
Memory Recursive Network for Single Image Super-Resolution
Jie Liu

State Key Laboratory for Novel Software Technology,
Nanjing University
Nanjing , China

jieliu@smail.nju.edu.cn

Minqiang Zou
State Key Laboratory for Novel Software Technology,

Nanjing University
Nanjing , China

MG1733103@smail.nju.edu.cn

Jie Tang∗
State Key Laboratory for Novel Software Technology,

Nanjing University
Nanjing , China

tangjie@nju.edu.cn

Gangshan Wu
State Key Laboratory for Novel Software Technology,

Nanjing University
Nanjing , China
gswu@nju.edu.cn

ABSTRACT
Recently, extensive works based on convolutional neural network
(CNN) have shown great success in single image super-resolution
(SISR). In order to improve the SISR performance while reducing
the number of model parameters, some methods adopt multiple
recursive layers to enhance the intermediate features. However, in
the recursive process, these methods only use the output features
of current stage as the input of the next stage and neglect the out-
put features of historical stages, which degrades the performance
of the recursive blocks. The long-term dependencies can only be
learned implicitly during the recursive processes. To address these
issues, we propose the memory recursive network (MRNet) to make
full use of the output features at each stage. The proposed MRNet
utilizes a memory recursive module (MRM) to generate features
for each recursive stage, and then these features are fused by our
proposed ShuffleConv block. Specifically, MRM adopts a memory
updater block to explicitly model the long-term dependencies be-
tween the output features of historical recursive stages. The output
features from the memory updater will be used as the input of
the next recursive stage and will be continuously updated during
the recursions. To reduce the number of parameters and ease the
training difficulty, we introduce a ShuffleConv module to fuse the
features from different recursive stages, which is much more effec-
tive than using plain convolutional combinations. Comprehensive
experiments demonstrate that the proposed MRNet achieves state-
of-the-art SISR performance while using much fewer parameters.

CCS CONCEPTS
•Computingmethodologies→Computational photography;
Reconstruction; Image processing.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413696

KEYWORDS
image super-resolution;recursive network;convolutional neural net-
work

ACM Reference Format:
Jie Liu, Minqiang Zou, Jie Tang, and Gangshan Wu. 2020. Memory Recur-
sive Network for Single Image Super-Resolution. In Proceedings of the 28th
ACM International Conference on Multimedia (MM ’20), October 12–16, 2020,
Seattle, WA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3394171.3413696

1 INTRODUCTION
Single image super-resolution (SISR) is the process of reconstructing
high-resolution (HR) image by using a single low-resolution (LR)
image, which is a typical ill-posed problem since an LR image can
be downsampled from multiple HR images. Various methods have
been proposed to solve this problem, such as interpolation-based
methods [18, 32], reconstruction-based methods [34] and learning-
based methods [4, 11, 14, 24–26, 29, 30]. In recent years, with the
progress of deep learning (DL) research and the improvement of
computer performance, the training process of deep neural network
(DNN) is no longer an obstacle for SR tasks, so DL-based methods
have become a research hotspot.

Since convolutional neural network (CNN) can make full use
of the local spatial coherence of the image, using CNN to tackle
the SISR task is the most commonly used method in DL-based
methods [4, 14, 26]. Dong et al. [4] firstly proposed a three-layer
CNN model named SRCNN to establish the mapping relationship
between LR and HR, which has better reconstruction results com-
pared with the conventional learning-based methods. A deeper
network has larger receptive fields and can retain more contextual
information, so adopting deeper networks can often achieve bet-
ter performance, but it is difficult to train a deep CNN due to the
vanishing gradient and exploding gradient problems. To alleviate
the impact of these problems on training, residual learning [7] and
dense connection [10] strategies are widely adopted by SR mod-
els [14, 21, 31, 36, 37]. Zhang et al. [36] introduced a residual in
residual (RIR) structure to form a very deep network RCAN (400
convolutional layers), which has excellent performance with 16M
parameters. Other very deep networks also have large number of
parameters, such as EDSR [21] (43M) and RDN [37] (22M), these

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2202

https://doi.org/10.1145/3394171.3413696
https://doi.org/10.1145/3394171.3413696
https://doi.org/10.1145/3394171.3413696

C
on
v

C
on
v

R
eL

U

x
MRM MRM

S
h
u
ff
le
C
on
v

C
on
v

R
eL

U

C
on
v

yC
on
ca
t

MRMx0

x0

h1 ht-1

x1 x2 xt

C
on
v

C
on
v

R
eL

U

x
MRM MRM

S
h
u
ff
le
C
on
v

C
on
v

R
eL

U

C
on
v

yC
on
ca
t

MRMx0

x0

h1 hT-1

x1 x2 xT

Figure 1: The architecture of proposed MRNet.

large-capacity networks usually consume huge computing and stor-
age resources which are less applicable to resource-constrained
equipment. At the same time, increasing the depth of the model
will also increase the risk of model overfitting.

In order to obtain a larger receptive field and higher-level feature
representation without introducing too many parameters, recursive
learning is employed in SR task [2, 6, 15, 20, 27, 28]. A recursive net-
work usually applies the same recursive module to process features
multiple times. Kim et al. [15] used the same single convolutional
layer in their 16-recursion DRCN, thus DRCN has the receptive field
of 41 by 41, which is larger compared to SRCNN. Although DRCN
can achieve superior results using a three-layer CNN, it is very
difficult to learn the mapping of different levels of features with a
single weight layer [15]. Tai et al. [27] adopted residual learning
and multi-path structure to address the shortcoming of DRCN, but
the output features of each recursion are not well exploited. To
handle the issue of restricted long-term memory, Tai et al. [28] pro-
posed MemNet which employs a recursive unit and a gate unit to
explicitly mine persistent memory. However, the recursive unit in
Memnet only receives the information from the last recursion. Li et
al. [20] used a 1 × 1 convolution in their proposed SRFBN to refine
low-level representations with high-level information, but SRFBN
only adopted the features of the last recursion in each recursion
to refine the output features, which can not make full use of the
information generated by the entire recursive process.

