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Abstract Annotating image regions with keywords has re-
ceived increasing attention in the computer vision com-
munity in recent years. Recent studies have shown that
graphical modeling techniques, such as Conditional Ran-
dom Fields (CRF), greatly improves the accuracy of image
annotation by utilizing contextual information among im-
age regions. However, training and predicting with the high-
order CRF is computational expensive so that only adjacent
regions can be utilized to build its graph structure. In this
paper, we develop a light-weight classification model, Ap-
proximated Supporting Region Graph (ASRG), in order to
handle more relevant regions efficiently, with which a large
number of supporting regions are selected and their features
are utilized to represent the contextual information in the
training and prediction for each image region. Experimen-
tal results show that our model is much more computational
efficient and achieves competitive performance comparing
with CRF and other state-of-art methods.
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1 Introduction

Image annotation techniques assign metadata, usually key-
words, to images automatically, which makes it easier for
indexing and maintaining large collections of images and
thus has been studied actively in the last few decades, par-
ticularly in image retrieval [40]. Region-based image anno-
tation, also known as region-naming, region-labeling, and
multi-class image segmentation, is one of the most impor-
tant methods for image annotation. Consequently, various
machine learning techniques have been employed for learn-
ing the correspondence between image regions and textual
keywords [5, 14, 16, 29, 35].

For region-based image annotation, each image is anno-
tated with a set of keywords associated with their locations
in the image. Figure 1 shows a sample image from the 21-
class MSRC dataset [7], in which each pixel is associated
with one of the 21 classes, or a “void” class. There are usu-
ally two steps in region-based image annotation: (1) images
are segmented into several regions and visual features are
extracted from each region; and (2) statistical models are es-
timated with training samples and then each region is clas-
sified into different classes.

However, visual features of each region are not suffi-
ciently discriminative for classification. Contextual informa-
tion, such as spatial interactions, has shown great success

Fig. 1 A sample image in MSRC (the first column) with the ground
truth annotation (the second column) and over-segmented superpixels
(the right column)
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Fig. 2 A simple example of supporting region graph (SRG) with four regions

in image annotation. One of the most frequently used tech-
niques for capturing spatial interactions among image re-
gions is Conditional Random Fields (CRF) [12, 14], which
constructs an undirected graph structure by linking adjacent
regions. High order interactions are usually ignored due to
its heavy computational burden.

In this paper, we propose a new graph model, Supporting
Region Graph (SRG), to handle more possible interactions.
Different from CRF, we propose a directed graph model, in
which edges are added by selecting a set of regions called
as “supporting regions” for each region in the image. Fig-
ure 2(a) shows a simple example of SRG with four regions
{a, b, c, d}. As shown in Fig. 2(b), each region has two dif-
ferent supporting regions, and the directed edge shows the
relationship between each center region and its supporting
regions, e.g., the center region ‘a’ has two supporting re-
gions ‘c’ and ‘d’. The SRG is finally constructed if all di-
rected edges have been added into the same graph. The de-
tails of the construction of SRG will be discussed in Sect. 4.

The drawback of CRF is that training with large or high
order graph structures is computationally expensive. With
the increase of the number of supporting regions, the SRG
will encounter the same problem. Therefore, we further pro-
pose an approximated version of SRG (ASRG) and apply it
on three natural datasets to carry out our experiments. The
experimental results in Sect. 5 show that our approach is
more efficient and achieves better or similar performance
than CRF and other state-of-art methods.

2 Related work

Image Annotation is one of the most important problems
in computer vision and has received increasing attention in
the last few years. One of the most frequently used tech-
niques is building statistical models on local appearance
features [3, 6, 22, 24, 28]. However, the spatial interactions
and other relationships among different regions are ignored
when training and predicting with each region indepen-
dently. Contextual features, such as co-occurrence and spa-
tial interactions, have then been utilized to improve classifi-
cation performance in computer vision applications [25, 26,

32, 38]. Various machine learning techniques have been em-
ployed to model contextual relationships between different
regions [8, 17, 19–21, 31, 34].

