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Abstract. The existing action tubelet detectors mainly depend on heuris-
tic anchor design and placement, which might be computationally expen-
sive and sub-optimal for precise localization of action instances. In this
paper, we present a conceptually simple, computationally efficient, and
more precise action tubelet detection framework, termed as MovingCen-
ter Detector (MOC-detector), by treating an action instance as a trajec-
tory of moving points. Based on the insight that movement information
could simplify and assist the action tubelet detection, our MOC-detector
is decomposed into three crucial head branches: (1) Center Branch for in-
stance center detection and action recognition, (2) Movement Branch for
movement estimation at adjacent frames to form trajectories of moving
points, (3) Box Branch for spatial extent detection by directly regressing
bounding box size at the estimated center point of each frame. These
three branches work together to generate the tubelet detection results,
which could be further linked to yield video-level tubes with a match-
ing strategy. Our MOC-detector outperforms the existing state-of-the-art
methods under the same setting for frame-mAP and video-mAP on the
JHMDB and UCF101-24 datasets. The performance gap is more evident
for higher video IoU, demonstrating that our MOC-detector is partic-
ularly useful for more precise action detection. We provide the code at
https://github.com/MCG-NJU/MOC-Detector.
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1 Introduction

Spatio-temporal action detection is an important problem in video understand-
ing, which aims to recognize all action instances present in a video and also
localize them in both space and time. It has wide applications in many scenar-
ios, such as video surveillance [20,12] and video captioning [31,36]. Some early
approaches [7,21,25,32,33] apply an action detector at each frame independently
and then link these frame-wise detection results across time using dynamic pro-
gramming matching [7,26] or tracking [33]. These methods fail to well capture
temporal information when conducting frame-level detection, and thus are less
effective for detecting action tubes in reality. To address this issue, some ap-
proaches [24,14,11,35,38,27] try to perform action detection at the clip-level by
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(a) Key frame center (b) Key frame center on all frames

(c) Move the `Point` to each frame center (d) Generate bbox from each center (Tubelet detection result)

Fig. 1. Motivation Illustration. We focus on devising an action tubelet detector
from a short sequence. Movement information naturally describes human behavior, and
each action instance could be viewed as a trajectory of moving points. In this view,
action tubelet detector could be decomposed into three simple steps: (1) localizing the
center point (red dots) at key frame (i.e., center frame), (2) estimating the movement
at each frame with respect to the center point (yellow arrows), (3) regressing bounding
box size at the calculated center point (green dots) for all frames. Best viewed in color
and zoom in.

exploiting short-term temporal information. In this sense, these methods input
a sequence of frames and directly output detected tubelets (i.e., a short sequence
of bounding boxes). This tubelet detection scheme yields a more principled and
effective solution for video-based action detection and has shown promising re-
sults on standard benchmarks.

The existing tubelet detection methods [24,14,11,35,38,27] are closely related
with the current mainstream object detectors such as Faster R-CNN [23] or
SSD [19], which operate on a huge number of pre-defined anchor boxes. Although
these anchor-based object detectors have achieved success in image domains,
they still suffer from critical issues such as being sensitive to hyper-parameters
(e.g., box size, aspect ratio, and box number) and less efficient due to densely
placed bounding boxes. These issues are more serious when adapting the anchor-
based detection framework from images to videos. First, the number of possible
tubelet anchors would grow dramatically when increasing clip duration, which
imposes a great challenge for both training and inference. Second, it is generally
required to devise more sophisticated anchor box placement and adjustment to
consider the variation along the temporal dimension. In addition, these anchor-
based methods directly extend 2D anchors along the temporal dimension which
predefine each action instance as a cuboid across space and time. This assump-
tion lacks the flexibility to well capture temporal coherence and correlation of
adjacent frame-level bounding boxes.

Inspired by the recent advances in anchor-free object detection [22,15,4,40,30],
we present a conceptually simple, computationally efficient, and more
precise action tubelet detector in videos, termed as MovingCenter detector
(MOC-detector). As shown in Figure 1, our detector presents a new tubelet
detection scheme by treating each instance as a trajectory of moving points. In
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this sense, an action tubelet is represented by its center point in the key frame
and offsets of other frames with respect to this center point. To determine the
tubelet shape, we directly regress the bounding box size along the moving point
trajectory on each frame. Our MOC-detector yields a fully convolutional one-
stage tubelet detection scheme, which not only allows for more efficient training
and inference but also could produce more precise detection results (as demon-
strated in our experiments).

Specifically, our MOC detector decouples the task of tubelet detection into
three sub-tasks: center detection, offset estimation and box regression. First,
frames are fed into a 2D efficient backbone network for feature extraction. Then,
we devise three separate branches: (1) Center Branch: detecting the action in-
stance center and category; (2) Movement Branch: estimating the offsets of the
current frame with respect to its center; (3) Box Branch: predicting bounding box
size at the detected center point of each frame. This unique design enables three
branches cooperate with each other to generate the tubelet detection results.
Finally, we link these detected action tubelets across frames to yield long-range
detection results following the common practice [14]. We perform experiments
on two challenging action tube detection benchmarks of UCF101-24 [28] and
JHMDB [13]. Our MOC-detector outperforms the existing state-of-the-art ap-
proaches for both frame-mAP and video-mAP on these two datasets, in partic-
ular for higher IoU criteria. Moreover, the fully convolutional nature of MOC
detector yields a high detection efficiency of around 25FPS.

