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ABSTRACT 
Image recognition with incomplete data is a well-known hard 
problem in multimedia content analysis. This paper proposes a 
novel deep learning technique called semiconducting bilinear 
deep belief networks (SBDBN) by referencing human’s visual 
cortex and intelligent perception. Inheriting from deep models, 
SBDBN simulates the laminar structure of human’s cerebral 
cortex and the neural loop in human’s visual areas. To address the 
special difficulties of image recognition with incomplete data, we 
design a novel second-order deep architecture with 
semiconducting restricted boltzmann machines. Moreover, two 
peaks activation of human’s perception is implemented by three 
learning stages of semiconducting bilinear discriminant 
initialization, greedy layer-wise reconstruction, and global fine-
tuning. Owing to exploiting the embedding information according 
to the reliable features rather than any completion of missing 
features, the proposed SBDBN has demonstrated outstanding 
recognition ability on two standard datasets and one constructed 
dataset, comparing with both incomplete image recognition 
techniques and existing deep learning models.  

Categories and Subject Descriptors 
I.2.10 [Artificial Intelligence]: Vision and scene understanding –
Representation, data structures, and transforms;  

I.2.6  [Artificial Intelligence]: Learning –connection and neural 
nets 

General Terms: Algorithm 

Keywords: Deep learning, semiconducting bilinear 
discriminant initialization, semiconducting RBM, image 
recognition, missing features.  

1. INTRODUCTION 
Incomplete data, data values are partially observed [1], exists in a 
wide range of fields, including social sciences, computer vision, 
and remote sensing [2].  In general, features missing in real-world 
data are resulted from measurement noise, corruption or occlusion 
[3]. Figure 1 shows some real incomplete data examples. Figure 1 

(a) demonstrates some example images with missing features due 
to noise and corruption, including: old picture, ancient fresco, and 
a burned paper with some available handwriting. Obviously, it is 
more difficult for computer to recognize meaningful patterns with 
the incomplete data. If the image distortion is very serious, even 
human beings can’t recognize the images correctly. Figure 1 (b) 
provides more general cases of incomplete data in our daily life. 
David Beckham is one of the most iconic athletes and most fans 
have no difficulty to recognize him from these four images. But it 
is not an easy task for many face recognition models because 
some key facial features to identify persons, such as characters of 
eyes and mouth, are not observable.  

      
 (a)Incomplete images due to noise and corruption 

     
(b) Incomplete face images due to the occlusion in the important 
facial features regions 

Figure 1. The examples of incomplete images due to noise, 
corruption or occlusion. 

Current works on incomplete data can be roughly categorized into 
three groups based on the modeling of the missing values [4]. The 
first kind of techniques fills the missing values based on the 
modeling of the available information, and then learns the 
decision function in a general way. Williams et al. developed a 
logistic regression classification algorithm for incomplete data. 
Conditional density functions were estimated using a Gaussian 
mixture model, with parameter estimation performed using both 
expectation maximization (LRCEM) [5] and Variational Bayesian 
(LRCVBEM) [2]. [6] proposed a novel second order cone 
programming formulation (SOCP) for designing robust classifiers 
which can handle uncertainty in observations. The second kind of 
techniques seeks the final decision boundary by estimating the 
missing value and constructing predictive model jointly. [1] 
proposed a statistical model names Quadratically Gated Mixture 
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of Experts (QGME) for multi-class nonlinear recognition. [4] 
derived a generic joint optimization weighted infinite imputations 
(WII) method, which learned the decision function and the 
distribution of imputations dependently. The third kind of 
techniques doesn’t intend to estimate the missing values. They 
learn the decision function only based on the visible input, which 
can avoid the additional error introduced by estimating the 
unknown values. [7] [3] recognized the incomplete data directly 
without any completion of the missing features using a max-
margin learning framework. For each sample, the margin is 
rescaled according to the visible attributes.  

This paper simulates a new thought to solve the problem of image 
recognition with incomplete data by referencing human’s visual 
cortex and intelligent perception. Deep learning, which models 
the learning tasks using deep architectures composed of multiple 
layers of parameterized nonlinear modules, is selected in this 
paper. Deep architectures simulate the laminar structure of 
human’s cerebral cortex and the information delivery between 
multiple layers reproduces the neural loop in human’s visual areas. 
Therefore, deep learning has demonstrated distinguished ability of 
information abstraction and robust performance of data 
classification in various visual data analysis tasks [8]. To address 
the difficulties caused by incomplete data, we propose a novel 
deep learning technique called semiconducting bilinear deep 
belief networks (SBDBN) based on the representative deep model 
called deep belief networks (DBN). Compared with existing deep 
models, the proposed SDBN has several attractive characters: 