Markov Random Fields (MRF) and Conditional Ran-
dom Fields (CRF) are two common approaches to capture
the spatial relationships among neighborhood regions. Ra-
binovich et al. [26] used local detectors, assigning an object
label to each segmented region, and then adjusted the labels
using CRF. Semantic object contexts could then be incor-
porated as a post-processing step in any off-the-shelf object
categorization model. Verbeek et al. [36] extended the topic
model with MRF over the latent topics to combine the sta-
tistical co-occurrences of quantized visual features and spa-
tial relationships. He et al. [14] utilized multi-scale Condi-
tional Random Fields to annotate image regions by incor-
porating both local and global image features. Gould et al.
[12] proposed a method to capture global information from
the inter-class spatial relationships and then annotated image
regions by combining locally related location features and
visual features. Ladicky et al. [18] presented a hierarchical
CRF framework to integrate features and contextual priors
defined over multiple image segmentations. Nevertheless,
both MRF and CRF share the same drawback that training
with large or high order graph structures is computationally
expensive. Moreover, the complexity also increases as the
number of classes grows. As a result, most of the existing
studies only considered the immediately adjacent regions
when utilizing MRF or CRF, that is, each node in the graph
is linked only to very limited number of adjacent nodes. The
graph model proposed in this paper intends to accommodate
more relevant regions in the training and prediction while
avoiding the problem of computational complexity.

The proposed SRG model is based on direct graph,
similar to Dependency Network [15], where the directed
edges are utilized to capture the conditional distributions
among different nodes. However, Dependency Network is
employed to model dependencies among different attributes
and the graph structure is fixed. Our proposed SRG models
the relationships of segmented image regions, thus the graph
structure varies on different segmentation results. Tu [33]
proposed an iterative model using contextual information
obtained from neighboring regions. Each pixel has “sup-
port” from a large number of neighbors, either in short or
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long range. The learning algorithm selected and fused im-
portant supporting contextual pixels automatically and iter-
atively. Similar to auto-context [33], the graph structure of
our proposed model is built by selecting the surrounding re-
gions. However, our graph is constructed based on directed
graph model and the supporting contextual regions are se-
lected directly without any iteration, which makes it sim-
ple and efficient. Fulkerson et al. [9] presented a method for
localizing objects and segmenting object classes. Regions
in neighborhood were merged and their histograms were
then beaggregated as the appearance features of the merged
region used to capture contextual information. This work
can be regarded as selecting the supporting regions with a
threshold of their spatial distances. Our work generalizes the
supporting region selection strategies by selecting the sup-
porting regions using spatial, visual or other properties, such
as the predicted class probabilities. Meanwhile, we propose
an extended version of ASRG using multiple groups of sup-
porting regions (mASRG) to represent different contextual
information.

The contributions of our work can be summarized as fol-
lows:

(1) We propose a directed graph model by incorporating
contextual information obtained from the selected sup-
porting regions.

(2) We process a fast image annotation framework by de-
signing an approximation of the directed graph model
mentioned in (1).

(3) We analyze the annotation accuracy and efficiency of
some different strategies for selecting one or multiple
groups of supporting regions.

3 Modeling Supporting Region Graph

3.1 Supporting Region Graph

We first formulate the definition of Supporting Region
Graph (SRG). Let x = {x1, . . . , xi, . . . , xN } be the ob-
served data and y = {y1, . . . , yi, . . . , yN } be the class labels,
where xi , yi be the observed feature and label of region i

and N is the number of nodes in the current graph.

Definition of SRG Let A = (V ,E) be a graph and y is in-
dexed by the vertices of A. Then (y,x) is defined as a Sup-
porting Region Graph if, when conditioned on x, the ran-
dom variables yi obey the Markov property with respect to
the graph: p(yi | x,yV −{i}) = p(yi | x,ySi

), where V − {i}
is the set of all other regions in A except for the region i,
and Si is the set of supporting regions of region i in A.