To handle these drawbacks, we propose the memory recursive
network (MRNet) for lightweight and accurate SISR (Figure 1). MR-
Net directly uses the LR image as input to reduce the amount of
calculation, after extracting the shallow feature using two convo-
lutional layers, our proposed memory recursive module (MRM)
is used to enhance the features during the recursive phase. MRM
adopts a memory updater to explicitly model the long-term depen-
dencies between the output features of historical recursive stages.
The output features from the memory updater will be used as the
input of the next recursive stage and will be continuously updated
during the recursions. In order to make full use of the features
generated at different recursive stages, these features will be fused
by our proposed ShuffleConv module and then produce the final
HR image. 1 × 1 convolution is the most commonly used feature
fusion method in many previous studies[2, 15, 28, 37], but when the
number of input feature channels is large, it will lead to heavy pa-
rameters and optimization difficulty. We propose the ShuffleConv
module to reduce the number of parameters by using the local
feature fusion strategy.

In summary, Our contributions can be summarized as follows:

• We propose a recursive model named memory recursive net-
work (MRNet) for the SISR task. MRNet makes full use of the
output features at each recursive stage, thus it can achieve
higher performance with fewer parameters.

• We propose an efficient recursive module called the mem-
ory recursive module (MRM), which leverages the historical
features to compensate for the input feature. The historical
features will also be adjusted automatically with the recur-
sive process, so it can continuously improve the quality of
input features.

• We propose a ShuffleConv module to fuse the features from
different recursive stages more effectively. ShuffleConv uses
local feature fusion so that it has fewer parameters than the
normal 1 × 1 convolution.

2 RELATEDWORK
2.1 Deep learning based SISR
Recently, deep-learning-based methods have shown excellent per-
formance in the SISR task. Dong et al. [4] firstly proposed a three-
layers CNN network named SRCNN to model the mapping between
interpolated LR and HR. Kim et al. [14] proposed a 20-layers CNN
model that employs residual learning and gradient clipping strate-
gies to overcome the difficulty of optimization. These methods usu-
ally interpolate the LR image to the desired size before sending it to
the networks, which not only introduces noise and blurring but also
increases computation cost. Thus some methods performed the up-
sampling operation at the end of the SRmodel [5, 26]. Dong et al. [5]
adopted the deconvolution layer at the end of their FSRCNN model,
so most of the calculations are performed in low-dimensional space,
which greatly reduces the amount of calculation and storage con-
sumption. A sub-pixel convolution was proposed in ESPCN [26] to
upsample features end-to-end, this sub-pixel layer is widely adopted
by SR models [2, 21, 36, 37]. To reduce the training difficulty for
large scaling factor SR model, LapSRN [16] used a cascade of CNNs
to progressively reconstruct HR images, and LapSRN supervised
the reconstructed image at each upsampling stage.

In terms of network design, because residual learning [7] and
dense connections [10] can alleviate the vanishing gradient and
exploding gradient problems, these structures are wildly used in
SR tasks. SRResnet [17] used a 16-blocks deep ResNet [7] to handle
the training difficult in the SR problem. Lim et al. [21] discarded
the batch normalization layer in SRResnet and designed a very
deep residual network to generate higher performance. Zhang et

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2203

C
on

v
B

lo
ck

xi xi+1

C
on

v
B

lo
ck

xi xi+1

x0

C
on

v
B

lo
ck

xi

xi+1

1x
1

C
on

vx0

C
on

v
B

lo
ck

hi

xi+1

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi+1

C
on

v
B

lo
ck

xi-1 xi

C
on

v
B

lo
ck

xi-1 xi

x0

C
on

v
B

lo
ck

xi-1

xi

1x
1

C
on

vx0

C
on

v
B

lo
ck

hi-1

xi

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi

(a) DRCN [15]

C
on

v
B

lo
ck

xi xi+1

C
on

v
B

lo
ck

xi xi+1

x0

C
on

v
B

lo
ck

xi

xi+1

1x
1

C
on

vx0

C
on

v
B

lo
ck

hi

xi+1

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi+1

C
on

v
B

lo
ck

xi-1 xi

C
on

v
B

lo
ck

xi-1 xi

x0

C
on

v
B

lo
ck

xi-1

xi

1x
1

C
on

vx0

C
on

v
B

lo
ck

hi-1

xi

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi

(b) DRRN [27]

C
on

v
B

lo
ck

xi xi+1

C
on

v
B

lo
ck

xi xi+1

x0

C
on

v
B

lo
ck

xi

xi+1

1x
1

C
on

vx0

C
on

v
B

lo
ck

hi

xi+1

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi+1

C
on

v
B

lo
ck

xi-1 xi

C
on

v
B

lo
ck

xi-1 xi

x0

C
on

v
B

lo
ck

xi-1

xi

1x
1

C
on

vx0

C
on

v
B

lo
ck

hi-1

xi

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi

(c) SRFBN [20]

C
on

v
B

lo
ck

xi xi+1

C
on

v
B

lo
ck

xi xi+1

x0

C
on

v
B

lo
ck

xi

xi+1
1x

1
C

on
vx0

C
on

v
B

lo
ck

hi

xi+1

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi+1

C
on

v
B

lo
ck

xi-1 xi

C
on

v
B

lo
ck

xi-1 xi

x0

C
on

v
B

lo
ck

xi-1

xi

1x
1

C
on

vx0

C
on

v
B

lo
ck

hi-1

xi

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi

(d) MRM

Figure 2: Some typical structures of the recursive model and
the proposed MRM.

al.[36] adopted channel attention[9] into the residual block to form
a very deep network (more than 400 convolutional layers). Tong et
al. [31] introduced SRDensenet which uses a dense connection to
strengthen feature propagation and boost feature reuse. Zhang et
al.[37] combined the residual learning and dense connection in their
proposed RDN to make full use of all the hierarchical features from
the original LR image. In order to control the amount of parameters
and calculation of the SR model, Ahn et al. [2] proposed an accurate
and lightweight deep network using the cascading mechanism to
extract features. Hui et al. [13] designed an information distillation
network for better extracting features.