2 Related Work

2.1 Object Detection

Anchor-based Object Detectors. Traditional one-stage [19,22,17] and two-
stage object detectors [6,9,5,23] heavily relied on predefined anchor boxes. Two-
stage object detectors like Faster-RCNN [23] and Cascade-RCNN [1] devised
RPN to generate RoIs from a set of anchors in the first stage and handled clas-
sification and regression of each RoI in the second stage. By contrast, typical
one-stage detectors utilized class-aware anchors and jointly predicted the cate-
gories and relative spatial offsets of objects, such as SSD [19], YOLO [22] and
RetinaNet [17].

Anchor-free Object Detectors. However, some recent works [30,40,15,4,41]
have shown that the performance of anchor-free methods could be competitive
with anchor-based detectors and such detectors also get rid of computation-
intensive anchors and region-based CNN. CornerNet [15] detected object bound-
ing box as a pair of corners, and grouped them to form the final detection.
CenterNet [40] modeled an object as the center point of its bounding box and
regressed its width and height to build the final result.

2.2 Spatio-temporal Action Detection

Frame-level Detector. Many efforts have been made to extend an image
object detector to the task of action detection as frame-level action detec-
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tors [7,32,21,25,26,33]. After getting the frame detection, linking algorithm is
applied to generate final tubes. Although flows are used to capture motion in-
formation, frame-level detection fails to fully utilize the video’s temporal infor-
mation.

Clip-level Detector. In order to model temporal information for detection,
some clip-level approaches or action tubelet detectors [14,11,35,16,38,27] have
been proposed. ACT [14] took a short sequence of frames and output tubelets
which were regressed from anchor cuboids. STEP [35] proposed a progressive
method to refine the proposals over a few steps to solve the large displacement
problem and utilized longer temporal information. Some methods [11,16] linked
frame or tubelet proposals first to generate tubes proposal and then did classi-
fication.

These approaches are all based on anchor-based object detectors, whose de-
sign might be sensitive to anchor design and computationally cost due to large
numbers of anchor boxes. Instead, we try to design an anchor-free action tubelet
detector by treating each action instance as a trajectory of moving points. Exper-
imental results demonstrate that our proposed action tubelet detector is effective
for spatio-temporal action detection, in particular for the high video IoU.

3 Approach

Overview. Action tubelet detection aims at localizing a short sequence of
bounding boxes from an input clip and recognizing its action category as well.
We present a new tubelet detector, coined as MovingCenter detector (MOC-
detector), by viewing an action instance as a trajectory of moving points. As
shown in Figure 2, in our MOC-detector, we take a set of consecutive frames as
input and separately feed them into an efficient 2D backbone to extract frame-
level features. Then, we design three head branches to perform tubelet detection
in an anchor-free manner. The first branch is Center Branch, which is defined
on the center (key) frame. This center branch localizes the tubelet center and
recognizes its action category. The second branch is Movement Branch, which
is defined over all frames. This movement branch tries to relate adjacent frames
to predict the center movement along the temporal dimension. The estimated
movement would propagate the center point from key frame to other frames to
generate a trajectory. The third branch is Box Branch, which operates on the de-
tected center points of all frames. This branch focuses on determining the spatial
extent of the detected action instance at each frame, by directly regressing the
height and width of the bounding box. These three branches collaborate together
to yield tubelet detection from a short clip, which will be further linked to form
action tube detection in a long untrimmed video by following a common linking
strategy [14]. We will first give a short description of the backbone design, and
then provide technical details of three branches and the linking algorithm in the
following subsections.

Backbone. In our MOC-detector, we input K frames and each frame is with
the resolution of W × H. First K frames are fed into a 2D backbone network
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Backbone

H/R * W/R * (K * 64)

Key Frame’s Heatmap Movement Prediction WH Prediction

Center Branch

H/R * W/R * (K * 64)

Movement Branch Box Branch

H/R * W/R * (K * 2)

H/R * W/R  * 64

1 K

H/R * W/R * 64H/R * W/R * 64

T1 Tk

H/R * W/R * 2H/R * W/R * C

stacked feature
H/R * W/R * (K*64)

input features
K * (H/R * W/R * 64)

Conv1
(K*64) * 256 * 3 * 3

Conv2
256 * C * 1 * 1

Key Frame’s Heatmap
H/R * W/R * C

stacked feature
H/R * W/R * (K*64)

input features
K * (H/R * W/R * 64)

Movement Prediction
H/R * W/R * (K*2)

Conv1
(K*64) * 256 * 3 * 3

Conv2
256 * (K*2) * 1 * 1

separate feature
H/R * W/R * 64
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H/R * W/R * 2

