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ABSTRACT
In this paper, we propose a novel Visual Relation of Interest
Detection (VROID) task, which aims to detect visual relations
that are important for conveying the main content of an image,
motivated from the intuition that not all correctly detected relations
are really “interesting” in semantics and only a fraction of them
really make sense for representing the image main content. Such
relations are named Visual Relations of Interest (VROIs). VROID
can be deemed as an evolution over the traditional Visual Relation
Detection (VRD) task that tries to discover all visual relations
in an image. We construct a new dataset to facilitate research
on this new task, named ViROI, which contains 30,120 images
each with VROIs annotated. Furthermore, we develop an Interest
Propagation Network (IPNet) to solve VROID. IPNet contains a
Panoptic Object Detection (POD) module, a Pair Interest Prediction
(PaIP) module and a Predicate Interest Prediction (PrIP) module.
The POD module extracts instances from the input image and
also generates corresponding instance features and union features.
The PaIP module then predicts the interest score of each instance
pair while the PrIP module predicts that of each predicate for
each instance pair. Then the interest scores of instance pairs
are combined with those of the corresponding predicates as the
final interest scores. All VROI candidates are sorted by final
interest scores and the highest ones are taken as final results. We
conduct extensive experiments to test effectiveness of our method,
and the results show that IPNet achieves the best performance
compared with the baselines on visual relation detection, scene
graph generation and image captioning.
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Figure 1: Comparison between visual relation detection
and visual relation of interest detection. (a) Visual relation
detection on an image from VisualGenome dataset [13]. (b)
Visual relation of interest detection on the same image from
our new ViROI dataset. (c) Image captioning on the same
image from MSCOCO dataset [18].

1 INTRODUCTION
As a bridge between vision and natural language, visual relation
detection (VRD) aims to describe the instances in an image and
their interactions with relationship triplets in the form of <subject,
predicate, object> [19]. Due to the explosive combination possibility
of subject, predicate and object, there actually exist abundant visual
relations that on one hand provide a comprehensive description
of the image content, and on the other hand may mislead the
prediction of the main content with an overwhelming amount of
detail. As shown in Figure 1 (a), 24 visual relations are detected from
the given image, while only five of them are used for describing
the image main content in visual captioning as in Figure 1 (b) and
(c). We are therefore inspired to pursue those visual relations that
are more semantically important than others among all detected
ones for describing the main content of an image. We call such a
relation “visual relation of interest” (VROI).
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Most existing VRDmethods [19, 44, 45] do not distinguish VROIs
from other visual relations explicitly, though ground truths of
some VRD datasets are extracted from image captions, such as
VisualGenome [13]. Recently, a new dataset named VrR-VG [15]
has been built based on the VisualGenome dataset [13], whereas it
focuses on balanced data distribution and visually relevant relations
that are not necessarily “interesting” in semantics. Some VRD
related tasks also seek to generate more accurate and reasonable
relations. For example, [21] measures the salient weights of different
relations with an attention module for salient visual relationship
detection, but it does not annotate the semantic importance
of relations; [46] focuses on the salient interaction regions by
combiningmulti-level features to accurately recognize the predicate
of a subject-object pair; [25] estimates the relevance of relations
with prior potentials but does not measure the semantic importance
of relations. They are not targeted at extracting VROIs that are
meaningful in terms of describing main image content. Scene graph
generation (SGG) [27, 35, 40] restricts the number of detected visual
relations in a given image with the goal of generating a meaningful
graph for representing visual relations, but it cannot distinguish
VROIs except for ground truth annotation.

Image captioning [1, 9, 33, 41] aims to represent the main content
of an image with a complete sentence that might imply VROIs.
However, we argue that VROIs can provide more detailed and
structural descriptions of the image main content, bringing more
benefits to many image understanding applications like visual
question answering [2, 11]. Similarly, instance of interest detection
(IOID) [39] also tries to extract the elements that are crucial for
representing the image main content. However, it only focuses on
the individual instances with higher essentiality, while VROIs are
able to demonstrate interactions between two instances thus offer
more comprehensive understandings of the image content.

In this paper, we propose a new task, Visual Relation Of Interest
Detection (VROID), to detect VROIs from a given image. VROID can
be seen as a further extension of the traditional VRD task. Similar
to other existing VRD methods [5, 19, 44], VROID aims to represent
the VROIs with relationship triplets and localize the subject and
object for each relationship triplet by bounding boxes. Compared
to VRD and IOID, VROID needs to tackle more technical challenges.
It requires to retain the essential visual relations only, meaning it
demands additional essentiality measurement of visual relations
compared to VRD, which is much more complex than that of
instances as in IOID. The visual relation of two significant instances
may be described in diverse manners. For example, in an image
illustrating a girl is working on a computer, possible predicates
between “person” and “computer” include “beside”, “behind”, “touch”
and “work on”, but only “work on” denotes the main content. Hence
the essentiality measurement in VROID should be discriminative
enough to distinguish among these predicate candidates. Besides,
VROID requires to detect the visual relations rather than the objects
prior to the relation essentiality measurement, leading to greater
difficulty for this new task than IOID due to the lower precision and
recall of VRD compared with object detection. VROID can support
various applications such as image retrieval [29], tagging [30],
captioning [33] and visual question answering [2].