2.2 Recursive convolutional network for SISR
To achieve larger receptive fields and obtain high-level features
without increasing overwhelming parameters, recursive learning
was widely adopted in SR models [2, 6, 15, 20, 27, 28]. Usually, the
recursive model will apply the same module multiple times to en-
hance the features in the recursive process. Kim et al. [15] built a
16-recursion DRCN using a single convolutional layer as the recur-
sive unit, recursive supervision and skip connections are employed
in DRCN to ease the training difficulty. Tai et al. [27] adopted global
and local residual learning in their proposed DRRN to mitigate
the difficulty of training. MemNet [28] introduced a recursive unit
and a gate unit to compose the memory block, so the recursive
unit can learn multi-level representations under different receptive
fields. Ahn et al. [2] developed CARN-M which utilizes recursive
cascading block to reduce the parameters. Han et al. [6] proposed
a dual-state recurrent network (DSRN), DSRN exploits both LR
and HR signals to get more accurate reconstruction features. Li et
al. [20] proposed a feedback network (SRFBN) to refine low-level
features with high-level representations, SRFBN uses a recursive
module to achieve such feedback manner.

Since most of the recursive networks for SR task are similar,
we summarize several typical structures in this part. As shown in
Figure 2(a), we unfold the entire recursive process intoT iterations,
for a specific iteration i , the output features xi in DRCN [15] can

be obtained by:
xi = fCB (xi−1) (1)

xi = fCB (fCB (· · · (fCB (x0)))) (2)
where Equation 2 is the unfolded form of Equation 1, x0 denotes
the initial input of the recursive module and xi is the output of the
recursive module at the ith iteration, fCB denotes the operations
of the convolution block. It is worth noting that MemNet [28] also
adopts this type of recursive formula and uses a 1×1 convolution
to fuse the output feature of each recursion.

DRRN[27] employed residual learning to ease the training diffi-
culty, the basic operation in the recursive module at the i-th itera-
tion can be formulated as:

xi = x0 + fCB (xi−1) (3)

the only difference between DRCN and DRRN in the recursive
module is that DRRN introduces residual learning, which allows
the recursive module to learn the residual of x0.

SRFBN [20] adopted a feedback block to generate high-level
representations. The initial low-level input x0 is enhanced by the
high-level output information xi−1 obtained at the (i − 1)-th itera-
tion. This operation can be described as follows:

xi = fCB (fconv1 ([x0,xi−1])) (4)

where fconv1 denotes the 1×1 convolution. So SRFBN can use the
high-level features generated by the last recursion to continuously
enhance the initial input during the recursive process.

3 MEMORY RECURSIVE NETWORK
In this section, we will introduce the details of our proposed MRNet.
Specifically, we start with the overall architecture of MRNet, then
describe the memory updating mechanism in our proposed MRM
about how it leverages the historical features to generate input
features for the next iteration. Finally, we explain the detailed cal-
culation process of our proposed ShuffleConv and the differences
between ShuffleConv and the plain convolutions.

3.1 Network architecture
As shown in Figure 1, the proposed MRNet mainly consists of
three parts: shallow feature extraction block (SFE), recursive feature
enhance block (RFE) and a reconstruction block (RB). Let’s denote
x and y as the input LR image and output HR image of MRNet,
respectively. The output shallow feature x0 can be obtained by:

x0 = fSF E (x) (5)

where fSF E represents the function of shallow feature extraction
block, we use two convolution layers and one ReLU layer in SFE.
Then the low-level featurex0 is sent to the recursive feature enhance
block to learn high-level features.

In order to better elaborate the calculation process of RFE, we
unfold RFE along the temporal direction to a fixed T iterations. As
shown in the red box in Figure 1, the MRM in the figure are shared
between iterations. The detailed information about MRM will be
introduced in Section 3.2. In this part, we simplify MRM to consist
of two inputs and two outputs. The operation of MRM at the i-th
iteration can be formulated as:

xi ,hi = fMRM (x0,hi−1) (6)

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2204

where xi is the output features generated by MRM at the i-th it-
eration, hi denotes the historical memory information at the i-th
iteration, fMRM is the operation collection in MRM. It is worth
noting that in the first recursion (i=1), we use x0 as the historical
memory information (h0 = x0).

AfterT iterations, MRM will generateT features (x1, x2, · · · , xT),
these features are then fed into the reconstruction block to generate
the HR image. The operation in RB can be described as:

y = fRC (fSC ([x1,x2, · · · ,xT])) (7)

where fRC denotes the final reconstruction convolutions in Figure
1, which has two convolution layer and one ReLU layer. fSC is the
operations in ShuffleConv, the details about ShuffleConv will be
shown in Section 3.3. Since features generated at different iterations
contain abundant information for reconstruction, these hierarchical
features are aggregated by ShuffleConv for a better SR performance.

3.2 Memory recursive module
From the summary in Section2.2, we note that most recursive mod-
els only use the output features of current stage as the input of the
next stage and neglect the output features of historical stages, which
hinders the performance of the model. The long-term dependencies
can only be learned implicitly during the recursive processes. To
address these problems, we propose a memory recursive module
(MRM), which consists of an input encoder (IE) and a memory
updater (MU). As shown in Figure 2(d), the memory updater is
responsible for fusing historical features. The operations in MRM
at the i-th iteration can be formulated as:

mi = fI E ([x0,hi−1]) (8)

ri = fCB (mi) (9)
xi = ri + x0 (10)

hi = fMU ([ri ,hi−1]) (11)
where fI E is the operations in the input encoder,mi denotes the
encoded memory information which will be used as the input of
the following convolution block, fCB denotes the function of the
convolution block, ri is the output of the convolution block. fMU
represents the function of the memory updater. Both input encoder
and memory updater are implemented using the 1×1 convolution
to keep the model lightweight enough for SISR.