1) Most deep models, such as DBN, unfold the image, a natural 
second-order tensor, to one-dimensional vector as the input to the 
deep architecture. Such kind of vectorization will cause the high 
computational cost, and more importantly, the loss of spatial 
information. The incomplete data problem always suffers from 
insufficient information; therefore, we try to preserve the existing 
information included in the data as much as we can. So the 
proposed SBDBN utilizes a novel deep architecture constructed 
by a set of second-order planes instead of first-order vector. Such 
kind of design is also consistent with human’s visual perception. 
In the primary visual cortex, all the way through the optic tract to 
a nerve position is a direct correspondence from an angular 
position in the field of view of the eye, just like a matrix.  

2) Thanks to the flexibility of human’s visual perception 
procedure, most fans can recognize David Beckham from the 
images shown in Figure 1 (b), although some key facial features 
for person identification are covered. Humans can automatically 
adjust their attention to the available features and emphasize the 
contributions from them consciously and, actually sometimes 
unconsciously. The proposed SBDBN borrows this idea by 
designing a set of Semiconducting Restricted Boltzmann Machine 
(SRBM) to construct the deep architecture. Restricted Boltzmann 
Machine (RBM) is a two-layer recurrent neural network in which 
stochastic binary inputs are connected to stochastic binary outputs 
using symmetrically weighted connections, which has been 
widely used as the building blocks in many deep models. 
Different with the densely connected RBM, SRBM sets a 
semiconductor switch on each connection between the lower layer, 
i.e. the input layer, and the upper layer, i.e. the first hidden layer. 
In the training stage, if the feature value of this training data is 
missing, the semiconductor switch is off and the weight on this 
linkage will keep unchanged. Otherwise, the semiconductor 
switch is on, and the weight on this linkage will be updated 
according to the learning objective function. Similarly, in the test 

stage, we can determine the category of the data only based on the 
available features by controlling the semiconductor switch.  

3) Based on the proposed new deep architecture, we present a 
novel deep learning algorithm with three stages: semiconducting 
bilinear discriminant initialization, greedy layer-wise 
reconstruction, and global fine-tuning. The rationale of three-
stage learning comes from the phenomenon of two peaks 
activation in visual cortex areas. With regard to object recognition, 
the early peak is related to the activation of an “initial guess” 
based on the acquired discriminative knowledge, while the late 
peak reflects the post-recognition activation of conceptual 
knowledge related to the recognized object. In most existing deep 
models, “post activation” is modeled by fine-tuning stage, but the 
“initial guess” process is neglected. However, initial guess plays 
an important role in human perception, especially under the case 
that the data is incomplete. In our model, we propose 
semiconducting bilinear discriminant initialization to realize 
“initial guess” under insufficient information.  

The remainder of this paper is organized as follows. Related work 
on deep learning is reviewed in Section 2. A novel deep 
architecture and a new deep learning algorithm are introduced in 
Section 3. Section 4 shows the performance of the proposed 
techniques in real image recognition and retrieval tasks and 
Section 5 concludes this paper. 

2. RELATED WORK ON DEEP LEARNING 
Different from shallow learning models, such as support vector 
machine (SVM), deep learning is about learning multiple levels of 
representation and abstraction that helps to make sense of data. 
Some theoretical analyses from machine learning also provide 
support for the argument that deep models are more compact and 
expressive than shallow models in representing most learning 
functions, especially highly variable ones. For example, to model 
the d-dimensional parity function, Gaussian SVM uses O(d2d) 
parameters while deep learning only needs O(d2) parameters with 
O(log2d) hidden layers [9]. The effectiveness of a deep model 
makes it promising for use in solving hard learning problems, for 
example, in semantically identifying the class of images from 
low-level visual features.  

The performance of deep learning has been notable, especially 
after the introduction of the deep belief networks (DBN) model. 
The learning procedure of DBN can be divided into two stages: 
abstracting information layer by layer and fine-tuning the whole 
deep network to the ultimate learning target [8]. Figure 2 shows a 
DBN with one input layer 1H , three hidden layers 2H , 3H , 4H , 
while x is the unfolding vector of input data, and y is the learning 
target. In the first stage, DBN pairs each feed-forward layer with a 
feed-back layer that attempts to reconstruct the input of the layer 
from the output. In Figure 2, the layer-wise reconstruction 
happens between 1H  and 2H , 2H  and 3H , 3H  and 4H , 
which is implemented by a family of Restricted Boltzmann 
Machines (RBMs) [10]. After a greedy unsupervised learning of 
each pair of layers, the lower-level features are progressively 
combined into more compact high-level representations. The 
whole deep network is then refined using a contrastive version of 
the “wake-sleep” algorithm via a global gradient-based 
optimization strategy. 