We devise a novel Interest Propagation neural Network (IPNet)
for effectively detecting VROIs. It contains three modules: a

Panoptic Object Detection (POD) module, a Pair Interest Prediction
(PaIP) module and a Predicate Interest Prediction (PrIP) module.
Firstly, the POD module extracts all instances in a given input
image, which are represented as bounding boxes and corresponding
categories. Also, the features of these instances and unions of any
two instances are extracted and used in the next two modules. The
PaIP module generates the interest probability for each pair of two
instances (subject and object in the triplet). Specifically, we first
generate the interest feature for every instance with its category,
bounding box and feature, and also similarly for each instance pair.
Then, the interest features of two instances are propagated to their
pair by a modified graph convolutional network (GCN) inspired
by [37], which concatenates the interest feature of a pair with the
sum of interest features of corresponding instances after linear
transformation, and the interest probability of a pair is generated
upon the composite interest feature. Meanwhile, we use the PrIP
module to predict the interest probability of all candidate predicates
for each pair, i.e., whether a predicate is interesting, given that its
corresponding subject and object are both interesting. The interest
features of pairs are propagated to triplets during the inference by
multiplying the interest probability of a pair with that of a predicate
under the condition of the pair being interesting.

Since VROID is a new VRD task, there is no existing dataset
for VROID, to the best of our knowledge. Hence, we construct
the first VROID dataset ViROI based on the IOID dataset [39]
and the MSCOCO dataset [18]. The ground truth VROIs are
manually annotated over images from the IOID dataset using
our own annotation tool based on the corresponding captions
of the MSCOCO dataset. The whole annotation work has been
accomplished by expert annotators, followed by careful data
cleaning to ensure annotation accuracy. The ViROI dataset contains
30,120 images and 109,764 annotated VROIs in total, on which
we evaluate the proposed IPNet method and proves its better
performance over other the baselines.

To sum up, our contributions are threefold: (i) We present a new
VROID task aiming to detect the VROIs in a given image that are
important for describing the image main content. (ii) We propose
a novel IPNet method to address VROID that is proved to be very
effective. (iii) We construct the first VROID dataset ViROI, which
consists of 30,120 images with 109,764 manually labelled VROIs.

2 RELATEDWORKS
Visual Relation Detection. Visual relation detection targets at
detecting the relationships between two instances in images. One
of its down-stream task, scene graph generation, aims to represent
the detected visual relations with graphs. Both visual relations
and scene graphs can support many down-stream tasks such as
image captioning and image retrieval. Early VRD works [19, 38, 43]
focus on relation prediction after object detection is independently
performed. Later, the majority of methods like [42] incorporate an
object detector into their pipeline, and take advantage of the object
features from it for predicting visual relationships. Many efforts
have been denoted to lifting performance by applying various
techniques. Some methods [6, 19, 45] introduce language priors to
facilitate the prediction of predicates in relation triplets. Starting
from [35], context information is popularly considered to boost
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the prediction accuracy. Some methods [32, 37, 40] propagate the
context features among different object pairs through recurrent
neural network (RNN) or tree structures, while some others [21, 46]
score all the candidates with an attention mechanism based on
global context. Starting from [40], several methods [10, 25] use data
bias to raise recall of prediction. Following research works construct
a balanced dataset [15] or try to make unbiased predictions [31].

In this work we seek to attain the visual relations that are
especially important for conveying the main content of a given
image. Our new VROID task focuses on the semantic importance
of the relations compared with VRD that seeks to find all the visual
relations. VROID can be seen as an extension of VRD.
Instance of Interest Detection. Different from traditional object
detection that targets at recognizing all the objects, instance of
interest detection aims to only detect objects that are beneficial to
representing the image content while excluding the unimportant
ones for describing a given image, which can benefit tasks such as
image captioning and image retrieval, etc. In recent years it has been
researched. For example, Yu et al. [39] proposed to leverage both
visual saliency and semantic context to detect objects of interest
through a Cross-influential Network. Our new VROID task differs
from this task in that VROID aims at more important visual relations
while this task pursues more important instances in the images.
Image Captioning. Image captioning is a task across the visual
and language modalities. Inspired by machine translation, the RNN
is usually used after a convolution neural network to generate
image captions [33]. The attention mechanism is also adopted to
automatically generate captions by attending to the salient parts of
an image [9, 36]. The output of this task is a sentence describing the
given image, while our VROID outputs a relationship triplet like
<subject, predicate, object> plus bounding boxes of corresponding
instances, which are much more precise in describing the content
of a given image.

3 DATASET
Annotation Design. We construct the first dataset for VROID,
named ViROI, based on the IOID dataset [39] and the MSCOCO
2017 dataset [18]. The IOID dataset contains 45,000 images in total,
providing corresponding instances to each noun in captions of the
images. The MSCOCO dataset consists of 123,287 images, each with
instances segmentation, stuff segmentation, panoptic segmentation,
person keypoints and captions provided. It is designed for training
and evaluation of object detection, semantic segmentation, panoptic
segmentation, keypoint detection, image captioning, etc.

We annotate VROIs in 45,000 images from the IOID dataset to
build our new dataset by labelling relationship triplets mentioned
in captions of the MSCOCO dataset and selecting the referred
instances of each triplet, with the following two steps: 1) Label rela-
tionship triplets. We use Stanford CoreNLP Dependency Parser [22]
to automatically extract possible relationship triplets as well as
subject, predicate and object candidates from captions of MSCOCO.
Our annotators check the automatically generated triplets and
rectify some wrong ones using these candidates. They are also
requested to manually compose relationship triplets based on the
image caption if they consider these triplets are “missed” by the
system. 2) Select instances of subject and object in each triplet. The

Figure 2: An example of the interface of our VROI anno-
tation tool. The image caption is given at the topmost, the
image to be annotated is given in the left, and the right
shows tables for annotators to view and work.