Conv1
64 * 256 * 3 * 3

Conv2
256 * 2 * 1 * 1

Ti

Center Branch

Movement Branch

Box Branch

* K

H * W * 3H * W * 3

1 K

input features
K * (H/R * W/R * 64)

Fig. 2. Pipeline of MOC-detector. In the left, we present the overall MOC-detector
framework. The red cuboids represent the extracted features, the blue boxes denote
the backbone or detection head, and the gray cuboids are detection results produced
by the center branch, the movement branch, the box branch. In the right, we show
the detailed design of each branch. Each branch consists of a sequence of one 3*3 conv
layer, one ReLu layer and one 1*1 conv layer, which is presented as yellow cuboids.
The parameters of convolution are input channel, output channel, convolution kernel
height, convolution kernel width.

sequentially to generate a feature volume f ∈ RK×W
R ×H

R ×B . R is the spatial
downsample ratio and B denotes channel number. To keep the full temporal in-
formation for subsequent detection, we do not perform any downsampling over
the temporal dimension. Specifically, we choose DLA-34 [37] architecture as our
MOC-detector feature backbone following CenterNet [40]. This architecture em-
ploys an encoder-decoder architecture to extract features for each frame. The
spatial downsampling ratio R is 4 and the channel number B is 64. The ex-
tracted features are shared by three head branches. Next we will present the
technical details of these head branches.

3.1 Center Branch: Detect Center at Key Frame

The center branch aims at detecting the action instance center in the key frame
(i.e., center frame) and recognizing its category based on the extracted video
features. Temporal information is important for action recognition, and thereby
we design a temporal module to estimate the action center and recognize its class
by concatenating multi-frame feature maps along channel dimension. Specifically,
based on the video feature representation f ∈ RW

R ×H
R ×(K×B), we estimate a

center heatmap L̂ ∈ [0, 1]
W
R ×H

R ×C for the key frame. The C is the number
of action classes. The value of L̂x,y,c represents the likelihood of detecting an
action instance of class c at location (x, y), and higher value indicates a stronger
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possibility. Specifically, we employ a standard convolution operation to estimate
the center heatmap in a fully convolutional manner.

Training. We train the center branch following the common dense pre-
diction setting [15,40]. For ith action instance, we represent its center as key
frame’s bounding box center and utilize center’s position for each action cate-
gory as the ground truth label (xci , yci). We generate the ground truth heatmap

L ∈ [0, 1]
W
R ×H

R ×C using a Gaussian kernel which produces the soft heatmap

groundtruth Lx,y,ci = exp(− (x−xci
)2+(y−yci )

2

2σ2
p

). For other class (i.e., c 6= ci), we

set the heatmap Lx,y,c = 0. The σp is adaptive to instance size and we choose
the maximum when two Gaussian of the same category overlap. We choose the
training objective, which is a variant of focal loss [17], as follows:

`center = − 1

n

∑
x,y,c

{
(1− L̂xyc)α log(L̂xyc) if Lxyc = 1

(1− Lxyc)β(L̂xyc)
α log(1− L̂xyc) otherwise

(1)

where n is the number of ground truth instances and α and β are hyper-
parameters of the focal loss [17]. We set α = 2 and β = 4 following [15,40]
in our experiments. It indicates that this focal loss is able to deal with the
imbalanced training issue effectively [17].

Inference. After the training, the center branch could be deployed in tubelet
detection for localizing action instance center and recognizing its category. Specif-
ically, we detect all local peaks which are equal to or greater than their 8-
connected neighbors in the estimated heatmap L̂ for each class independently.
And then keep the top N peaks from all categories as candidate centers with
tubelet scores. Following [40], we set N as 100 and detailed ablation studies will
be provided in Appendix A.

3.2 Movement Branch: Move Center Temporally

The movement branch tries to relate adjacent frames to predict the movement
of the action instance center along the temporal dimension. Similar to center
branch, movement branch also employs temporal information to regress the cen-
ter offsets of current frame with respect to key frame. Specifically, movement
branch takes stacked feature representation as input and outputs a movement
prediction map M̂ ∈ RW

R ×H
R ×(K×2). 2K channels represent center movements

from key frame to current frames in X and Y directions. Given the key frame
center (x̂key, ŷkey), M̂x̂key,ŷkey,2j:2j+2 encodes center movement at jth frame.