Furthermore, empirical validations in various real-world 
applications have shown that DBN performs impressively in 
analyses of visual data, such as in image classification [11], image 



annotation [12], and image retrieval [13].  

 
Figure 2. Structure of the deep belief network (DBN). 

3. SEMICONDUCTING DEEP BELIEF 
NETWORKS 
In this section, we propose a novel deep learning architecture 
based on semiconducting bilinear deep belief network (SBDBN). 
Our semiconducting bilinear deep belief network, which is aimed 
at the task of incomplete image recognition, is described in 
Section 3.1. The semiconducting bilinear discriminant 
initialization stage is discussed in Section 3.2. Section 3.3 
contains details of the greedy layer-wise reconstruction by 
semiconducting RBM. The global fine-tuning process of the 
whole deep network is described in Section 3.4. We provide the 
procedure of SBDBN in Section 3.5. 

3.1 Framework of Semiconducting Bilinear 
Deep Belief Network 
Let X be a set of incomplete data samples as shown below:  

1 2[ , ,..., ,..., ]k KX = X X X X                           (1) 

where  kX  is a sample datum with missing features in the image 

space I J×  and K is the number of sample data. Let Fk denote 
the set of missing features of the sample kX , ( )k ijX  is missing if 

( )k ij kF∈X . Let Y be a set of labels corresponding to X , which 
can be seen as: 

1 2[ ]k KY = y ,y , ...,y , ...,y                             (2) 

And ky  is the label vector of kX  in C , where C is the number 
of classes. 

1  if th class
 

0  if th class
kc

k
k

c
y

c
∈⎧

= ⎨ ∉⎩

X
X

                            (3) 

Based on the given training set, the goal in image recognition is to 
learn a mapping function from the image set X to the label set Y, 
and then recognize the new coming data points according to the 
learned mapping function. 

To address the problem of incomplete image recognition, we 
propose a novel semiconducting bilinear deep learning technique 
SBDBN. Figure 3 shows the architecture of SBDBN. A fully 
interconnected directed belief network includes the 
semiconducting input layer 1H , hidden layer 2H ,…, NH , and 
one label layer La  at the top. The semiconducting input layer 

1H  has I J× units, and this size is equal to the dimension of the 
input features. In our model, we use the pixel values of sample 
datum kX  as the original input features. In the top, the label layer 

has C  units, which is equal to the number of classes. The search 
of the mapping function from X to Y is transformed to the 
problem of finding the optimum parameter space θ * . 
The procedure under supervised or semi-supervised learning 
framework of our SBDBN is listed below: 
1. The strategy of semiconducting bilinear discriminant 

projection is utilized to construct a projection to map the 
original data into a discriminant bilinear subspace based on 
the reliable features. 

2. The initial symmetrically weighted connections are 
constructed between adjacent layers according to the “initial 
guess” based on the discriminant information. The size of the 
deep architecture is determined automatically based on the 
optimum dimension to retain the discriminant information. 

3. After the architecture of the next layer is determined, the 
parameter space is refined by the greedy layer-wise 
information reconstruction using semiconducting RBMs as 
building blocks. 

4. Repeat the first to third stages until the parameter space θ  in 
all N  layers is constructed. 

5. In the “post activation” stage, the whole deep model is fine-
tuned to minimize the recognition error based on 
backpropagation. 

1
ky 2

ky k
Cy
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2H

1NH −

NH

kX

1θ

1θ −N
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1nθ −
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Figure 3. Architecture of SBDBN.  

3.2 Semiconducting Bilinear Discriminant 
Initialization 
In this subsection, we introduce the semiconducting bilinear 
discriminant projection (SBDP), which is utilized to extract the 
discriminant information from the image datasets with incomplete 
features. 



Given the training data points 1 2, ,..., I J
K

×∈X X X with missing 
features set Fk, ( )k ijX  is missing if ( )k ij kF∈X . SBDP aims to 

find two projection matrices I P×∈U  and J Q×∈V  such that the 
latent representation I J

K
×∈1 2TX ,TX ,...,TX  can be obtained by  

T
s s=TX U X V  (s = 1, ..., K) from reliable features. 