IOID dataset provides instance segmentation for each image, and
annotators check the correspondence between subject or object in a
triplet and the detected instance in the image. However, when both
subject and object have multiple corresponding instances, incorrect
VROIs would be generated. In this case, our annotators manually
pick out the correct subject-object pairs from all the possible pairs
automatically generated by the system.
Application of Annotation Tool.We develop an annotation tool
with an interface shown in Figure 2. The interface contains image
captions, image to be annotated and labelled relations. In the given
caption, candidate words are underlined to be clicked to fill into the
subject, predicate, or object input box. Once annotators complete
the three input boxes and press the “Add” button, a table will show
in the right area with relationship triplet in the head and all possible
pairs in the body. Meanwhile, the left image displays instance
segmentation of subject in yellow and object in blue. If both subject
and object have multiple corresponding instances, annotators need
to click the segmentation area of subject and object in the left image
to check correct pairs. In addition, we request the annotators to
discard the images with relation triplet(s) in which subject and
object both have too many corresponding instances.
Data Cleaning. To ensure annotation accuracy, we perform data
cleaning with following six steps: 1) Lemmatize predicates using
Stanford CoreNLP lemmatizer [22], but keep them in passive voice.
2) Filter out images with irregular predicates. We define 4 kinds
of canonical predicates according to the VRD dataset: verb (e.g.,
“hold”, “ride”, “look”), preposition (e.g., “on”, “with”, “in”), spatial
(e.g., “next to”, “in front of”, “outside of”) and preposition phrase
(e.g., “stand beside”, “sit at”, “walk through”). 3) Merge synonymous
predicates based on WordNet [23]. 4) Reverse passive relationships
if reversible, such as changing passive voice “held by” into active one
“hold” by swapping subject and object. For those irreversible, such
as “connected to”, we keep the relationships unchanged. 5) Filter
out relationships with rare predicates that appear less than 6 times
in whole data, in order to limit the number of predicates. 6) Filter
out duplicate relationships and images without any relationship.
Dataset Statistics. Our ViROI dataset consists of 30,120 images
with 109,764 annotated VROIs, with instances and corresponding
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（a）

（b）

Figure 3: Dataset analysis. (a) Predicate distribution. (b)
VROI distribution.

VROIs available for each image. We represent each instance with
its category, bounding box and segmentation, and represent each
VROI with its subject instance, predicate and object instance. There
are 133 categories of instances, including 80 thing categories (e.g.,
person, bicycle, car) and 53 stuff categories (e.g., banner, blanket,
bridge). There are 249 categories of predicates, including 77 verbs,
17 prepositions, 5 spatial and 150 preposition phrases. Our dataset
contains 12,713 unique VROIs in total and an average of 6.676 things,
4.020 stuff and 3.644 VROIs per image. It is divided into a training
set and a test set with similar distribution of predicates and VROIs,
containing 25,091 images with 91,496 VROIs and 5,029 images with
18,268 VROIs, respectively. The training set contains an average
of 6.684 things, 4.018 stuff and 3.647 VROIs per image. The test set
contains an average of 6.634 things, 4.029 stuff and 3.632 VROIs per
image. Details about data distribution are shown in Figure 3.

We would like to discuss about the data bias in our dataset. Bias
naturally exists in our ViROI dataset because predicates and VROIs
are extracted from image captions and the distribution is related
to the occurrence frequency in natural language. We compare our
ViROI dataset with the pre-processed VG dataset [35]. If the relation
triplets are sorted according to the number of occurrence in a
descendent order, in our dataset top-50% relation triplets account
for 93.17% in training set and 88.87% in test set, while in the other
dataset the statistics are 96.10% in training set and 94.88% in test
set. We also design a simple baseline using frequency of relation
triplets to further discuss data bias in the Section 5.3.

4 METHOD
We propose a novel Interest Propagation Network to solve our new
VROID task, which outputs VROIs in triplets plus bounding boxes
of corresponding instances for each given input image. The whole
framework is shown in Figure 4. IPNet contains a Panoptic Object
Detection module, a Pair Interest Prediction module and a Predicate
Interest Prediction module. The POD module extracts instances
from the input image that are represented as bounding boxes
with corresponding categories, and also generates corresponding

instance features and union features (“union” here refers to a
rectangular area tightly containing each two objects). The PaIP
module then predicts the interest score of each instance pair while
the PrIP module predicts that of each predicate for each instance
pair. Then we combine the interest scores of instance pairs with
those of the corresponding predicates as the final interest scores. All
VROI candidates are sorted by final interest scores and the highest
ones are final results.

4.1 Panoptic Object Detection
Before detecting visual relations, we first extract the instances
in the given image, which are divided into thing and stuff [12].
Object detection is typically performed in foreground, but we
argue the background can provide scene information that is also
important for conveying image content. Hence, we use a panoptic
segmentation model in the Detectron2 framework [34] for panoptic
object detection. In particular, we adopt the feature pyramid
network [16] as backbone to extract five-layer image features.
The thing predictor starts with a region proposal network, which
takes as input the five-layer image features to generate thing-
instance proposals. The image features are cropped and pooled
according to the proposals, and the bounding boxes and classes of
the proposals are predicted. Then, thing-instance candidates are
filtered through non-maximum suppression. The stuff predictor
combines the five-layer image features and predicts the category
of each pixel. The bounding boxes of stuff-instances are extracted
from the corresponding segmentations. The thing-instances and
stuff-instances are finally merged.