Similar to CRF, the joint distribution over the class la-
bels y, given the observations x, can be expressed as:

p(y | x) = 1

Z
exp

(
N∑

i=1

F(xi, yi)

+
N∑

i=1

∑
j∈Si

1

|Si |G(xi, xj , yi, yj )

)
(1)
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′
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′
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))
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where |Si | is the number of elements of Si , M is the number
of classes, Z is the partitioning function and yi, y

′
i are the

labels of node i. F is the node potential and G is the edge
potential.

F(xi, yi) ∝ P(yi | xi) (3)

G(xi, xj , yi, yj ) ∝ P(yi | xi, xj , yj ) (4)

where P(yi | xi) is the probability of having label yi with
observed feature xi , P(yi | xi, xj , yj ) is the edge probabil-
ity, xi, yi is the feature and label of node i, and xj , yj is the
feature and label of node j , where j ∈ Si .

As shown in Fig. 2, the conditional probability of
node ‘a’ depends on the node potential of itself and
the edge potentials of its supporting regions ‘c’ and ‘d’.
Thus, p(ya | xa, xc, xd) ∝ F(xa, ya) + (G(xa, xc, ya, yc) +
G(xa, xd, ya, yd))/2. The edge potential G captures the in-
teractions between region ‘a’ and its supporting regions
{c, d}, which are ignored in traditional non-structured clas-
sifiers, such as SVM and Logistic Regression. The clas-
sification performance of node ‘a’ can be improved by
modeling relationships between ‘a’ and {c, d}. Structured
classifiers, such as CRF, also employ node potentials to
capture spatial interactions between different regions. Dif-
ferent from CRF, SRG is a directed graph model, thus
G(xa, xc, ya, yc) �= G(xc, xa, yc, ya).

The training process of SRG contains two parts, (1) esti-
mating node probabilities and (2) estimating edge probabil-
ities. Given D training samples, each sample contains Nd ,
d = 1, . . . ,D regions and each region has k supporting re-
gions. To estimate node probability P(yi | xi), we need to
train a M-class classifier with

∑D
d=1 Nd regions, in which M

is the number of different classes. To calculate edge proba-
bility P(yi | xi, xj , yj ), we need to train the edge classifiers
with

∑D
d=1 kNd edge instances, which is time consuming



392 Q.-J. Guo et al.

and the complexity increases rapidly as k grows. Consider-
ing SRG is a directed graph, we split all directed edges into
M groups with different yj . Afterwards, we train a M-class
edge classifier for each group, using xi, xj as features and
yi as the class label. Thus, for each edge in the tested sam-
ples, we generate a probability matrix Pe with the size of
M ×M , in which Pe(g,h) = P(yi = g | xi, xj , yj = h). Af-
ter all nodes and edge classifiers are obtained, we employ
loopy belief propagation (LBP) to perform inference over
SRG on test samples.

The number of training instances increases rapidly with
the number of supporting regions k. For each edge group, the
edge classifier has approximately

∑D
d=1 kNd/M instances.

As discussed above, the more supporting regions, the more
contextual information may be captured. However, training
SRG with a large k is computational expensive, so is the in-
ference on test samples. To overcome this shortcoming, we
further propose an approximated version of SRG (ASRG) to
make it much more computational efficient.

3.2 Approximated Supporting Region Graph

Since the number of edges in SRG increases with parame-
ter k, we need to find a more efficient way to train SRG if
we need to accommodate more supporting regions. We start
from the Maximum Likelihood (ML) of training samples.
Let θ be the set of parameters of SRG. Given a training set
{(xd,yd) | d = 1, . . . ,D}, the likelihood is:

L(θ) =
D∏

d=1

p(yd | xd) (5)

Directly maximizing L(θ) is intractable as discussed
above. Therefore, in order to make it solvable, we first sep-
arate SRG into a group of subgraphs. An example partition
of SRG is shown in Fig. 2(b), each subgraph consisting one
center region and its supporting regions. For each subgraph,
we maximize the likelihood:

Li = 1

Z
exp

(
F(xi, yi) +

∑
j∈Si

1

|Si |G(xi, xj , yi, yj )

)
(6)