In order to preserve the discriminant information from reliable 
features in the learning procedure, the objective function of SBDP 
could be represented as follows: 

X X 2

,
, 1

X

argmax ( , ) = || ( ) || ( (1 ) )

0,     if  ( )  or ( ) ,
        . . ( ) , ,  

1,      else,

K
T

s t st stst st
s t

s ij s t ij T T
ij P Qst

J

F F
st Z

α α
=

∩ − ∩ − −

∈ ∈⎧⎪= = =⎨
⎪⎩

∑U V
U V U X Z X Z V B W

X X
U U I V V I

  (4) 

Different with the bilinear discriminant projection (BDP) in [11], 
we extract the discriminant information based on the reliable 
features. In Equation (4), [0,1]α∈  is the parameter used to 

balance the between-class weights Bst  and the within class 

weights Wst , which are defined as follows [11]: 

   

1 1 ,     if  1, 1 ,     if  1,
, 

1 ,            else, 0,       else,

c c
s t c c

s td c
cst st

d

n n
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⎧ − = = ⎧⎪ = =⎪ ⎪= =⎨ ⎨
⎪ ⎪

⎩⎪⎩

y y
y y

B W   (5)  

where c
sy  denotes the class label of datum point sX , nd is the 

number of data points in all class and nc is the number of data 
points in class c, where c∈{1, ..., C}. 
By simultaneously maximizing the distances between data points 
from different classes and minimizing the distance between data 
points from the same class, the discriminant information is 
preserved at the greatest extent in the projected feature space. 
Optimizing ( )J U,V  by solving U  (or V ) with fixed V  (or U ) 
is a convex optimization problem. Let (1 )st st stα α= − −E B W , 
with the fixed V. The optimal U is composed of the first P 
eigenvectors of the following eigendecomposition problem: 

                                             =VD u λu                                      (6) 

where X X X X( ) ( )st st st st
T T

st s t s tst= ∩ − ∩ ∩ − ∩∑VD E X Z X Z VV X Z X Z . 
Similarly, with the fixed U, the optimal V is composed of the first 
Q eigenvectors of the following eigendecomposition problem: 

=UD v λv                                       (7)                                     

where X X X X( ) ( )st st st st
T T

st s t s tst= ∩ − ∩ ∩ − ∩∑UD E X Z X Z UU X Z X Z . 

Therefore, we can alternately optimize U (with a fixed V ) and 
V  (with a fixed U ). The above steps monotonically increase 

( )J U,V  and since the function is upper bounded, it will 
converge to a critical point with transformation matrices U  and 
V .  

In SBDP, the sizes of P and Q are determined by the number of 
positive eigenvalues in DV and DU, respectively, since adding the 
eigenvectors corresponding to the nonpositive eigenvalues will 
not increase ( )J U,V  in Equation (4). As a result, the original 

dimension I J× is automatically reduced into P Q×  after the 
SBDP procedure. 

3.3 Greedy Layer-Wise Reconstruction by 
Semiconducting RBM 
RBM in deep belief network helps us to abstract the embedding 
information by layer-wise reconstruction. Unfortunately, RBM 
cannot work when some features are missing, and the 
corresponding units of the networks are empty.  

Inspired from electronic circuits [14], in proposed SBDBN, we 
design a semiconducting RBM instead of original RBM. In the 
original RBM, every feature is input to the RBM just as Figure 4 
(a). Different with original RBM, in the semiconducting RBM 
which is shown in Figure 4 (b), we add a semiconductor switch to 
control the connection with the current layer to the higher hidden 
layer. When the input feature ( )k ij kF∈X , set (vc)ij = V, and the 
switch is off.  

V is the “voltage” of the hidden layer, and the “voltage” of the 
visual data is vc. In this case, the corresponding parameters θ( )ij  

related to ( )k ijX will not be tuned. Otherwise, if the input feature 

( )k ij kF∉X , set (vc)ij = 0, and the switch is on. In this turn, the 

corresponding parameters θ( )ij will be updated. 