Training. The ground truth tubelet of ith action instance is [(x1
tl, y

1
tl, x

1
br, y

1
br),

..., (xj
tl, y

j
tl, x

j
br, y

j
br), ..., (xK

tl , y
K
tl , x

K
br, y

K
br)] , where subscript tl and br represent top-

left and bottom-right points of bounding boxes, respectively. Let k be the key
frame index, and the ith action instance center at key frame is defined as follows:

(xkeyi , ykeyi ) = (b(xktl + xkbr)/2c, b(yktl + ykbr)/2c). (2)
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We could compute the bounding box center (xji , y
j
i ) of ith instance at jth frame

as follows:
(xji , y

j
i ) = ((xjtl + xjbr)/2, (y

j
tl + yjbr)/2). (3)

Then, the ground truth movement of the ith action instance is calculated as
follows:

mi = (x1i − x
key
i , y1i − y

key
i , ..., xKi − x

key
i , yKi − y

key
i ). (4)

For the training of movement branch, we optimize the movement map M̂ only
at the key frame center location and use the `1 loss as follows:

`movement =
1

n

n∑
i=1

|M̂xkey
i ,ykey

i
−mi|. (5)

Inference. After the movement branch training and given N detected action
centers {(x̂i, ŷi)|i ∈ {1, 2, · · · , N}} from center branch, we obtain a set of move-
ment vector {M̂x̂i,ŷi |i ∈ {1, 2, · · · , N}} for all detected action instance. Based
on the results of movement branch and center branch, we could easily generate
a trajectory set T = {Ti|i ∈ {1, 2, · · · , N}}, and for the detected action center
(x̂i, ŷi), its trajectory of moving points is calculated as follows:

Ti = (x̂i, ŷi) + [M̂x̂i,ŷi,0:2, M̂x̂i,ŷi,2:4, · · · , M̂x̂i,ŷi,2K−2:2K ]. (6)

3.3 Box Branch: Determine Spatial Extent

The box branch is the last step of tubelet detection and focuses on determining
the spatial extent of the action instance. Unlike center branch and movement
branch, we assume box detection only depends on the current frame and tempo-
ral information will not benefit the class-agnostic bounding box generation. In
this sense, this branch could be performed in a frame-wise manner. Specifically,
box branch generates a size prediction map Ŝj ∈ RW

R ×H
R ×2 for the jth frame to

directly estimate the bounding box size (i.e., width and height).
Training. The ground truth bbox size of ith action instance at jth frame

can be represented as follows:

sji = (xjbr − x
j
tl, y

j
br − y

j
tl). (7)

With this ground truth bounding box size, we optimize the Box Branch at the
center points of all frames for each tubelet with `1 Loss as follows:

`box =
1

n

n∑
i=1

K∑
j=1

|Ŝj
pji
− sji |. (8)

Note that the pji is the ith instance ground truth center at jth frame. So the
overall training objective of our MOC-detector is

` = `center + a`movement + b`box, (9)
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where we set a=1 and b=0.1 in all our experiments. Detailed ablation studies
will be provided in Appendix A.

Inference. We are ready to generate the tubelet detection results based on
center trajectories T from movement branch and size prediction heatmap Ŝ for
each location produced by this branch. For jth point in trajectory Ti, we use
(Tx, Ty) to denote its coordinates, and (w,h) to denote Box Branch size output

Ŝ at specific location. Then, the bounding box for this point is calculated as:

(Tx − w/2, Ty − h/2, Tx + w/2, Ty + h/2). (10)

3.4 Tubelet Linking

After introducing the technical details of MOC, we are ready to describe how
to link the MOC-detector results to obtain tubes spanning different extents of
the video. Note that MOC determines temporal extent in the linking stage with
post-processing.

As our main goal is to propose a new tubelet detector and to fairly compare
with previous methods, we use the same linking algorithm in [14]. Given a video,
MOC extracts tubelets for each sequence of K frames and keeps top 10 tublets
as candidates, which are linked into the final tubes in a frame by frame man-
ner. Initialization: In the first frame, every candidate starts a new link. At a
given frame, candidates which are not assigned to any existing links start new
links. Linking: one candidate can only be assigned to one existing link when it
meets three conditions: (1) the candidate is not selected by other links, (2) the
candidate t has the highest score, (3) the overlap between link and candidate
is greater than a threshold τ . Termination: An existing link stops if it has
not been extended in consecutive K frames. Initialization and termination de-
termine tubes’ temporal extents. Tubes with low confidence and short duration
are abandoned. More details are described in [14].

4 Experiments

4.1 Datasets and Implementation Details

To verify the effectiveness of MOC-detector for video-based action detection,
we perform experiments on two challenging benchmarks: UCF101-24 [28] and
JHMDB [13]. We notice that AVA [8] is a larger dataset for action detection
but only contains a single-frame action instance annotation for each 3s clip,
which concentrates on detecting actions on a single key frame. Thus, AVA is not
suitable to verify the effectiveness of tubelet action detectors.

UCF101-24. The UCF101 dataset is a common benchmark for action recog-
nition and contains spatio-temporal action instance annotations for 3207 videos
from 24 sports classes. This video dataset is untrimmed and thus more challeng-
ing for action detection. Following the common setting [21,14], we report the
action detection performance for the first split only.
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No Movement Semi Movement Full Movement

(a) Generate bbox at key frame center, without any movement (b) First generate bbox at key frame center, then move the bbox (c) First move key frame center, then generate bbox at current frame center

Fig. 3. Illustration of Three Movement Strategies. Note that the arrow repre-
sents moving according to Movement Branch prediction, the red dot represents the key
frame center and the green dot represents the current frame center, which is localized
by moving key frame center according to Movement Branch prediction.