MRM first uses the input encoder to encode the initial low-level
feature x0 and historical information hi−1 to obtain the fused mem-
ory feature mi . After extracting features using the convolution
block, the output feature ri is then used to update the historical
information (Equation 11) and obtain the output feature (Equation
10) at the i-th iteration. We employ residual learning in Equation 10
to get a better convergence. The proposed MRM can enhance the in-
put feature more effectively and make the input of the convolution
block more stable. Since the historical information hi is updated
according to ri and hi−1, the output feature ri is fully utilized by
subsequent iterations.

As for the convolution block fCB in MRM, we adopt the same
residual block as EDSR [21]. As shown in Figure 3, the convolution
block consists of multiple residual blocks and has a convolution
layer at the end. Residual learning enables the module to extract
features more effectively.

R
es
B
lo
ck

R
es
B
lo
ck

mi C
on
v

R
eL

U

C
on
v

ResBlock

R
es
B
lo
ck

C
on
v

ri

Figure 3: The structure of ConvBlock used in MRM.

1 2 3 4 1 2 3 4 1 2 3 4

Shuffle

1 2 3 41 2 3 41 2 3 4

Linear+ReLU

Pixel-Shuffle

Figure 4: The architecture of proposed ShuffleConv.

3.3 ShuffleConv module
To make full use of the hierarchical features produced by MRM, we
propose the ShuffleConv module that can aggregate features more
effectively. The conventional way for feature fusion is to employ
a 1 × 1 convolution [2, 15, 28, 37]. However, when the volume of
input features is very large and redundant, it is not efficient enough
to use the 1 × 1 convolution for feature fusion. In the scenario
of recursive learning, the output features generated by different
iterations are strongly correlated since the convolution weights are
shared between iterations. Besides, when the number of recursion is
very large, the 1× 1 convolution would introduce a large number of
parameters. Let’s denote xi j as the feature map of the j-th channel
for the i-th iteration. Because xaj and xbj are obtained by the
same set of convolution weights, the correlation between them is
stronger than others. Here, we propose the ShuffleConv module to
perform local feature fusion by grouping the strongly correlated
features, which can aggregate features more effectively and save a
considerable number of parameters.

As shown in Figure 4, for simplicity, we suppose that there has
only one pixel in the feature map, the feature channel is 4, the
scaling factor is 2 and the total number of iterations is 3. Squares
of the same color in the figure belong to the same feature maps
in a iteration and the numbers represent the channel indexes of
the feature maps. We first group these features according to their
channel indexes. For features in each group, a linear layer and ReLU
function are adopted to generate a specific number of channels.
Finally, Pixel-Shuffle[26] is utilized to get the HR feature map.

Let c0 represent the number of channels for output features in
MRM, the total number of iterations isT , and the scaling factor is s .
For conventional 1×1 convolution, the number of input channels is
T × c0, and the number of output channel before the Pixel-Shuffle
layer is c0 × s2, so the total number of parameters isT × c0 × c0 × s2.
In our proposed ShuffleConv, the parameter of each linear layer
is T × s2, and the total number of linear layer is c0, thus the total

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2205

parameter in ShuffleConv is T × c0 × s2. So the parameter of 1×1
convolution is c0 times that of ShuffleConv.

It should be noted that ShuffleNet [35] and our proposed Shuf-
fleConv have some similar ideas. The purpose of shuffle operation
in ShuffleNet is to enable cross-group information interchange be-
cause the group convolution layer hinders the information flow. In
ShuffleConv, we use the shuffle operation to group feature maps
of strong correlation to fuse the features locally and then generate
the high-resolution feature maps.

3.4 Discussions
Difference to MemNet. MemNet [28] is designed to achieve per-
sistent memory. The memory block in MemNet is mainly composed
of a recursive unit and a gate unit, the recursive unit can generate
multi-level representations in the recursive process and these repre-
sentations will be sent to the gate unit to control the long-term and
short-term memory. The differences between MRNet and MemNet
are: 1) MemNet only adopts the output features in the last iteration
as the input of the recursive unit in their proposed memory block,
which neglects the difference between these features and not fully
utilizes the output features in each recursion. In our proposed MR-
Net, we use an input encoder to fuse the initial feature and historical
feature. The output features in each recursion are utilized to update
historical information and sent to the ShuffleConv module to get
the reconstructed HR features, so these multi-level features can be
fully utilized in MRNet. 2) MemNet adopts a gate unit to learn the
weights for different memories adaptively which is more similar
to dense connection, and too many input memories make it impos-
sible to effectively use these memories due to training difficulty.
Our proposed MRNet updates memories by the last memories and
the current output, which has fewer parameters and is easier to
optimize, and these memories can be utilized more efficiently in
the next recursion.

Difference to SRFBN. SRRFBN [20] employs a feedback mech-
anism to refine low-level representations with high-level informa-
tion. The feedback mechanism is implemented by supervising each
recursive process. The main differences betweenMRNet and SRFBN
are: 1) The feature extraction block used in SRFBN is a downsample-
upsample unit, while our proposed MRNet only adopts the most
commonly used residual structure to prove the effectiveness of
MRM. 2) SRFBN employs a feedback mechanism to refine low-level
features, in our proposed MRNet, we only use common feedforward
methods to continuously use historical information to enhance the
original input features. 3) SRFBN refines the initial input only using
the high-level feature in the last iteration, but the historical infor-
mation utilized by MRNet will be updated at each iteration with
the last historical information and the current output, which can
refine the initial input more effectively.