θ

kX

h

 
(a) The operation principle of RBM 

θ

kX

h

 
(a) The operation principle of semiconducting RBM 

Figure 4. The operation principle of RBM and semiconducting 
RBM. (a) The operation principle of RBM, every feature of 

kX  is input. (b) The operation principle of semiconducting 
RBM. When kX  come in, the switch turns ON if ( )k ij kF∉X .  
With the semiconducting RBM, greedy layer-wise reconstruction 
is different from the stage in DBN. The sample data kX  with 
incomplete features kF  is input to the deep architecture as the 

state of the input layer 1H  to construct an RBM with the first 
hidden layer 2H . The energy of the state ( 1h , 2h ) in the first 
semiconducting RBM is: 



( )1 2 1

2 2 2 2, , , ,
1 1 ,1 2 1 ,1 1 1 2

, ,
1, 1 1, 1 1, 1 1, 1

, ;

( ) ( )
i I j J p P q Q i I j J p P q Q

A b
ij ij pq pq ij ij pq pqij pq ij

i j p q i j p q

E

h A Z h b Z h c h

θ

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

= = = = = = = =

=− ∩ − ∩ −∑ ∑ ∑ ∑

h h

 (8) 

where I J×  is the number of units in 1H , while 2 2P Q× is the 

number of units in 2H . ( )1 1 1 1, ,θ = A b c  are the model parameters 

between the input layer 1H and first hidden layer 2H . 1
,ij pqA is the 

symmetric interaction term between the input unit ( , )i j  in  1H  
and the hidden unit ( , )p q  in 2H . 1

ijb  is the ( , )thi j  bias of layer 
1H  and 1

pqc  is the ( , )thp q  bias of layer 2H .  ,1
,

A
ij pq

Z  and ,1b
ij

Z  are 

the switch parameters to control the corresponding parameters 
θ( )ij  related to ( )k ijX will or will not be tuned. 

,1 ,1
,

0,    if  ( ) , 0,     if  ( ) ,
,

1,    else, 1,     else,
k ij k k ij kA b

ij pq ij

F F
Z Z

∈ ∈⎧ ⎧⎪ ⎪= =⎨ ⎨
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X X
          (9) 

Therefore the first RBM has the following joint distribution: 

( )
( )

( )
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θ
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The log probability of the model assigned to 1h  in 1H  is: 

( ) ( ) ( )1 2 1 1 2 1, ; , ;1

2 1 2

log log log
E E

P e e
θ θ− −

= −∑ ∑∑h h h h

h h h

h        (11) 

Similar with existing deep learning models, we utilize the 
stochastic steepest ascent in the log probability of the training 
data to update the parameter space ( )1 1 1 1, ,θ = A b c .  

1 1 1 ,1
, , , ,

 A
ij pq ij pq ij pq ij pq

A A A Zϑ= + ∩                          (12) 

1 1 2 1 2
, ( (0) (0) (1) (1) )ij pq ij pq data ij pq reconA h h h hε= < > −< >A       (13) 

Where 
data

⋅  denotes an expectation with respect to the data 

distribution and 
recon

⋅ denotes the “reconstruction” distribution of 

data after one step. Other parameters in 1θ  update function can be 
calculated in a similar manner. 

1 1 1 ,1 1 1 1 ,1( (0) (1))b b
ij ij ij ij ij ijij ij

b b b Z b h h Zϑ ϑ ε= + ∩ = + − ∩b             (14) 

1 1 1 1 2 2( (0) (1))pq pq pq pq pq pqc c c c h hϑ ϑ ε= + = + −c                (15) 

where  ϑ  is the momentum and εA , εb , εc  are the learning rate 
of model parameters A , b  and c . 

As we described before, we find a semiconducting bilinear 
projection based on the reliable features that can automatically 
reduce the original dimension I J×  to P Q×  through the 
transformation matrices 1U and 1V . As a result, in our model, the 
number of neurons in layer 2H  is determined by the row and 
column size of the transformation matrices 1U and 1V . 

2 1 2 1( ) ,  ( )P row Q column= =U V             (16) 

We set the discriminative transformation parameters obtained 
from the semiconducting bilinear discriminant projection as the 
initial symmetrically connection weights by Equation (17).  

1 1 1
, (0) ( )T

ij pq ip jqA = U V                      (17) 

The above discussion is the greedy layer-wise abstraction for the 
first semiconducting RBM. Similar operations can be performed 
on the higher layer pairs.   

3.4 Global Fine-Tuning 
Above, we use the greedy layer-by-layer reconstruction algorithm 
by semiconducting RBM to learn a deep model. In this section, 
we use backpropagation through the whole deep model to fine-
tune the parameters θ = [A,b,c]  for optimal reconstruction.  

In the greedy layer-by-layer information abstraction stage, a 
global search has been performed for a sensible and good region 
in the whole parameter space. Therefore, before proceeding to the 
process of fine-tuning, we have already constructed a good data 
concept extraction model. In our model, backpropagation is 
utilized to adjust the entire deep network to find good local 
optimum parameters * * * *[ , , ]θ = A b c  to effectively recognize the 
data. In this stage, the learning algorithm is used to minimize the 

recognition error [ log ]k k
k

∧

−∑y y , where ky  and k

∧

y  are the 

correct label and the output label value of sample datum kX . 