JHMDB. The HMDB51 dataset is another smaller action recognition bench-
mark with 51 action classes. JHMDB is a subset of HMDB51, containing 928
videos from 21 action classes from our daily life. It is worth noting that these
video clips are trimmed to the whole action instance. Thus the action detection
on JHMDB mainly focuses on classification and spatial detection. We report
results averaged over three splits following the common setting [21,14].

Evaluation Metrics. Following [33,7,14], we utilize frame mAP and video
mAP to evaluate detection accuracy. Both frame-level and video-level AP cal-
culations are based on IoU. The frame AP calculates the IoU based on the
frame-level bounding box while the video AP calculates the IoU based on the
video-level tube. The frame mAP is independent of the tube linking algorithm
but the video mAP depends both on tubelet detection and linking algorithm. To
better demonstrate the effectiveness of our MOC-detector on tubelet detection,
we use the same linking algorithm with the previous method ACT [14].

Implementation Details. We choose the DLA34 [37] as our backbone with
COCO [18] pretrain and ImageNet [3] pretrain. We provide MOC results with
COCO pretrain without extra explanation. For a fair comparison, we provide
two-stream results on two datasets with both COCO pretrain and ImageNet
pretrain in Section 4.3. The frame is resized to 288 × 288. The spatial down-
sample ratio R is set to 4 and the resulted feature map size is 72 × 72. During
training, we use the same data augmentation as [14] to the whole video: photo-
metric transformation, scale jittering, and location jittering. We use Adam with
a learning rate 5e-4 to optimize the overall objective. The learning rate adjusts to
convergence on the validation set and it decreases by a factor of 10 when perfor-
mance saturates. The iteration maximum is set to 12 epochs on UCF101-24 [28]
and 20 epochs on JHMDB [13].

4.2 Ablation Studies

For efficient exploration, we perform experiments only using RGB input modal-
ity, COCO pretrain, and K as 5 without extra explanation. Without special
specified, we use exactly the same training strategy in this subsection.

Effectiveness of Movement Branch. In MOC, Movement Branch impacts
on both bbox’s location and size. Movement Branch moves key frame center
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Table 1. Exploration study on MOC detector design with various combinations of
movement strategies on UCF101-24.

Method
Strategy

F-mAP@0.5 (%)
Video-mAP (%)

Move Center Bbox Align @0.2 @0.5 @0.75 0.5:0.95

No Movement 68.22 68.91 37.77 19.94 19.27
Semi Movement X 69.78 76.63 48.82 27.05 26.09

Full Movement (MOC) X X 71.63 77.74 49.55 27.04 26.09

to other frames to locate bbox center, named as Move Center strategy. Box
Branch estimates bbox size on the current frame center, which is located by
Movement Branch not the same with key frame, named as Bbox Align strategy.
To explore the effectiveness of Movement Branch, we compare MOC with other
two detector designs, called as No Movement and Semi Movement. We set the
tubelet length K = 5 in all detection designs with the same training strategy.
As shown in Figure 3, No Movement directly removes the Movement Branch
and just generates the bounding box for each frame at the same location with
key frame center. Semi Movement first generates the bounding box for each
frame at the same location with key frame center, and then moves the generated
box in each frame according to Movement Branch prediction. Full Movement
(MOC) first moves the key frame center to the current frame center according
to Movement Branch prediction, and then Box Branch generates the bounding
box for each frame at its own center. The difference between Full Movement and
Semi Movement is that they generate the bounding box at different locations:
one at the real center, and the other at the fixed key frame center. The results
are summarized in Table 1.

First, we observe that the performance gap between No Movement and Semi
Movement is 1.56% for frame mAP@0.5 and 11.05% for video mAP@0.5. Frame
mAP measures the detection quality without linking algorithm, while video mAP
mainly evaluates the tube level error of long-term detection. We find that the
Movement Branch has a relatively small influence on frame mAP, but contributes
much to improve the video mAP. We ascribe this result to the fact that accumu-
lating subtle errors of tubelets in the linking process will gradually deteriorate
video level detection. So it demonstrates that the movement information is im-
portant for improving video mAP. Second, we can see that Full Movement per-
forms slightly better than Semi Movement for both video mAP and frame mAP.
Without Bbox Align, Box Branch estimates bbox size at key frame center for all
frames, which causes a small performance drop with MOC. This small gap im-
plies that Box Branch is relatively robust to the box center and estimating bbox
size at small shifted location only brings a very slight performance difference.

Study on Movement Branch Design. In practice, in order to find an efficient
way to capture center movements, we implement movement branch in several
different ways. The first one is Flow Guided Movement strategy which utilizes
optical flow between adjacent frames to move action instance center. The second
strategy, Cost Volume Movement, is to directly compute the movement offset by
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Table 2. Exploration study on the Movement Branch design on UCF101-24 [28]. Note
that our MOC-detector adopts the Center Movement.