Here we define F(xi, yi) = uT
yi

xi , G(xi, xj , yi, yj ) =
vT

yiyj
xj . u,v as the weight vectors of nodes and edges, and

θ = {u,v}.
However, the labels of supporting regions are unknown

in the optimization process. In order to optimize the param-
eters without knowing the labels of supporting regions, we
treat the supporting regions as hidden variables. All config-
urations of the labels are enumerated, and the probabilities
of them are considered as uniform. Then, we can maximize:

L̂i = 1

Z
exp

(
F(xi, yi) +

∑
j∈Si

1

|Si |Ĝ(xj , yi)

)
(7)

where Ĝ(xj , yi) = vyi
xj and vyi

= 1
m

∑m
yj =1 vyiyj

.

Maximizing L̂ = ∏D
d=1 L̂i is much easier than directly

maximizing L. The posterior probability is

P
(
yi | xi, {xj }, θ

) = exp(uT
yi

xi + ∑
j∈Si

1
|Si |vyi

xj )∑
y′
i
exp(uT

y′
i

xi + ∑
j∈Si

1
|Si |vy′

i
xj )

(8)

Thus, given D independent training samples, where each
sample contains Nd,d = 1, . . . ,D regions, the parameters
of ASRG can be optimized as:

θ̂ = argmax
θ

D∑
d=1

Nd∑
i=1

{
logP(yi | xi, si, θ)

}
(9)

where si = ∑
j∈Si

1
|Si |xj and we define si as the supporting

features of region i. The parameters θ can be optimized us-
ing a process similar to Logistic Regression, which could
be optimized using stochastic gradient descent (SGD) meth-
ods. Actually, we can use any other basic classifier to maxi-
mize Eq. (9) with the corresponding P(yi | xi, si , θ), such as
SVM and Random Forest, in which each node is represented
with its node features xi and its supporting features si .

Figure 3 shows the differences among CRF, Logistic Re-
gression (LR), SRG and ASRG. CRF utilizes edges between
the class labels of different nodes to capture conditional de-
pendence, while LR considers that the conditional probabil-
ities of different nodes are independent. For CRF, it captures
the contextual relationships by adding undirected edges be-
tween adjacent nodes. Different with CRF, SRG employs
a set of selected supporting regions to describe contextual
interactions, which contains more long-range edges. ASRG
uses supporting features extracted from the selected support-
ing regions to capture contextual information. Unlike the
undirected graph used in CRF, both SRG and ASRG utilize
directed graph structures which is able to capture asymmet-
ric co-occurrences. In LR, the class probability of each node
is directly conditional on visual features; but in ASRG, the
class probability is conditional on the region and the sup-
porting features of its selected supporting regions. Similar
to LR, the class probabilities of each node in ASRG is inde-
pendent to each other. This is different with SRG and CRF
and thus makes the training and inference processes faster.

3.3 Modeling multiple groups of supporting regions

In the classification for each image region, the relation-
ships between each supporting region and the center region
may be different. For example, the center region is with
class “face”, but some supporting regions may be with class
“face”, or class“body” and even some other classes. In order



Image annotation by modeling Supporting Region Graph 393

Fig. 3 The differences among
CRF, LR, SRG and ASRG.
x represents the features of each
region, y represents the
corresponding class labels,
s represents the supporting
features extracted from the
selected supporting regions,
D is the number of training
samples, and N is the number of
regions in each sample

to capture this characteristic, we further separate the sup-
porting regions into different groups, not necessarily non-
intersect, and assign different weight vector for each group.
Note that the regions of each group share the same weight
vector, and the weight vectors of different groups are in-
dependent. For each region i, a number of supporting re-
gion groups {Sk

i | k = 1, . . . ,K} are selected and used to
construct a complex directed graph, where vk is the edge
weighting vector of each group. The likelihood of classify-
ing with multiple groups of supporting regions is:

P(y | x) = 1

Z
exp

(∑
i∈N

F(xi, yi)

+
N∑

i=1

K∑
k=1

∑
j∈Sk

i

Gk(xj , yi, yj )

|Sk
i |

)
(10)

where Fi is the node potential of node i, Gk
ij is the edge

potential of edge ij in the kth group, and Gk(xj , yi, yj ) =
vk

yiyj
xj . |Sk

i | is the number of elements in Sk
i .