4 EXPERIMENTS
4.1 Settings
In our proposed MRNet, the kernel size in the first convolution
layer of SFE is 7×7 to obtain enough information from the original
LR image. The number of channels of all feature maps in the inter-
mediate layers is set to 64 (c0=64). The ConvBlock in MRM uses
10 ResBlocks to extract features. We adopt different iterations for

C
on

v
B

lo
ck

hi-1

xi

M
em

or
y

U
pd

at
er

hiC
on

v
B

lo
ck

xi-1

xi

In
p

u
t

E
n

co
d

erx0

C
on

v
B

lo
ck

hi-1

xi

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi

(a) Input encoder

C
on

v
B

lo
ck

hi-1

xi

M
em

or
y

U
pd

at
er

hiC
on

v
B

lo
ck

xi-1

xi

In
p

u
t

E
n

co
d

erx0

C
on

v
B

lo
ck

hi-1

xi

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi

(b) Memory updater

C
on

v
B

lo
ck

hi-1

xi

M
em

or
y

U
pd

at
er

hiC
on

v
B

lo
ck

xi-1

xi

In
p

u
t

E
n

co
d

erx0

C
on

v
B

lo
ck

hi-1

xi

In
p

u
t

E
n

co
d

erx0

M
em

or
y

U
pd

at
er

hi

(c) MRM

Figure 5: Modules used in ablation study.

Table 1: Ablation results of different recursivemodules used
in MRNet. The scaling factor is ×2, we use PSNR (dB) values
after training 400 epochs.

Method Params Set5 Set14
Baseline model 862K 37.84 33.46
Residual model 862K 37.89 33.49
Input encoder 870K 37.92 33.51

Memory updater 870K 37.90 33.54
MRM 878K 37.94 33.63

different scaling factors to ensure performance while keeping the
model lightweight enough. The number of iterations is 4, 6 and 8
when the scaling factor is 2, 3 and 4 respectively.

Following [2, 20, 21, 36, 37], we train the proposed MRNet with
800 training images of DIV2K dataset [1]. During training, for each
batch of input, we randomly select 16 LR RGB patches with the size
48×48, then data augmentation is performed by flipping horizon-
tally or vertically or rotating 90◦. We set 1000 iterations of back-
propagation as an epoch and use ADAM optimizer with β1 = 0.9,
and ϵ = 10−8. The learning rate is initialized as 10−4 and decreases
to half for every 2×105 iterations during the total 106 iterations.
The loss function we used is L1 loss. We use PyTorch framework
to implement the proposed MRNet with a Nvidia 1080Ti GPU. For
evaluation, we adopt five standard benchmark datasets: Set5 [3],
Set14 [33], BSD100 [22], Urban100 [12] and Manga109 [23]. We
evaluate the results using two commonly used evaluation metrics:
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).
The SR results are calculated on Y channel of transformed YCbCr
space. As in the previous works [2, 4, 15, 21, 27, 28, 36, 37], we adopt
the Bicubic degradation model in this paper.

4.2 Effects of memory recursive module
4.2.1 Ablation study. To investigate the effect of the input encoder
and memory updater, we set up a set of ablation experiments. As
shown in Figure 5, memory updater is removed in Figure 5(a), and
because there is no historical information hi−1 in Figure 5(a), the
output xi−1 of last iteration is used as the input. It is worth noting
that this structure is similar to the structure of SRFBN (Figure 2(c)).
We then remove the input encoder inMRM and usehi−1 as the input
of the module (Figure 5(b)). To better illustrate the effectiveness
of MRM, we also train a baseline model using the same recursive
structure as DRCN (Figure 2(a)) and a residual model like DRRN
(Figure 2(b)). We set the scaling factor to ×2 and train all models
for 400 epochs to ensure the stability of the results.

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2206

0.4 0.6 1.00.2
Low frequency

0.8
High frequency

0
0 .0

2

4

6

8

10
Sp

ec
tra

l d
en

si
ty

m2
m4
m6
m8

Figure 6: Spectral densities of the average feature maps of
mi for different recursions.

Table 2: Performance comparison of the ShuffleConv and
baseline methods at different recursions. The scaling factor
is ×2, we use PSNR (dB) values after training 400 epochs.

Recursion 2 4 6 8 10

baseline Params 1033K 1041K 1049K 1058K 1066K
Set5 (dB) 37.87 37.93 37.97 38.00 38.02

ShuffleConv Params 882K 887K 891K 896K 900K
Set5 (dB) 37.88 37.99 38.02 37.97 38.00

As shown in Table 1. The baseline model adopts the recursive
structure used in DRCN, where the output features of each iteration
are not fully utilized, so the reconstruction performance is not very
satisfactory. Adopting residual learning like DRRN improves the
results slightly, but the historical information is not well exploited.
Using the input encoder can increase the performance since it can
fuse the initial input x0 and the output feature xi−1 of the last iter-
ation, which makes the input features of ConvBlock more stable.
By utilizing the memory updater to encode historical information,
the results are also better than the baseline model. Comparing the
performance of baseline model and MRM, we find that MRM can
improve 0.17dB on Set14 without increasing too many parameters,
which proves the effectiveness of the proposed MRM. We can draw
conclusions from the above analysis that the proposedMRM can uti-
lize the features generated by different recursions more effectively
than previous recursive modules [15, 20, 27].