3.5 Semiconducting Bilinear Deep Learning 
Algorithm 
In this section, the detailed procedure of the SBDBN is described 
in Algorithm 1.  

Algorithm 1: Semiconducting Bilinear Deep Belief Network 
Input:   Training data set X , Corresponding labels set Y  

Missing features set kF in kX                
Number of layers N , Number of epochs E 
Switch parameters X

st
Z , AZ  and bZ   

Between-class weights Bst , Within class weights Wst  
Initial bias parameters b and c  
Momentum ϑ , Parameter α  

Output: Optimal parameter space * * * *[ , , ]θ = A b c  
1.    for n = 1,…, N do  
2.        for e = 1,…, E do 
3.            if  n = 1 
4.                nT = X  
5.          else 
6.                for k = 1,…, K do 
7.                    n

kT = 1 1 1( )n n n
k

A cσ − − −+T  
8.                end for 
9.            end if 
10.          while not convergent do 
11.                X,n X,n X,n X,n( ) ( )

st st st st

n n T n n T
st s t s tst= ∩ − ∩ ∩ − ∩∑VD E T Z T Z VV T Z T Z

12.                X,n X,n X,n X,n( ) ( )
st st st st

n n T T n n
st s t s tst= ∩ − ∩ ∩ − ∩∑UD E T Z T Z UU T Z T Z

13.                 Fix V, compute U by solving =VD u λu  



14.                 Fix U, compute V by solving =UD v λv  
15.           end while 
16.           Determine the size of next layer 
                  1 1( ) ,  ( )n n n nP row Q column+ += =U V  
17.           Compute initial connection weights  

, (0) ( )n n T n
ij pq ip jqA = U V  

18.          The energy in the current semiconducting RBM 
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1 1 1 1, , , ,
, 1 , 1

, ,
1, 1 1, 1 1, 1 1, 1

, ;

( ) ( )

n n n

n n n n n n n ni P j Q p P q Q i P j Q p P q Q
n n An n n b n n n n
ij ij pq pq ij ij pq pqij pq ij

i j p q i j p q

E

h A Z h b Z h c h

θ+

+ + + +≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
+ +

= = = = = = = =

=− ∩ − ∩ −∑ ∑ ∑ ∑

h h

  19.          Update the weights and biases 
,

, , , ,
n n n A n
ij pq ij pq ij pq ij pq

A A A Zϑ= + ∩  
,n n n b n

ij ij ij ij
b b b Zϑ= + ∩  

n n n
pq pq pqc c cϑ= +  

20.        end for 
21.   end for 

22.   Calculate optimal parameter space * argmin[ log ]k k
kθ

θ
∧

= −∑y y  

4. EXPERIMENTS AND RESULTS 
In this section, three datasets with different kinds of visual data 
are used to demonstrate the performance of the proposed SBDBN. 
The first dataset is the MNIST, a standard large database of hand 
written digits containing 70,000 images with 10 classes [15]. The 
second standard dataset is the BioID face dataset consists of 1521 
face images collected contains 23 subjects [16]. The face images 
in BioID are under a large variety of illumination and background. 
The third dataset StarFace is collected and constructed by our 
group, including 120 face images with 4 superstars. 

In the experiments setting, we set the parameters follows the 
setting of previous work on bilinear deep belief network [8] and 
other general setting of deep learning. For example, the balance 
weight  α  is set as 0.5. In greedy layer wise learning, the number 
of epochs is fixed at 50 and the learning rate η is equal to 0.1.The 
initial momentum ϑ  is 0.5. In the fine-tuning stage, the method 
of conjugate gradients is utilized and three line searches are 
performed in each epoch until convergence.  
We compare the performance of SBDBN with other 
representative incomplete image recognition models and deep 
learning models, including k-nearest neighbor estimation (k-NNE), 
support vector machines (SVM) [17], logistic regression 
classification expectation maximization (LRCEM) [5], maximize 
geometric margin (GEOM) [3], deep belief networks (DBN) [8], 
and bilinear deep belief networks (BDBN) [11]. In k-NNE, the 
missing features were set with the mean value obtained from the 
nearest neighbors’ instances. Neighborhood was measured using a 
Euclidean distance in the subspace relevant to each pair of 
samples. The number of neighbors was varied across 3,5,10, 15, 
20, and the best result of these four (on test data) is shown. In EM, 
a Gaussian mixture model is learned by iterating between (1) 
learning a GMM model of the filled data and (2) re-filling missing 
values using cluster means, weighted by the posterior probability 
that a cluster generated the sample. The number of clusters was 
varied across 3, 5, 10, 15, 20, and the best result is reported. 