Besides the above bounding boxes and classes of each instance,
we also extract instance features which contain rich information
benefiting following modules. Features of thing-instances can be
directly extracted with the thing predictor while for stuff-instances
this does not work, so we use an instance encoder to generate
stuff-instance features with semantic consistency between thing-
instances and stuff-instances. The raw features are extracted via
ROI pooling with five-layer image features and instance bounding
boxes. The instance encoder uses linear transformation to generate
target instance features. To make instance features represent
consistent semantic information, we predict the corresponding
classes according to generated instance features during training.

We also combine each two instances as a pair and compute the
union bounding box of subject and object in the pair, and the feature
of the union is generated by the instance encoder with the five-layer
image features and the union bounding box of the pair.

4.2 Pair Interest Prediction
We predict the interest of each pair with interest propagation from
corresponding instances to the pair in this module.

We first predict the interest of instances with features of
semantics, location and vision.Word embedding features pretrained
by global vectors for the word representation (GloVe) model [24]
are used as our semantics features. Location features represent the
position comparative to the whole image:

𝐿𝑜𝑐𝑖 =
𝑥𝑚𝑖𝑛
𝑖

𝑤
⊕
𝑦𝑚𝑖𝑛
𝑖

ℎ
⊕
𝑥𝑚𝑎𝑥
𝑖

−𝑤

𝑤
⊕
𝑦𝑚𝑎𝑥
𝑖

− ℎ

ℎ
, (1)
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Figure 4: An overview of our IPNet. It consists of a Panoptic Object Detection module, a Pair Interest Prediction module and
a Predicate Interest Prediction module.

where 𝐿𝑜𝑐𝑖 is the location feature of the instance 𝑖 , ⊕ is the
concatenation operation, coordinates of the instance top-left corner
and bottom-right corner are 𝑥𝑚𝑖𝑛

𝑖
, 𝑥𝑚𝑎𝑥

𝑖
, 𝑦𝑚𝑖𝑛

𝑖
, 𝑦𝑚𝑎𝑥

𝑖
, and height,

width of the image are ℎ, 𝑤 . The vision features are the instance
features generated as detailed in Section 4.1. Then three types of
features are transformed to the same dimension and concatenated.

Before propagating the interest of instances to corresponding
pairs, we also extract the pair features of semantics, location and
vision. The semantics features are the difference in word embedding
features of subject and object, which distinguishes a pair from its
counterpart composed of reversed subject and object. The location
features in this module represent the position of the subject and
object comparative to the whole image:

𝐿𝑜𝑐𝑝 =
⊎

𝑖∈{𝑠𝑝 ,𝑜𝑝 }
(
𝑥𝑚𝑖𝑛
𝑖

𝑤
⊕
𝑦𝑚𝑖𝑛
𝑖

ℎ
⊕
𝑥𝑚𝑎𝑥
𝑖

−𝑤

𝑤
⊕
𝑦𝑚𝑎𝑥
𝑖

− ℎ

ℎ
), (2)

where 𝐿𝑜𝑐𝑝 is the location feature of the pair 𝑝 , ⊕ is the concatena-
tion operation,

⊎
represents concatenation on the instance level, 𝑠𝑝

and 𝑜𝑝 represent the subject instance and the object instance of the
pair 𝑝 , respectively. The same as Equation (1), the coordinates of an
instance’s top-left corner and bottom-right corner are 𝑥𝑚𝑖𝑛

𝑖
, 𝑥𝑚𝑎𝑥

𝑖
,

𝑦𝑚𝑖𝑛
𝑖

, 𝑦𝑚𝑎𝑥
𝑖

and the height, width of the image are ℎ and 𝑤 . The
vision features are composed by those related to the pair’s union
box and the difference of subject features and object features:

𝐹𝑝 = (𝐹𝑠𝑖 − 𝐹𝑜𝑖 ) ⊕ 𝐹𝑢𝑖 , (3)

where 𝐹𝑝 is the feature of pair 𝑝 , 𝐹𝑠
𝑖
and 𝐹𝑜

𝑖
represent the feature

of the subject and object instance of pair 𝑝 , respectively, 𝐹𝑢
𝑖
is the

feature generated by the union box of subject and object of pair
𝑝 and ⊕ is the concatenation operation. Vision features contain
subject and object information and context information.

We modify the GCN in [37] to combine the interest features of a
pair with its related instances, which is named interGCN:

𝐺 ′
𝑝 = 𝐺𝑝 ⊕

∑
𝑖∈𝐼 (𝜖𝑖𝑝𝐺𝑖 )∑

𝑖∈𝐼 𝜖
𝑖
𝑝

, (4)

where 𝐺 ′
𝑝 denotes the updated interest feature of pair 𝑝 after

interGCN,𝐺𝑝 is the interest feature of pair 𝑝 ,𝐺𝑖 is the transformed
interest feature of instance 𝑖 passed from the instance interest
module, 𝐼 is the set containing all instances, 𝜖𝑖𝑝 represents theweight
factor of instance 𝑖 to pair 𝑝 and ⊕ is the concatenation operation.
We pose a constraint that only instances serving as subject or object
of a pair can make influence:

𝜖𝑖𝑝 =

{
1 𝑖 ∈ {𝑠𝑝 , 𝑜𝑝 }
0 𝑖 ∉ {𝑠𝑝 , 𝑜𝑝 }

, (5)

where 𝑠𝑝 and 𝑜𝑝 represent the subject instance and the object
instance of the pair 𝑝 , respectively.