4.2.2 Frequency domain analysis of MRM. To further analyze the
changes of features in different recursions, we analyze the encoded
featuresmi of MRM in the frequency domain. Inspired by [20, 28],
we first perform a fast Fourier transform on the average feature
maps ofmi and center their spectrum. Then we estimate the mean
of spectral densities for continuous frequency ranges by placing
concentric circles. The visualization results are depicted in Figure
6. By analyzing the spectral density ofmi , we can conclude that
the output features of input encoder are continuously enhanced
during the recursive process so that the low frequency parts are
suppressed and the high frequency parts are strengthened, which
further proves the effectiveness of the MRM module.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

2 4 6 8 10

IP
S

N
R

 (
dB

)

T

x2 (base PSNR: 37.87)

x3 (base PSNR: 34.23)

x4 (base PSNR: 32.02)

Figure 7: IPSNR on Set5 under different recursions. The base
PSNR in the label represents the PSNR resultwhen the recur-
sion number is 2.

4.3 Effects of ShuffleConv
Our proposed MRNet uses ShuffleConv in the reconstruction block
to aggregate features from different recursions. To validate the
effectiveness of ShuffleConv, we compare it with the conventional
1× 1 convolution under different number of recursions. Specifically,
we set the number of recursions (T) to 2, 4, 6, 8, and 10, and the
scaling factor is ×2. For comparison, we use 1×1 convolution for
feature fusion and 3×3 convolution for HR feature generation in the
baseline model. In order to ensure that the network could be fully
trained, we train 400 epochs for both models. Table 2 shows the
detailed performance comparison. As we can see, the ShuffleConv
method can achieve similar results with the baseline while using
much fewer parameters, which indicates the effectiveness of our
method.

4.4 Study of recursion
Recursion depth is the main factor affecting the performance of the
recursive model. In this section, we study the effect of increasing
recursion depth with different scaling factors. Firstly, we set the
number of recursions (T) to 2, 4, 6, 8, and 10. Then we train the
proposed MRNet by setting the scaling factors to ×2, ×3, and ×4.
All 15 models are trained with 400 Epochs to ensure the stability of
the results. The results are depicted in Figure 7. To better visualize
the results, at each scaling factor, we calculate the PSNR difference
between different recursionwithT = 2 (IPSNR). Aswe can see, most
of the time our proposed MRNet can be continuously improved
when increasing T . Meanwhile, we notice that when the scaling
factor is ×4, the performance ofT = 10 is worse thanT = 8, and we
also find that the training loss atT = 10 is greater thanT = 8 during
the entire training process. We speculate that the main reason for
its performance degradation is that when the scaling factor is large,
the LR input is more rough in spatial content so it just need amodest
number of recursions to make the network focus on current spatial
context.

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2207

Table 3: Average PSNR/SSIM for scaling factor ×2, ×3 and ×4. Best and second-best results are highlighted in red/blue text.

Method Scale Params MAC Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

- - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
VDSR[14] 0.67M 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
DRCN[15] 1.77M 17974.3G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732
DRRN[27] 0.30M 6796.9G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749
IDN[13] 0.55M 123.5G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749

MemNet[28] 0.68M 2662.4G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
CARN[2] 1.59M 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

MDSR_baseline[21] 3.23M 411.2G 37.98/0.9605 33.58/0.9181 32.18/0.8997 32.09/0.9284 38.48/0.9768
MSRN[19] 5.89M 1356.8G 38.08/0.9605 33.74/0.9170 32.23/0.9013 32.22/0.9326 38.82/0.9868

OISR-RK2[8] 4.97M 1145.7G 38.12/0.9609 33.80/0.9193 32.26/0.9006 32.48/0.9317 38.78/0.9774
MRNet-S (Ours) 0.88M 776.5G 38.06/0.9607 33.81/0.9197 32.25/0.9004 32.40/0.9309 38.78/0.9774
MRNet (Ours) 1.06M 776.5G 38.14/0.9610 33.83/0.9199 32.28/0.9008 32.63/0.9330 39.00/0.9777

Bicubic

×3

- - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
VDSR[14] 0.67M 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
DRCN[15] 1.77M 17974.3G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343
DRRN[27] 0.30M 6796.9G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379
IDN[13] 0.55M 54.8G 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381

MemNet[28] 0.68M 2662.4G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
CARN[2] 1.59M 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440

MDSR_baseline[21] 3.23M 202.3G 34.37/0.9270 30.33/0.8427 29.10/0.8055 28.16/0.8529 33.52/0.9444
MSRN[19] 6.08M 621.2G 34.38/0.9262 30.34/0.8395 29.08/0.8041 28.08/0.8554 33.44/0.9427

OISR-RK2[8] 5.64M 578.6G 34.55/0.9282 30.46/0.8443 29.18/0.8075 28.50/0.8597 33.79/0.9464
MRNet-S (Ours) 0.88M 526.6G 34.52/0.9281 30.45/0.8445 29.18/0.8072 28.50/0.8598 33.88/0.9465
MRNet (Ours) 1.06M 526.6G 34.68/0.9292 30.56/0.8463 29.24/0.8083 28.70/0.8633 34.19/0.9481

Bicubic

×4

- - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
VDSR[14] 0.67M 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
DRCN[15] 1.77M 17974.3G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854
DRRN[27] 0.30M 6796.9G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946
IDN[13] 0.56M 30.9G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942

MemNet[28] 0.68M 2662.4G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
CARN[2] 1.59M 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084

MDSR_baseline[21] 3.23M 138.0G 32.16/0.8947 28.60/0.7823 27.58/0.7367 26.07/0.7858 30.48/0.9080
SRDenseNet[31] 2.02M 389.9G 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819 -

MSRN[19] 6.33M 365.1G 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896 30.17/0.9034
SRFBN [20] 3.63M 7466.1G 32.39/0.8970 28.77/0.7860 27.68/0.7400 26.47/0.7980 30.96/0.9140
OISR-RK2[8] 5.50M 412.2G 32.32/0.8965 28.72/0.7843 27.66/0.7390 26.37/0.7953 30.76/0.9123

MRNet-S (Ours) 0.89M 403.8G 32.39/0.8972 28.77/0.7854 27.66/0.7391 26.41/0.7960 30.90/0.9130
MRNet (Ours) 1.06M 403.8G 32.51/0.8987 28.81/0.7868 27.73/0.7412 26.60/0.8015 31.14/0.9155

4.5 Comparison with the state-of-the-arts
In order to further demonstrate the performance of our proposed
MRNet, we adopt the same multi-scale structure as MDSR [21]
to train the final MRNet. Specifically, for networks with different
scaling factors, our MRNet uses different SFEs and RBs, and the
middle RFE module is shared. Therefore, under different scaling
factors, MRNet first uses different SFEs to extract shallow features
and then uses the same MRM module to enhance the features.