4.1 Experiments on Handwriting Dataset 
MNIST 
In this section, we explore performance of SBDBN on image 
dataset of handwritten digits MNIST [15] when features are 
missing at random. MNIST is a standard large database of hand 
written digits containing 70,000 images with 10 classes. MNIST 
is often used to compare deep learning performance [18] [19]. 
Figure 5 shows sample images of MNIST, some of which are 
difficult to recognize. 

 
Figure 5. Some sample images in MNIST. 

The first experiment in this dataset is used to demonstrate the 
effectiveness of SBDBN for recognition on incomplete images 
with fixed missing ratio. We follow the same experimental setting 
of [3]. 1200 images including 600 images of the digits 5 and 600 
images of digit 6 are randomly selected from MNIST. These 
images are partitioned to 1000 training data and 200 test data. We 
removed a square patch of pixels from each image that covered 
25% of the total number of pixels. The location of the patch was 
uniformly sampled for each image, and typical examples are 
given in Figure 6. 

 
Figure 6. Examples of MNIST images of the digits ‘5’ and ‘6’ 
after fixed missing ratio pixels are removed with random 
centers. 
We perform 5 random splits and report the average results over 
the 5 trials. The recognition performance of SBDBN with other 
incomplete image recognition models is shown in Table 1. “Zero” 
means that the missing values were set to zero. “Mean” means 
that the missing values were set to the average value of the feature 
over all data. From Table 1, it can easily be seen that, compared 
with other representative incomplete image recognition models, 
the deep learning models achieved better performance. This 
proves that the deep learning models have great recognition 
ability. Owing to the semiconducting bilinear discriminant 
initialization and semiconducting RBM of SBDBN, the 
recognition ability is promoted by fully exploiting the embedding 
information according to the reliable features rather than partially 
influenced by the forecasting accuracy of the missing features. 
Therefore, our proposed SBDBN achieved best performance in 
deep learning models. 

Table 1. Recognition accuracy rate on test data.  

Deep Model Acc. Other Model for Incomplete 
Data 

Acc.

SBDBN 98.5 SVM (Zero) 95 
BDBN (Zero) 97 SVM (Mean) 95 
BDBN (Mean) 97.5 k-NNE 94 
DBN (Zero) 96 LRCEM 95 
DBN (Mean) 96.5 GEOM 95 



In the second experiment, we demonstrate the incomplete image 
recognition when features are missing at random under different 
missing ratio. 10,000 images from MNIST are utilized as the 
training data, and the remaining 60,000 images are utilized for 
test. Some sample images with different missing ratios are shown 
in Figure 7. We perform 5 random missing trails and report the 
average results over the 5 trials. Although the original image 
samples selected in Figure 7 are not difficult to recognize, when 
the missing ratio becomes larger, even human cannot recognize 
these handwritten digits easily.   

 
(a) 20% randomly missing ratio 

 
(b) 40% randomly missing ratio 

 
(c) 60% randomly missing ratio 

 
(d) 80% randomly missing ratio 

Figure 7. Examples of images for different percent of pixels 
missing randomly. 
Table 2 shows the performance comparison under different 
missing ratios. Obviously, SBDBN shows higher incomplete 
image recognition accuracy rate. When 80% features missing, 
although the recognition by human is adequately hard, SBDBN 
also demonstrates the acceptable performance. 

Table 2. Recognition accuracy rate on test data with different 
missing ratio. 

4.2 Experiments on Face Image Dataset 
BioID 
In this section, we explore performance of SBDBN for face 
recognition on dataset of BioID [16] when important facial 
features are missing.  
Over the last ten years or so, face recognition has become a 
popular area of research in image analysis and understanding. 
Because the nature of the problem, not only computer science 
researchers are interested in it, but neuroscientists and 
psychologists also. Although much progress has been made in 
these years, face recognition remains a research area far from 
maturity, and its applications are still limited in controllable 
environments [20]. Face recognition with incomplete features 
remains a well-known challenge and little work is proposed to 
solve it. Although several datasets provide face images with glass 
[21], head cover [22], sunglass, masks, or wigs [23], the 
categories of these datasets are too limited and most of them are 
thermal infrared face images [22][23]. Fortunately, the important 
facial feature points are provided in BioID face dataset which 
helps us to generate incomplete face images datasets with missing 
important facial feature regions.  