Method F-mAP@0.5 (%)
Video-mAP (%)

@0.2 @0.5 @0.75 0.5:0.95

Flow Guided Movement 69.38 75.17 42.28 22.26 21.16
Cost Volume Movement 69.63 72.56 43.67 21.68 22.46
Accumulated Movement 69.40 75.03 46.19 24.67 23.80

Center Movement 71.63 77.74 49.55 27.04 26.09

constructing cost volume between key frame and current frame following [39],
but this explicit computing fails to yield better results and is slower due to the
constructing of cost volume. The third one is Accumulated Movement strategy
which predicts center movement between consecutive frames instead of with
respect to key frame. The fourth strategy, Center Movement, is to employ 3D
convolutional operation to directly regress the offsets of the current frame with
respect to key frame as illustrated in Section 3.2. The results are reported in
Table 2.

We notice that the simple Center Movement performs best and choose it as
Movement Branch design in our MOC-detector, which directly employs a 3D
convolution to regress key frame center movement for all frames as a whole.
We will analyze the fail reason for other three designs. For Flow Guided Move-
ment, (i) Flow is not accurate and just represents pixel movement, while Center
Movement is supervised by box movement. (ii) Accumulating adjacent flow to
generate trajectory will enlarge error. For the Cost Volume Movement, (i) We ex-
plicitly calculate the correlation of the current frame with respect to key frame.
When regressing the movement of the current frame, it only depends on the
current correlation map. However, when directly regressing movement with 3D
convolutions, the movement information of each frame will depend on all frames,
which might contribute to more accurate estimation. (ii) As cost volume calcu-
lation and offset aggregation involve a correlation without extra parameters, it
is observed that the convergence is much harder than Center Movement. For Ac-
cumulated Movement, this strategy also causes the issue of error accumulation
and is more sensitive to the training and inference consistency. In this sense,
the ground truth movement is calculated at the real bounding box center during
training, while for inference, the current frame center is estimated from move-
ment branch and might not be so precise, so that Accumulated Movement would
bring large displacement to the ground truth.

Study on Input Sequence Duration. The temporal length K of the input
clip is an important parameter in our MOC-detector. In this study, we report
the RGB stream performance of MOC on UCF101-24 [28] by varying K from
1 to 9 and the experiment results are summarized in Table 3. We reduce the
training batch size for K=7 and K=9 due to GPU memory limitation.

First, we notice that when K = 1, our MOC-detector reduces to the frame-
level detector which obtains the worst performance, in particular for video mAP.
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Table 3. Exploration study on the tubelet duration K on UCF101-24.

Tubelet Duration F-mAP@0.5 (%)
Video-mAP (%)

@0.2 @0.5 @0.75 0.5:0.95

K = 1 68.33 65.47 31.50 15.12 15.54
K = 3 69.94 75.83 45.94 24.94 23.84
K = 5 71.63 77.74 49.55 27.04 26.09
K = 7 73.14 78.81 51.02 27.05 26.51
K = 9 72.17 77.94 50.16 26.26 26.07

Table 4. Comparison with the state of the art on JHMDB (trimmed) and UCF101-
24 (untrimmed). Ours (MOC) with † is pretrained on ImageNet [3] and the other is
pretrained on COCO [18]

Method
JHMDB UCF101-24

Frame-mAP@0.5 (%)
Video-mAP (%)

Frame-mAP@0.5 (%)
Video-mAP (%)

@0.2 @0.5 @0.75 0.5:0.95 @0.2 @0.5 @0.75 0.5:0.95

2D Backbone

Saha et al. 2016 [25] - 72.6 71.5 43.3 40.0 - 66.7 35.9 7.9 14.4
Peng et al. 2016 [21] 58.5 74.3 73.1 - - 39.9 42.3 - - -
Singh et al. 2017 [26] - 73.8 72.0 44.5 41.6 - 73.5 46.3 15.0 20.4

Kalogeiton et al. 2017 [14] 65.7 74.2 73.7 52.1 44.8 69.5 76.5 49.2 19.7 23.4
Yang et al. 2019 [35] - - - - - 75.0 76.6 - - -
Song et al. 2019 [27] 65.5 74.1 73.4 52.5 44.8 72.1 77.5 52.9 21.8 24.1
Zhao et al. 2019 [38] - - 74.7 53.3 45.0 - 78.5 50.3 22.2 24.5

Ours (MOC)† 68.0 76.2 75.4 68.5 54.0 76.9 81.3 54.4 29.5 28.4
Ours (MOC) 70.8 77.3 77.2 71.7 59.1 78.0 82.8 53.8 29.6 28.3

3D Backbone

Hou et al. 2017 [11] (C3D) 61.3 78.4 76.9 - - 41.4 47.1 - - -
Gu et al. 2018 [8] (I3D) 73.3 - 78.6 - - 76.3 - 59.9 - -

Sun et al. 2018 [29] (S3D-G) 77.9 - 80.1 - - - - - - -

This confirms the common assumption that frame-level action detector lacks
consideration of temporal information for action recognition and thus it is worse
than those tubelet detectors, which agrees with our basic motivation of designing
an action tubelet detector. Second, we see that the detection performance will
increase as we vary K from 1 to 7 and the performance gap becomes smaller when
comparing K = 5 and K = 7. From K = 7 to K = 9, detection performance
drops because predicting movement is harder for longer input length. According
to the results, we set K=7 in our MOC.