4.3 Predicate Interest Prediction
We then generate possible predicates of interest for each subject-
object pair. Similarly as the PaIP module, we also combine features
of semantics, location and vision in this module. Inspired by [42],
we transform word embedding features of the subject and object
categories through a two-step long short term recurrent neural
network [7]. The location features represent the position of the
subject and object comparative to the union box:

𝐿𝑜𝑐 ′𝑝 =
⊎

𝑖∈{𝑠𝑝 ,𝑜𝑝 }
(
𝑥𝑚𝑖𝑛
𝑖

𝑤 ′ ⊕
𝑦𝑚𝑖𝑛
𝑖

ℎ′
⊕
𝑥𝑚𝑎𝑥
𝑖

−𝑤 ′

𝑤 ′ ⊕
𝑦𝑚𝑎𝑥
𝑖

− ℎ′

ℎ′
), (6)

where 𝐿𝑜𝑐 ′𝑝 is the location feature of the pair 𝑝 , ⊕, ⊎, 𝑠𝑝 , 𝑜𝑝 , 𝑥𝑚𝑖𝑛
𝑖

,
𝑥𝑚𝑎𝑥
𝑖

, 𝑦𝑚𝑖𝑛
𝑖

and 𝑦𝑚𝑎𝑥
𝑖

are the same with those in Equation (2), and
the ℎ′ and𝑤 ′ represent the height and width of the union box of
pair 𝑝 , respectively. The visual features are the same as those used
in Section 4.2.

We predict the interest possibility of each predicate for all
instance pairs in the image, given that both their subjects and
objects are interesting. Considering our ViROI dataset only provides
relations of interest annotation, inspired by [14], we apply semi-
supervised learning as

𝐿𝑟𝑒𝑙𝑎 = 𝑙𝑟𝑒𝑙𝑎 (𝑟 𝑙𝑝𝑟𝑒𝑑 , 𝑟
𝑙
𝑔𝑡 ) + 𝛽𝑙𝑟𝑒𝑙𝑎 (𝑟𝑢𝑝𝑟𝑒𝑑 , 𝑟

𝑢
𝑔𝑡 ), (7)
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where 𝐿𝑟𝑒𝑙𝑎 represents the loss in PrIP module, 𝑙𝑟𝑒𝑙𝑎 is the loss
function, 𝑟 𝑙

𝑝𝑟𝑒𝑑
and 𝑟𝑢

𝑝𝑟𝑒𝑑
denote prediction of labelled data and

unlabelled data, respectively, 𝑟 𝑙𝑔𝑡 and 𝑟𝑢𝑔𝑡 are ground truth of labelled
data and unlabelled data, respectively, and 𝛽 is the weight of
unlabelled data’s loss. The predictions with probability larger than
a threshold directly work as the 𝑔𝑡𝑢 . The threshold is the 𝛾-highest
prediction probability of the labelled data, and 𝛾 is the number of
positive samples in these labelled data. The value of 𝛽 gradually
rises to 1 alongwith the increase of iterations because the prediction
is not accurate at the beginning.

4.4 Loss Function
Uninteresting relations are far more than relations of interest.
Hence, normal training easily leads a model to predicting all visual
relations as not interesting. Focal loss is proposed [17] to address
the category imbalance that always challenges object detection.
Considering that interesting relations only make a tiny fraction of
the total possible relations, we use a modified focal loss function:

𝐿𝑝𝑜𝑠 = −(1 − 𝑝𝑝𝑜𝑠 )2log(ppos), (8)

𝐿𝑛𝑒𝑔 = −𝑝𝑛𝑒𝑔log(1 − pneg), (9)

where 𝐿𝑝𝑜𝑠 , 𝐿𝑛𝑒𝑔 respectively denote the loss of positive and
negative samples, and 𝑝𝑝𝑜𝑠 , 𝑝𝑛𝑒𝑔 respectively denote the probability
score of positive and negative samples. This loss function will
severely penalizes the model if it wrongly divides a positive sample
into the negative category.

Possible instances of interest, pairs of interest and predicates of
interest only account for a small proportion among all instances,
pairs and predicate categories, respectively. The modified focal
loss is used in all modules except for the instance encoder in the
POD module. We use the typical cross entropy loss for the class
prediction in the instance encoder. Total loss is the summarization
of losses of all the modules:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑙𝑎𝑠𝑠 + 𝐿
𝑝𝑜𝑠

𝑖𝑛𝑠
+ 𝐿

𝑛𝑒𝑔

𝑖𝑛𝑠
+ 𝐿

𝑝𝑜𝑠

𝑝𝑎𝑖𝑟
+ 𝐿

𝑛𝑒𝑔

𝑝𝑎𝑖𝑟
+ 𝐿

𝑝𝑜𝑠

𝑟𝑒𝑙𝑎
+ 𝐿

𝑛𝑒𝑔

𝑟𝑒𝑙𝑎
, (10)

where𝐿𝑡𝑜𝑡𝑎𝑙 is the total loss of thewhole end-to-end network,𝐿𝑐𝑙𝑎𝑠𝑠
is the loss of instance’s class prediction in the instance encoder,
𝐿
𝑝𝑜𝑠