BioID face dataset consists of 1521 face images collected 
contains 23 subjects. The number of images in every category of 
BioID is varied, from 35 to 118. Therefore, firstly, we choose the 
categories with more than 50 face images as the subset we work 
on. This subset includes 1208 images in 14 categories. Then, just 
like the procedure on face datasets, the original images are 
normalized (in scale and orientation) so that the two eyes are 
aligned at the same position. Finally, the facial areas are cropped 
and downsampled into the final images. The size of each final 
image in all of the experiments is 32×32 pixels, with 256 gray 
levels per pixel. Some sample images are shown in Figure 8.  

                

                

                

                           
Figure 8. Sample images in BioID. 
The experiment in this dataset is used to demonstrate the face 
recognition effectiveness of SBDBN when important facial 
features are missing. To every image, we removed a rectangle 
region of pixels and generate five kinds of facial regions missing 
images. The locations of missing regions are related with 
important facial feature regions, including forehead, eye, nose, 
mouth, and chin. Sample images with important facial regions 
missing are given in Figure 9. 

         
Figure 9. Sample images with important facial regions missing.  
In the above experiments, deep learning models demonstrated a 
better performance than other existing recognition models. 
Therefore, in this experiment, we compare proposed SBDBN with 
other deep learning models. For this dataset, 250 images with 
different missing regions are randomly selected for each person to 
form the training set and the rest to form the test set. We perform 
5 random splits and report the average results over the 5 trials. 
Table 3 shows the face recognition accuracy rate of the test 
dataset. Although the recognition accuracy of DBN and BDBN 
are both higher than 90%, the recognition accuracy of SBDBN is 
the highest. This phenomenon is due to DBN and BDBN both 
trusts on the reliable features and unreliable features. The missing 
features located in the important facial regions will influence the 
recognition accuracy. 

Table 3. Recognition accuracy rate on test data. 

4.3 Experiments on Face Image Dataset 
StarFace 
To further prove the effectiveness of proposed SBDBN in real 
natural images, we collect and construct a new dataset StarFace 
from Google, including 120 face images of David Beckham, 
Victoria Beckham, Tom Cruise, and Julia Roberts. Figure 10 

Missing  
Ratio SBDBN DBN 

(Zero) 
DBN 

(Mean) 
SVM 
(Zero) 

SVM 
(Mean)

20% 96.04 95.99 95.80 84.84 84.25 
40% 95.29 93.62 93.75 81.10 83.52 
60% 92.41 89.70 91.62 77.96 79.70 
80% 78.78 77.68 76.85 60.47 73.69 

Deep 
Model SBDBN DBN 

(Zero)
DBN 

(Mean) 
BDBN
(Zero)

BDBN
(Mean)

Acc. 97 94.21 93.93 95.36 94.93 



shows some samples images utilized in the retrieval experiment. 
From these sample images, it is obviously that some important 
facial feature regions have been occluded. To every occlusion 
region, we mark them as missing feature regions.  
We compare proposed SBDBN with DBN on face retrieval under 
unsupervised learning framework. Under the unsupervised 
learning framework, there are only two stages in our model. The 
semiconducting RBM is utilized in the greedy layer-wise 
reconstruction stage. Then the parameter space is fine-tuned by 
minimizing the discrepancy between the original data and its 
reconstruction. To every category, we randomly select one image 
with a kind of important facial region missing as the query image.  

                          
              (a)David Beckham                  (b) Victoria Beckham 

                            
              (c) Tom Cruise                             (d) Julia Roberts 

Figure 10. Sample images after preprocessing from StarFace. 
The mean value of normalized discounted cumulative gain 
(NDCG) is utilized to evaluate the retrieval results. From the 
NDCG scores in Table 4, the SBDBN has better retrieval 
performance. From Figure 10, it is obvious that our algorithm is 
effective in image retrieval although some important facial 
features are missing. 

Table 4. Comparison of NDCG scores on StarFace. 

 

                  

            
Figure 10. A query image with first ten images which are 
retrieved out. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we propose a novel deep learning model, SBDBN 
for the well-known challenging multimedia content analysis tasks, 
image recognition with incomplete data. Owing to the 
semiconducting bilinear discriminant initialization and 
semiconducting RBM of SBDBN, the recognition ability is 
promoted by fully exploiting the embedding information 
according to the reliable features rather than any completion of 
missing features. In our experiments on real-world image 
recognition and retrieval tasks, SBDBN shows the distinguishing 
and robust recognition ability on the incomplete data. In future, 
we will utilize semiconducting bilinear deep belief network for 
multimedia content analysis in a large scale dataset with noisy 
labels.    
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