Finally, features generated by the MRM are fed to the specific RB
module to generate the HR images.

We compare our MRNet with several state-of-the-art methods:
VDSR [14], DRCN [15], DRRN [27], IDN [13],MemNet [28], CARN [2],
SRDenseNet [31], MSRN [19], SRFBN [20], and OISR-RK-2 [8]. As
shown in Table 3, The MRNet-S model refers to our MRNet with
single-scale structure. Multiply-accumulate operations (MAC) are
calculated under the assumption that the size of the output image
is 1280×720. Note that SRFBN [20] uses DIV2K+Flickr2K dataset

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2208

HR Bicubic VDSR DRCN DRRN

IDN CARN MSRN MRNet-S MRNetppt3 (x4, Set14)

HR Bicubic VDSR DRCN DRRN

IDN CARN MSRN MRNet-S MRNetimg024 (x4, Urban100)

Figure 8: Visual comparisons of MRNet with other SOTA SR methods with scaling factor ×4. Zoom in for a better visual
experience.

(DF2K, 800+2650, 2K images) to train their model, the author also
provides the results of SRFBN trained using the DIV2K dataset at ×4
scaling factor, which are included in Table 3. Our proposedMRNet-S
can achieve better results than most networks with fewer parame-
ters, and the multi-scale version MRNet can take full advantage of
the multi-scale training. It adopts the sameMRM to enhance the fea-
tures for different scaling factors, which achieves better results than
MRNet-S. In comparison to the multi-scale model MDSR-baseline,
which has seven times as many parameters as MRNet, MRNet can
also achieve better results with much fewer parameters. Figure 9
shows the comparison of PSNR versus the number of parameters,
the performance of our MRNet greatly surpasses some previous
recursive models like DRCN, DRRN and MemNet. Compared with
SRFBN trained under the same training data, our model can also
achieve better results with fewer parameters and MAC (Table 3).

As shown in Figure 8, for “ppt3” from Set14, our MRNet can com-
pletely reconstruct the alignment of lines, while the lines predicted
by other methods are discontinuous. For “ima024” from Urban100,
the original input has been unable to distinguish these railings,
other models have not correctly reconstructed the area, but our
network has reconstructed the shape and direction of the railings.

5 CONCLUSION
In this paper, we proposed a novel recursive model for SISR called
memory recursive network (MRNet) to make the most of the output
feature of each recursion. By adopting the proposed memory recur-
sive module (MRM) in each recursion, the historical information of

VDSR

DRCN

DRRN

IDN
MemNet

CARN MDSR_baseline

MDSR

SRDenseNet
MSRN

SRFBN(DF2K)
SRFBN(DIV2K)

OISR-RK2
MRNet-S

MRNet

31.2

31.4

31.6

31.8

32

32.2

32.4

32.6

0 1 2 3 4 5 6 7 8

P
S

N
R

 (
dB

)

Params (M)

Figure 9: Comparison of PSNR vs. parameters on Set5 ×4.

each stage can be used more effectively. We also propose a Shuffle-
Conv module to fuse the features from different recursion, which is
more lightweight than the conventional 1× 1 convolution. Compre-
hensive experiments show the MRNet composed of these proposed
modules can better handle the features of different recursions and
enables the ConvBlock in the MRM to enhance the features more ac-
curately. At the same time, MRNet can boost the SISR performance
when increasing the recursion times appropriately. The comparison
on the benchmark datasets demonstrates that our MRNet could
achieve better performance with fewer parameters.

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2209

REFERENCES
[1] E. Agustsson and R. Timofte. 2017. NTIRE 2017 Challenge on Single Image

Super-Resolution: Dataset and Study. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW).

[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. 2018. Fast, Accurate, and
Lightweight Super-Resolution with Cascading Residual Network. arXiv preprint
arXiv:1803.08664 (2018).

[3] Marco Bevilacqua, Aline Roumy, Christine Guillemot, andMarie line Alberi Morel.
2012. Low-Complexity Single-Image Super-Resolution based on Nonnegative
Neighbor Embedding. In Proceedings of the British Machine Vision Conference.
BMVA Press, 135.1–135.10. https://doi.org/10.5244/C.26.135

[4] C. Dong, C. C. Loy, K. He, and X. Tang. 2016. Image super-resolution using deep
convolutional networks. IEEE TPAMI 38, 2 (2016), 295–307.

[5] C. Dong, C. C. Loy, and X. Tang. 2016. Accelerating the super-resolution convo-
lutional neural network. In ECCV. Springer, 391–407.

[6] Wei Han, Shiyu Chang, Ding Liu, Mo Yu, MichaelWitbrock, and Thomas S Huang.
2018. Image super-resolution via dual-state recurrent networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.

[7] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image
recognition. In CVPR. 770–778.

[8] Xiangyu He, Zitao Mo, Peisong Wang, Yang Liu, Mingyuan Yang, and Jian Cheng.
2019. ODE-inspired Network Design for Single Image Super-Resolution. In 2019
IEEE Conference on Computer Vision and Pattern Recognition.

[9] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[10] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Wein-berger. 2017. Densely
connected convolutional networks.. In CVPR.

[11] J. Huang, A. Singh, and N. Ahuja. 2015. Single image super-resolution from
transformed self-exemplars. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 5197–5206.