𝑖𝑛𝑠
and 𝐿

𝑛𝑒𝑔

𝑖𝑛𝑠
are positive and negative loss of instance interest

prediction, 𝐿𝑝𝑜𝑠
𝑝𝑎𝑖𝑟

and 𝐿
𝑛𝑒𝑔

𝑝𝑎𝑖𝑟
are positive and negative loss of pair

interest prediction, and finally 𝐿
𝑝𝑜𝑠

𝑟𝑒𝑙𝑎
and 𝐿

𝑛𝑒𝑔

𝑟𝑒𝑙𝑎
are positive and

negative loss of predicate interest prediction.

4.5 Relation Interest Inference
To generate the final triplet interest, the pair interest prediction
and the predicate interest prediction are combined:

𝐼𝑠𝑝𝑜 = 𝐸𝑠𝑜 · 𝐼𝑠𝑜 · 𝑃𝑠𝑝𝑜 , (11)

where 𝐼𝑠𝑝𝑜 represents the interest of the triplet made up of subject
𝑠 , predicate 𝑝 and object 𝑜 , 𝐼𝑠𝑜 represents the interest probability
of the pair composed by subject 𝑠 and object 𝑜 and 𝑃𝑠𝑝𝑜 is the
interest probability of predicate 𝑝 , given that the pair composed by
the subject 𝑠 and the object 𝑜 is interesting. The 𝐸𝑠𝑜 is a parameter,
which is 0 when subject 𝑠 and object 𝑜 are the same and 1 otherwise.

5 EXPERIMENTS
5.1 Experimental Settings
All the experiments are conducted with i7-8086K 4.00GHz 12 cores
CPU, 64GB memory and one TITAN V GPU, on our newly built
ViROI dataset. We use typical metrics 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 ,
and also a new metric Ψ@𝑘 for performance evaluation. The metric
𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 is computed by

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘

, (12)

where 𝑇𝑃𝑘 and 𝐹𝑁𝑘 denote the number of correct relations pre-
dicted and unpredicted in the top 𝑘 confident relation predictions,
respectively. A correct relation is predicted if there is a relation
prediction whose subject and object are within the same category
as the correct relation’s and with bounding box having 𝐼𝑂𝑈 > 0.5,
and the predicate is also within the same category as in ground
truth. All predictions are sorted based on their confidence and
then matched with ground truth in a descending order, and each
prediction can only be matched once. Slightly different from the
traditional definition of𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 [19], we allow each subject-object
pair to havemultiple predicates to adapt to our ViROI dataset, which
is used and named as 𝑁𝑜 𝐺𝑟𝑎𝑝ℎ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 in [40].

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 is most widely used in VRD because it is almost
impossible to exhaustively annotate all possible relations in the
images [19]. But VROIs account for a small ratio to all visual
relations and the prediction needs to be precise. Predicting VROIs
as many as possible leads to increase of 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , but decrease of
precision. So we also use 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛@𝑘 for evaluation:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
, (13)

where𝑇𝑃𝑘 is the same as in 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , 𝐹𝑃𝑘 is the number of wrong
relations predicted in the top 𝑘 confident relation predictions.

Usually the value of 𝑘 is set to 50 and 100 [19]. However in our
test set, images with less than 10 and 20 VROIs account for 94.2%
and 98.8% (shown in Figure 3 (b)), respectively, and a single image
contains up to 76 VROIs. So we set the value of 𝑘 to 10, 20, 50, 100
and 𝜃 . We set a variable 𝜃 for 𝑘 considering the number of VROIs
per image varies greatly and a fixed value of 𝑘 may not accurately
reflect performance. We use 𝜃 to compute 𝑅𝑒𝑐𝑎𝑙𝑙@𝜃 [28], where 𝜃
is the number of correct relations in the image, i.e., the value of 𝑘
varying with images.

The value of 𝑘 may be much larger than the number of correct
relations in an image, and the precision would be very low even in
the condition of best prediction. We thus apply a new metric Ψ@𝑘

for more reasonable evaluation:

Ψ@𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑚𝑎𝑥
𝑘

, (14)

where 𝑇𝑃𝑘 is the same as in 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , 𝑇𝑃𝑚𝑎𝑥
𝑘

is the maximum
number of correct relations predicted in 𝑘 relationship predictions,
which is equal to the smaller value between 𝑘 and 𝜃 . Ψ@𝑘 aims
to evaluate the performance of a method compared with the best
in theory. Note that 𝑅𝑒𝑐𝑎𝑙𝑙@𝜃 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝜃 and Ψ@𝜃 are actually
the same since the number of top predictions is equal to that of
VROIs. So we only keep 𝑅𝑒𝑐𝑎𝑙𝑙@𝜃 in the following analysis.
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Table 1: Ablation results of ourmethod vs. different variants. R@𝜃 , R@𝑘 , P@𝑘 andΨ@𝑘 are abbreviations of𝑅𝑒𝑐𝑎𝑙𝑙@𝜃 ,𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 ,
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and Ψ@𝑘 , respectively.

