).

intuitive clues from this visualization: (1) The attention

mechanism has the effect of modulating the activation val-

ues. We can see that the activation ranges of the bottom row

are smaller than the top row, which can ease the training dif-

ficulty to some extent (e.g. residual scaling in EDSR [18]).

(2) Feature maps after the attention mechanism tend to con-

tain more negative values, showing a stronger effect of sup-

pressing the smooth area of the input image, which further

leads to a more accurate residual image.

4.9. Model Complexity Analysis

Fig. 9 shows the comparisons about model size and per-

formance with 11 stae-of-the-art SR methods:SRCNN [4],

FSRCNN [5], VDSR [13], LapSRN [15], MemNet [25],

NLRN [19], SRMD [36], DBPN [6], RDN [40], RCAN [38]

and SAN [3]. Our RFANet has much fewer parameters than

RDN, RCAN and SAN, but obtains better performance,

which verifies the effectiveness of our method. Compared

with DBPN, our RFANet achieves much higher PSNR with

a slightly larger model, indicating that we have a good

trade-off between performance and model complexity.

5. Conclusions

In this paper, we propose a general residual feature ag-

gregation (RFA) framework for image SR. The RFA frame-

work effectively groups the residual blocks together, where

the features of local residual blocks are sent directly to the

end of the RFA framework for fully utilizing these use-

ful hierarchical features. To maximize the power of the

proposed RFA framework, we further design an enhanced

spatial attention (ESA) block to make the residual features

to be more focused on spatial contents of key importance.

To compare with state-of-the-art methods, we propose the

RFANet by applying the RFA framework in conjunction

with the ESA block. Comprehensive benchmark evalua-

tions with BI and BD degradation models well demonstrate

the effectiveness of our RFANet in terms of both quantita-

tive and visual results.
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