[12] J. Huang, A. Singh, and N. Ahuja. 2015. Single image super-resolution from trans-
formed self-exemplars. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 5197–5206. https://doi.org/10.1109/CVPR.2015.7299156

[13] Z. Hui, X. Wang, and X. Gao. 2018. Fast and Accurate Single Image Super-
Resolution via Information Distillation Network. In CVPR. 723–731.

[14] J. Kim, J. K. Lee, and K. M. Lee. 2016. Accurate image super-resolution using very
deep convolutional networks. In CVPR. 1646–1654.

[15] J. Kim, J. K. Lee, and K. M. Lee. 2016. Deeply-recursive convolutional network
for image super-resolution. In CVPR. 1637–1645.

[16] W. Lai, J. Huang, A. Narendra, and M. Yang. 2017. Deep Laplacian Pyramid
Networks for Fast and Accurate Super-Resolution. In IEEE Conferene on Computer
Vision and Pattern Recognition.

[17] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunning-ham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, and W. Shi. 2017. Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Network.. In CVPR.

[18] Lei Zhang and Xiaolin Wu. 2006. An edge-guided image interpolation algorithm
via directional filtering and data fusion. IEEE Transactions on Image Processing
15, 8 (Aug 2006), 2226–2238. https://doi.org/10.1109/TIP.2006.877407

[19] Juncheng Li, Faming Fang, Kangfu Mei, and Guixu Zhang. 2018. Multi-scale
Residual Network for Image Super-Resolution. In The European Conference on
Computer Vision (ECCV).

[20] Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwanggil Jeon, and Wei Wu.
2019. Feedback Network for Image Super-Resolution. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[21] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. 2017. Enhanced deep residual
networks for single image super-resolution. In CVPRW.

[22] D. Martin, C. Fowlkes, D. Tal, and J. Malik. 2001. A database of human
segmented natural images and its application to evaluating segmentation al-
gorithms and measuring ecological statistics. In Proceedings Eighth IEEE In-
ternational Conference on Computer Vision. ICCV 2001, Vol. 2. 416–423 vol.2.
https://doi.org/10.1109/ICCV.2001.937655

[23] Yusuke Matsui, Kota Ito, Azuma Fujimoto Yuji Aramaki, Toru Ogawa, Toshihiko
Yamasaki, and Kiyoharu Aizawa. 2017. Sketch-based manga retrieval using
manga109 dataset. Multimedia Tools and Applications 76 (2017), 21811âĂŞ21838.

[24] T. Peleg and M. Elad. 2014. A Statistical Prediction Model Based on Sparse
Representations for Single Image Super-Resolution. IEEE Transactions on Image
Processing 23, 6 (2014), 2569–2582.

[25] S. Schulter, C. Leistner, and H. Bischof. 2015. Fast and accurate image upscaling
with super-resolution forests. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 3791–3799.

[26] W. Shi, J. Caballero, F. HuszÃąr, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert,
and Z. Wang. 2016. Real-time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. In CVPR. 1874–1883.

[27] Y. Tai, J. Yang, and X. Liu. 2017. Image super-resolution via deep recursive
residual network. In CVPR.

[28] Y. Tai, J. Yang, X. Liu, and C. Xu. 2017. Memnet: A persistent memory network
for image restoration. In CVPR. 4539–4547.

[29] R. Timofte, V. De, and L. V. Gool. 2013. Anchored Neighborhood Regression for
Fast Example-Based Super-Resolution. In 2013 IEEE International Conference on
Computer Vision. 1920–1927.

[30] Radu Timofte, Vincent DeÂăSmet, and Luc VanÂăGool. 2015. A+: Adjusted
Anchored Neighborhood Regression for Fast Super-Resolution. In Computer
Vision – ACCV 2014, Daniel Cremers, Ian Reid, Hideo Saito, and Ming-Hsuan
Yang (Eds.). Springer International Publishing, Cham, 111–126.

[31] T. Tong, G. Li, X. Liu, and Q. Gao. 2017. Image super-resolution using dense skip
connections. In ICCV. IEEE, 4809–4817.

[32] Xin Li and M. T. Orchard. 2001. New edge-directed interpolation. IEEE Transac-
tions on Image Processing 10, 10 (Oct 2001), 1521–1527. https://doi.org/10.1109/
83.951537

[33] Roman Zeyde, Michael Elad, and Matan Protter. 2012. On Single Image Scale-
Up Using Sparse-Representations. In Curves and Surfaces, Jean-Daniel Boisson-
nat, Patrick Chenin, Albert Cohen, Christian Gout, Tom Lyche, Marie-Laurence
Mazure, and Larry Schumaker (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 711–730.

[34] K. Zhang, X. Gao, D. Tao, and X. Li. 2012. Single Image Super-Resolution With
Non-Local Means and Steering Kernel Regression. IEEE Transactions on Image
Processing 21, 11 (2012), 4544–4556.

[35] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 6848–6856.

[36] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhang, and Y. Fu. 2018. Image super-resolution
using very deep residual channel attention networks. ECCV (2018).

[37] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018. Residual
Dense Network for Image Super-Resolution. In CVPR.

Poster Session G1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2210

https://doi.org/10.5244/C.26.135
https://doi.org/10.1109/CVPR.2015.7299156
https://doi.org/10.1109/TIP.2006.877407
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1109/83.951537
https://doi.org/10.1109/83.951537

	Abstract
	1 Introduction
	2 Related work
	2.1 Deep learning based SISR
	2.2 Recursive convolutional network for SISR

	3 Memory recursive network
	3.1 Network architecture
	3.2 Memory recursive module
	3.3 ShuffleConv module
	3.4 Discussions

	4 Experiments
	4.1 Settings
	4.2 Effects of memory recursive module
	4.3 Effects of ShuffleConv
	4.4 Study of recursion
	4.5 Comparison with the state-of-the-arts

	5 Conclusion
	References