Method R@𝜃 R@10 P@10 Ψ@10 R@20 P@20 Ψ@20 R@50 P@50 Ψ@50 R@100 P@100 Ψ@100

triplet as output 15.20 23.53 8.55 26.88 31.20 5.67 32.51 42.42 3.08 42.59 51.05 1.85 51.05
output with triplet 20.01 30.18 10.96 34.49 38.44 6.98 40.05 48.93 3.55 49.13 57.05 2.07 57.05
output without pair 0.18 1.62 0.59 1.85 3.47 0.63 3.61 7.89 0.58 8.01 13.38 0.49 13.38
only raw predicate 13.03 22.21 8.07 25.38 30.61 5.56 31.90 41.86 3.04 42.03 50.21 1.82 50.21

no instance 20.14 29.76 10.81 34.01 37.71 6.85 39.30 48.35 3.51 48.55 56.23 2.04 56.23
output with instance 18.37 27.53 10.00 31.46 35.48 6.44 36.97 46.11 3.35 46.30 54.29 1.97 54.29
no semantics features 19.48 29.12 10.58 33.27 37.23 6.76 38.79 47.63 3.46 47.83 55.55 2.02 55.55
no locations features 20.20 29.95 10.88 34.23 38.20 6.94 39.80 48.75 3.54 48.95 57.04 2.07 57.04

bce loss 13.58 20.95 7.61 23.94 27.21 4.94 28.35 36.39 2.64 36.54 43.42 1.58 43.42
Ours 20.93 30.75 11.17 35.13 38.79 7.05 40.43 49.60 3.60 49.80 57.50 2.09 57.50

5.2 Component Analysis
We evaluate the effect of five components in our method: interest
propagation from pairs to triplets, interest propagation from
instances to pairs, semantics features, location features and our
loss function. The results are shown in Table 1.

We first test how interest propagation from pairs to triplets
influences the performance.We modify the IPNet and make four
variants. 1) The first variant concatenates the pair interest features
and the corresponding predicate interest features to predict the
final interest score of each triplet, instead of multiplying the
interest scores of instance pairs and corresponding predicates
as in the original method. 2) The second variant multiplies the
triplet interest scores produced as in the first variant with the
pair interest scores and the predicate interest scores. 3) The third
variant takes the interest scores produced by PrIP as the final
interest scores, without applying multiplication. 4) The fourth
variant removes PaIP module and takes output of PrIP module
as the final interest score of each relation triplet. Results of the
four variants are shown in the first four lines of Table 1. It can be
seen that their performance w.r.t. these metrics are always lower
than those of our original method (denoted as Ours), demonstrating
that the mechanism of propagating interest estimate from pairs
to triplets is beneficial to the detection performance and that it
is better to be implemented during inference than fusing features
during training. Furthermore, comparing the results of the first
and the forth variants, we find that directly estimating interest for
relation triplets hurts the performance. This is because the tiny
proportion of VROIs compared to all visual relations makes the
network tend to predict all the visual relations as uninteresting.

We also evaluate the effect of interest propagation from instances
to pairs. The PaIP module generates instance interest features and
pair interest features and combines them with an interGCN, where
interest propagates from instances to pairs. We design two variants
for this test, and show their results in the fifth and sixth lines of
Table 1. 1) We remove the component which generates instance
interest features and the interGCN which combines instance
interest features and pair interest features. For this variant, Ψ drops
by more than 1.0% when interest propagation from instances to
pairs is omitted. The proportion of interesting instances among all
instances is much higher than that of interesting relations among all
relations, meaning interesting instances are more easily predicted.

Therefore, combining pair interest features with instance interest
features can strengthen the prediction power of PaIP. But the feature
of a pair is transformed from the features of subject and object
instances, during which the input features for instances and pairs
contain duplicate information. That may be why the improvement
is not significant. 2) We propagate interest from instances to pairs
during the inference period in the same way as that from pairs to
triplets. We can see the performance is even worse than that when
interest propagation from instances to pairs is omitted. This may
be because an instance is likely to be contained in lots of triplets.
Simply multiplying the interest scores of the subject and object
instances cannot distinguish interesting relations, and combining
instance interest features during training works better.

We use semantics features in both PaIP and PrIP module.
To evaluate their effects, we remove them and show results of
this variant in the seventh line. Its performance regarding Ψ
is almost 2.0% lower than that of our original method. With
the instance encoder in the POD module, the vision features
contain the information about instance categories, but using the
word embeddings of the instance categories still improves the
performance. This proves that semantics information is important
for detecting VROIs.

The location features are also used in PaIP and PrIP module, and
we evaluate their effects by removing them in the two modules
and comparing with the original method, as shown in the eighth
line and the last line of Table 1. A performance decline is still
observed. We also find adding the location encoder brings only a
little improvement, even much less than that brought by adding
semantics information. This means whether a relation is a VROI
does not have a strong correlation with the location of its subject
and object, which has more influences upon salient object detection
that mainly depends on visual information.

Finally, we evaluate the effect of our loss function. Different from
the original method, we use the typical binary cross entropy loss
in this variant and show the results in the ninth line. Obviously,
our original method performs much better, which shows penalizing
wrongly predicted interesting samples in this case contributes a lot.

5.3 Comparison with Other Methods
We compare our method with baselines for VRD, SGG and image
captioning tasks. We also design a baseline simply using frequency.
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Table 2: Comparison results of our method vs. different baselines. R@𝜃 , R@𝑘 , P@𝑘 and Ψ@𝑘 are abbreviations of 𝑅𝑒𝑐𝑎𝑙𝑙@𝜃 ,
𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and Ψ@𝑘 , respectively.