4.3 Comparison with the State of the Art

Finally, we compare our MOC with the existing state-of-the-art methods on the
trimmed JHMDB dataset and the untrimmed UCF101-24 dataset in Table 4. For
a fair comparison, we also report two-stream results with ImageNet pretrain.

Our MOC gains similar performance on UCF101-24 for ImageNet pretrain
and COCO pretrain, while COCO pretrain obviously improves MOC’s perfor-
mance on JHMDB because JHMDB is quite small and sensitive to the pretrain
model. Our method significantly outperforms those frame-level action detec-
tors [25,21,26] both for frame-mAP and video-mAP, which perform action de-
tection at each frame independently without capturing temporal information.
[14,35,38,27] are all tubelet detectors, our MOC outperforms them for all met-
rics on both datasets, and the improvement is more evident for high IoU video
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Fig. 4. Runtime Analysis and Comparison. (a) the detection results (green bars)
and speeds (red dots) of MOC’s RGB stream using different tubelet length K. (b)
comparison with other methods. K=7 and two-stream fusion results.

mAP. This result confirms that our anchor-free MOC detector is more effective
for localizing precise tubelets from clips than those anchor-based detectors, which
might be ascribed to the flexibility and continuity of MOC detector by directly
regressing tubelet shape. Our methods get comparable performance to those 3D
backbone based methods [11,8,29]. These methods usually divide action detec-
tion into two steps: person detection (ResNet50-based Faster RCNN [23] pre-
trained on ImageNet), and action classification (I3D [2]/S3D-G [34] pretrained
on Kinetics [2]+ROI pooling), and fail to provide a simple unified action detec-
tion framework. We provide a more detail comparison in Appendix C.

4.4 Runtime Analysis

MOC is an efficient detector and runs at 25 fps with tubelet length K=7 and
two-stream fusion. Following ACT [14], we evaluate MOC’s two-stream speed
on a single NVIDIA TITAN Xp without flow computation, where temporal and
spatial CNNs compute sequentially. Since all frames share the same backbone
weights and Box Branch weights, we extract feature and estimate Box Branch
just once for each frame, which avoids redundant computation for consecutive
tubelets and makes MOC efficient. In Figure 4(a), detection accuracy improves
but speed slows down with increasing K from 1 to 7. This trade-off between
accuracy and efficiency can be adjusted according to specified preference. We
roughly compare MOC’s speed and accuracy with some existing methods which
have reported speed in the original paper in Figure 4(b). [35,38,14] are all ac-
tion tubelet detectors and our MOC gains more accurate detection results with
comparable and even faster speed.

4.5 Visualization

In Figure 5, we give some qualitative examples to compare the performance
between tubelet duration K=1 and K=7. Comparison between the second row
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Fig. 5. Examples of Per-frame (K=1) and Tubelet (K=7) Detection. The
yellow color boxes present detection results, whose categories and scores are provided
beside. Yellow categories represent classifying correctly and red ones represent wrong.
Red dashed boxes represent missed actors. Green boxes and categories are the ground
truth. As our MOC-detector generates only one score and category for one tubelet, the
score and category are only presented in the first frame for tubelet (K=7) detection.
Note that we set the visualization threshold as 0.4.

and the third row shows that our tubelet detector leads to less missed detection
results and localizes action more accurately owing to offset constraint in the same
tubelet. What’s more, comparison between the fifth and the sixth row presents
that our tubelet detector can reduce classification error because some actions
can not be discriminated by just looking one frame.

5 Conclusion and Future Work

In this paper, we have presented an action tubelet detector, termed as MOC-
detector, by treating each action instance as a trajectory of moving points and
directly regressing bounding box size at estimated center points of all frames. As
demonstrated on two challenging datasets, the MOC-detector has brought a new
state-of-the-art with both metrics of frame mAP and video mAP, while main-
taining a reasonable computational cost. The superior performance is largely
ascribed to the unique design of three branches and their cooperative model-
ing ability to perform tubelet detection. In the future, based on the proposed
MOC-detector, we try to extend its framework to longer-term modeling and
model action boundary in the temporal dimension, thus contributing to spatio-
temporal action detection in longer continuous video streams.
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Appendix A: Study on Hyper-parameters
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Fig. 6. Study on N. FrameAP@0.5 result on UCF101-24 [28] with tubelet length
K=5 and only RGB input.

