PCM -Nanjing 2013

A Complementary Aggregation Approach for Local Stereo Matching

Yang Yang

Xiangyang Xu Chunrong Xia Gangshan Wu

State Key Laboratory for Novel Software Technology, Nanjing University juran@smail.nju.edu.com

Stereo matching – disparity map

• Stereo matching——find corresponding pixels in two images.

Left image

Right image

Stereo rectification

• Uncalibrated

Calibrated

Applications

View synthesis. C. L. Zitnick. ToG 2004.

Stereo image editing. S. Gupta. Siggraph 2010.

Scene analysis. S. Gupta. CVPR 2013.

disparity map

Saliency analysis. Y. Niu. CVPR 2012.

Related Work

- Global methods
 - Smoothness assumption
 - > Optimization problem
- Local methods
 - Depend on local information

Scharstein, D., Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 2002.

Local methods

• Challenges

Middlebury dataset [1]

Ideal aggregation

YOUR METHOD 32.2 0.56 1 0.55 1 0.07 1 0.64 86 0.80 68 4.75 86 6.59 60 12.1 65 11.4 14 1.33 1 5.77 2 3.05 1 3.97

Approximations

- Pixels inside a local region are likely to have similar depth.
- Adaptive weight (Yoon, 2006)
 - Pixels with similar colors are likely to have similar depth.
- Segment support (Tombari, 2007)
 - Pixels inside a segment are likely to have similar depth.

Adaptive weight [2]

Segment support[2]

Problem

- Insufficient support
- Fail to work in highly textured area

Find some other cues...

Correlation cue

• Pixels with the same depth aggregate to a "dark region" at the correct disparity slice.

Adaptive window methods

 Search for the surrounding area (sub windows) with highest correlation on all disparity hypothesizes as the support region.

High texture \checkmark High texture \checkmark High texture \times Discontinuity \checkmark Discontinuity \checkmark

Edge aware aggregation

Multiplication of range

and spatial weight

The proposed method

Approach

• Matching cost of pixel (p,d)

$$C(p,d) = \frac{1}{3} \sum_{c \in \{R,G,B\}} |I_l^c(p) - I_r^c(p-d)|$$

• Correlation-based Aggregation (Bilateral filter):

$$C_{A}(p,d) = \frac{\sum_{q \in N(p)} \omega_{o}(p,q)C(p,d)}{\sum_{q \in N(p)} \omega_{o}(p,q)}$$

$$\omega_{o}(p,q) = \exp(-(\frac{|C(q,d) - C(p,d)|}{\gamma_{o}} + \frac{||p - q||_{2}}{\eta_{o}}))$$

Approach

• Color-based Aggregation(Guided bilateral filter):

$$C_{A}'(p,d) = \frac{\sum_{q \in N(p), q_{d} \in N(p_{d})} \omega_{c}(p,q) \omega_{c}(p_{d},q_{d}) C_{A}(q,d)}{\sum_{q \in N(p), q_{d} \in N(p_{d})} \omega_{c}(p,q) \omega_{c}(p_{d},q_{d})}$$

$$\omega_{c}(p,q) = \exp\left(-\left(\frac{\Delta_{pq}}{\gamma_{c}} + \frac{\|p-q\|_{2}}{\eta_{c}}\right)\right)$$

The WTA (winner-take-all) strategy to compute the final disparity map:

$$d(p) = \arg\min_{0 \le d \le d_{MAX}} C'_A(p,d)$$

Approach

Local supports of correlation-based and color-based aggregation

Evaluation

- Dataset
 - http://vision.middlebury.edu/stereo/data/
 - Stereo photos taken in real world
- The benchmark
 - The percent of bad pixels
- The state-of-the-art methods to compare
 - Adaptive weight (Yoon, PAMI, 2006)
 - Segment support (Tombari, PSIVT, 2007)
 - Geosup (Hosni, ICIP, 2009)
 - Cost filter (Rhemann, PAMI, 2011)

accuracy

Table 2. Bad pixels in non-occluded regions							
Algorithm	Tsukuba	Venus	Teddy	Cones	Average		
AdaptWeight 2	2.82	2.76	12.1	9.66	6.84		2.0
SegmentSupport 3	2.05	1.47	10.8	5.08	4.85		0.0
GeoSup 4	3.16	2.74	11.6	5.11	5.65		0.8
CostFilter 5	3.23	4.53	13.7	15.3	9.19		4.3
Proposed	2.01	1.25	11.1	4.93	4.82		
Table 3. Bad pixels in discontinuous regions							
Algorithm	Tsukuba	Venus	Teddy	Cones	Average		
AdaptWeight 2	7.38	10.4	21.4	15.9	13.77		2.3
SegmentSupport 3	7.14	10.5	21.7	12.5	12.96		1.5
GeoSup 4	10.1	17.3	22.9	12.3	15.65		4.1
CostFilter 5	9.16	20.8	24.1	22.1	19.04		7.6
Proposed	7.07	5.86	21.2	11.4	11.38		
L	•	•		•			

♠

♠

♠ ♠

1 ♠ 个 个

Conclusion and Future work

- A complementary aggregation approach using correlation and color cues
- An adaptive weight approach for correlation-based aggregation
- Incorporate our approach with more robust matching cost measurement for real applications
- Supply a higher level description using the disparity map for semantic analysis.

Object level description

References

[1] Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1) (2002) 7–42

[2] Yoon, K., Kweon, I.: Adaptive support-weight approach for correspondence search. Pattern Analysis and Machine Intelligence, IEEE Transactions on 28(4) (2006) 650–656

[3] Tombari, F., Mattoccia, S., Di Stefano, L.: Segmentation-based adaptive support for accurate stereo correspondence. Advances in Image and Video Technology (2007) 427–438

[4] Hosni, A., Bleyer, M., Gelautz, M., Rhemann, C.: Local stereo matching using geodesic support weights. In: Image Processing (ICIP), 2009 16th IEEE International Conference on, 2093–2096

[5] Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 3017–3024