Method R@𝜃 R@10 P@10 Ψ@10 R@20 P@20 Ψ@20 R@50 P@50 Ψ@50 R@100 P@100 Ψ@100

STA [38] 4.52 7.71 2.81 8.81 12.08 2.20 12.59 20.02 1.46 20.10 27.03 0.98 27.03
MFURLN [42] 5.73 9.32 3.39 10.65 13.24 2.41 13.79 19.84 1.44 19.93 25.28 0.92 25.28

IMP [35] 3.99 6.32 2.38 7.22 8.87 1.67 9.25 12.46 0.94 12.51 15.56 0.59 15.56
Graph R-CNN [37] 11.34 16.92 6.15 19.33 22.19 4.03 23.12 28.86 2.10 28.98 33.03 1.20 33.03
neural motifs [40] 15.09 21.93 7.97 25.06 27.34 4.97 28.49 33.67 2.45 33.80 37.60 1.37 37.60

VCTree [32] 17.78 25.96 9.43 29.67 32.26 5.86 33.62 40.38 2.93 40.55 46.05 1.67 46.05
VCTree [32]+DSS [8] 17.74 25.93 9.42 29.63 32.23 5.85 33.59 40.38 2.93 40.55 46.05 1.67 46.05

VCTree [32]+NLDF [20] 17.68 25.89 9.41 29.58 32.23 5.85 33.58 40.38 2.93 40.54 46.05 1.67 46.05
ARNet [3] 3.98 - - - - - - - - - - - -
MMT [4] 4.94 - - - - - - - - - - - -
Frequency 11.25 16.30 5.92 18.62 23.88 4.34 24.89 34.56 2.51 34.71 42.57 1.55 42.57

Ours 20.93 30.75 11.17 35.13 38.79 7.05 40.43 49.60 3.60 49.80 57.50 2.09 57.50

All the baseline models are retrained on our ViROI dataset with the
code and default settings provided by their authors. The results are
shown in Table 2.

We use twoVRD baselines, STA [38] andMFURLN [42]. STA does
not have its own object detector, and MFURLN’s object detector
is independent and not trained on MSCOCO for panoptic objects.
Thus we use the objects extracted by the panoptic segmentation
model in the Detectron2 framework [34] to predict relationships
for STA and MFURLN. We can see that the performance of these
two methods is rather poor and far worse than ours on the VROID
task. This may be because they miss some object features from the
object detector, proving that VRD methods can not well handle
the VROID task. Also, the tiny proportion of interesting relations
among all the relations may also be part of the reason why the VRD
methods fail on our new task.

We use four SGG methods as baselines, including IMP [35],
Graph R-CNN [37], neural motifs [40] and VCTree [32]. All the
methods except IMP have their own internal object detectors but
not trained on MSCOCO for panoptic objects. So we retrain their
object detection models on our ViROI dataset; for IMP, we use the
objects detected by Detectron2. According to the results in Table 2,
some SGG methods perform much better than VRD methods, but
the best one is still slightly inferior to ours. The possible reason
is that they do not take interest estimation into account. Thus the
SGG methods are able to solve the VROID task to some extent, but
not well enough.

We also build two baselines using VCTree, whose performance
is the best among the above baselines, to generate VROI candidates
and apply salient object detection (DSS [8] and NLDF [20]) as post-
processing to re-score the obtained VROI candidates by multiplying
the maximum saliency values in the bounding box areas of the
corresponding subject and object. The performance is slightly worse
than that of the baseline only using VCTree, which proves that using
salient object detection as post-processing is not an effective way
to distinguish VROIs.

Since the VROIs in our dataset are annotated from the im-
age captions, we design a baseline method of image captioning,
dependency parsing and referring relationships. Similar to the
annotating process, this method first generates a caption of the

given image, then extracts semantic relationships from the caption
based on dependency parsing [27], and finally maps each semantic
relationship to the referred visual relationship in the image. We use
ARNet [3] and MMT [4] for image captioning, Stanford CoreNLP
Dependency Parser [22] for dependency parsing, and DSG [26]
for referring relationships. Because the semantic relationships
extracted from a single caption are very limited, each of them
can be linked to only one visual relationship. So this method will
not be effective enough, and the final number of relationships can
hardly exceed 10. This is why we only give 𝑅𝑒𝑐𝑎𝑙𝑙@𝜃 metric for
these baselines in Table 2. The results prove that such a method
performs even worse than the VRD methods.

We also design a simple baseline using frequency of relation
triplets in training set as the interest score after panoptic object
detection with the Detectron2 framework. This baseline evaluates
the impact of data bias, and it demonstrates inferior performance
compared to some of the above baselines, proving that a simple
baseline using data bias cannot easily achieve good performance.

From all the comparison experiment results, it is proved that our
IPNet is effective and advantageous for solving the VROID task.

6 CONCLUSIONS
We proposed a novel task named VROID that aims to detect VROIs
for a given image. An IPNet was introduced to solve the VROID task,
which consists of panoptic object detection and interest propagation
from instances to triplets. Considering absence of any dataset
for VROID, we constructed the first ViROI dataset that will be
released publicly available soon. The experimental results validated
the effectiveness of different components of our method. We also
compared it with some baselines, and our method outperforms all
of them.
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