N in Center Branch. During inference, Center Branch keeps top N instances
from all categories after max pooling operation, which is indicated in Section 3.1.
We follow CenterNet [40], which is an anchor-free object detector and set N as
100. As shown in Figure 6, we can see that the detection result is robust to N
and changes slightly after 40.
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Fig. 7. Study on a and b. FrameAP@0.5 result on UCF101-24 [28] with tubelet
length K=5 and only RGB input.
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a and b in Loss Function. Equation 9 is MOCs training objective consisting
of three branches loss. As shown in Figure 7, we have a linear search on a and
b with tubelet length K=5 and only RGB input. We can see that a=1, b=0.1
performs best.

Appendix B: Error Analysis
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Fig. 8. Error analysis on UCF101-24 [28] and JHMDB [13] (only split 1). We
report the detection error results according to five categories: (1) classification error
EC , (2) localization error EL, (3) time error ET , (4) missed detection EM , and (5)
other error EO. The green part represents the correct detection. With tubelet length
K=7 and two-stream fusion.

In this section, following [14], we conduct an error analysis on the frame
mAP to better explore our proposed MOC-detector. In particular, we investigate
five kinds of tubelet detection error: (1) classification error EC : the detection
IoU is greater than 0.5 with the ground-truth box of another action class. (2)
localization error EL: the detection class is correct in a frame but the bounding
box IoU with ground truth is less than 0.5. (3) time error ET : the detection in the
untrimmed video covers the frame that doesn’t belong to the temporal extent of
the current action instance. (4) missed detection error EM : cannot detect out a
ground truth box. (5) other error EO: the detection appears in a frame without
the class and has IoU less than 0.5 with the ground truth bounding box of other
classes.

We present error analysis on the untrimmed dataset UCF101-24 [28] and the
trimmed dataset JHMDB [13] (only split 1) with tubelet length K = 7 and two-
stream fusion. As shown in Figure 8, we find the major error is ET , time error
(10.18%), for the untrimmed dataset UCF101-24 [28] and EC , classification error
(25.43%), for the trimmed dataset JHMDB [13]. Although our MOC-detector
has achieved state-of-art on both datasets, we will try to extend this framework
to model longer temporal information to improve classification accuracy and
model action boundary in the temporal dimension to eliminate time error.
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Fig. 9. Error Analysis with Two-stream Fusion. We report the detection error
results according to five categories by changing input: (1) classification error EC , (2)
localization error EL, (3) time error ET , (4) missed detection EM , and (5) other error
EO. With tubelet length K=7 and two-stream fusion on UCF101-24 [28].

We also visualize error analysis with two-stream fusion on UCF101-24 [28]
and the results are reported in Figure 9. Note that we set tubelet length K as
7. First, spatial stream performs obviously better than the temporal stream for
classification error and missed detection, owing to its richer information. Second,
two-stream fusion improves the performance except for time error, which shows
that two-stream fusion harms temporal localization.

Appendix C: More Results on JHMDB

Table 5. Comparison with Gu et al. [8] and Sun et al. [29] on JHMDB [13] (3 splits)
with tubelet length K=7 and two stream fusion. Ours (MOC) † is pretrained on Ima-
geNet [3] , Ours (MOC)†† is pretrained on COCO [18] and Ours (MOC)††† is pretrained
on UCF101 [28] for action detection.

Method GFLOPs
JHMDB

Frame-mAP@0.5 (%)
Video-mAP (%)

@0.2 @0.5 @0.75 0.5:0.95

Ours (MOC)† 29.4 68.0 76.2 75.4 68.5 54.0

Ours (MOC)†† 29.4 70.8 77.3 77.2 71.7 59.1

Ours (MOC)††† 29.4 74.0 80.7 80.5 75.0 60.2

Gu et al. 2018 [8] (I3D) >91.0 73.3 - 78.6 - -
Sun et al. 2018 [29] (S3D-G) >65.5 77.9 - 80.1 - -
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Our MOC is a one stage tubelet detector with 2D backbone. We compare
it with two-stage detectors with 3D backbone [8,29] in Table 4, which perform
comparably with us on UCF101 [28] while better than ours on JHMDB [13].

JHMDB [13] is really small and sensitive to the pretrain model. For fair
comparison with 2D backbone methods in Table 4, we just provide results with
ImageNet [3] pretrain and COCO [18] pretrain. But Gu et al [8] and Sun et
al. [29] both pretrain 3D backbone on Kinetics [2], which is a large-scale video
classification dataset and always boosts task results especially on small datasets.
We pretrain our MOC on UCF101 [28] for action detection in Table 5, which
outperforms Gu et al. [8] for all metrics with saving more than 3 times com-
putation cost and performs comparably with Sun et al. [29] with saving more
than 2 times computation cost. Note that Gu et al. [8] and Sun et al. [29] do
not provide implementation code, so we just roughly estimate the backbone
computation for each frame’s detection result, whose input is 20 frames with
resolution of 320*400. For Gu et al. [8], we calculate ResNet50 (conv4) [10] for
action localization and I3D (Mixed 4e) [2] for classification. For Sun et al. [29]
(Base Model), we calculate ResNet50 (conv4) [10] for action localization and
S3D-G [34] for classification. For our MOC, we calculate the whole computation
cost for each frame detection result. For fair comparison, we only use RGB as
input for all methods.
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