Thus, the likelihood of multi-group Approximated Sup-
porting Region Graph (mASRG) can be computed as:

P(yi | xi, si , θ) =
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Thus each image region can be represented with its own
features xi and its supporting features {sk

i | k = 1, . . . ,K}
from different supporting groups.

4 Supporting region selection in image annotation

In this Section, we present how the supporting region graph
is constructed for image annotation. For each region, we
need to select several relevant regions from its surrounding
regions. However, it is not that easy to select the support-
ing regions appropriately. To solve this problem, we use a
simple but efficient scheme that we rank the image regions
based on the responses of a pre-defined response function
E(fi, fj ,w). As described in Eq. (12), in order to select
the supporting regions of region i, we calculate the response
of region j corresponding to the center region i, and the
weighted Euclidean distance of features between region i

and j , where fj can be the visual feature, the class probabil-
ities, or the spatial location of region j . w is the weighting
parameter defining the importance of each feature element
and w ∈ [−1,1]F , F is the dimension of f .

E(fi, fj ,w) = ∥∥wT (fi − fj )
∥∥2 (12)

For each center region i, we calculate the response val-
ues of all other regions in the same image. After that, these
regions are sorted according to E(fi, fj ,w). Usually, we
can select k regions with the minimum responses as support-
ing regions. For selecting two groups of supporting regions,
we can use the regions with the minimum and the maxi-
mum response values. Figure 4 shows two examples of se-
lecting supporting regions with spatial and class responses.
As shown in Fig. 4(a), 7 nearest and 7 farthest regions are
selected for the center region by utilizing spatial locations.
Figure 4(b) shows an example of selecting supporting re-
gions which uses class probabilities as the input features of
Eq. (12), in which 7 regions having similar class probabili-
ties with the center region are selected, and 7 other regions
with the largest response values are also selected as another
group. In this paper, we present 6 different strategies for
supporting region selection, including class-kN, class-kNF,
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Fig. 4 Examples of supporting
region selection with spatial and
class response functions

spatial-kN, spatial-kNF, visual-kN, and visual-kNF. The de-
tails are defined in Table 1.

In CRF, each region is linked with its spatial neighbors
and the number of links is usually small. In our experi-
ments, each region in CRF is linked with 5 to 6 regions aver-
agely. Selecting supporting regions with spatial-kN is sim-
ilar to CRF, in which useful contextual information can be
extracted from the neighborhood relationships and utilized
to improve classification performance. However, in ASRG,
the number of links can be very large and more interactions
among regions can be captured during annotation. By select-
ing supporting region with spatial-kNF, not only neighbor-
ing regions are selected, but also regions in long ranges are
used in training and prediction. Consequently, if the nearest
supporting regions are viewed as “foreground”, the farthest
regions can be regarded as “background”, by which useful
contextual information can be extracted from the relation-
ships between “foreground” and “background” regions and
further utilized to improve the classification performance.

Selecting supporting regions with visual features is based
on the assumption that regions with similar features tends
to share similar labels in the same image, and regions with
different visual features usually belong to different classes.
Selecting supporting regions with class probabilities is sim-
ilar to the selection strategy with visual features. The selec-
tion is more precise than directly selecting with visual fea-
tures but a pre-trained classifier is employed to select regions
with the same or different class labels. The features of the
selected nearest regions in visual/class response space are
utilized to describe the supporting information from similar
classes, while the selected farthest regions may capture the
co-occurrences between different classes.

By changing the weights w, we may obtain different sup-
porting regions. In this paper, we use two different weight-
ing schemes: (1) directly set w = 1; and (2) optimize w with
the training images. In order to optimize w, the training im-
ages are separated into two sets. After that, we use different
ws to select supporting regions in one set and test the anno-
tation accuracy on the other. We employ genetic algorithm
(GA) to search the best w and use the annotation accuracy

Table 1 Definitions of different supporting region selection strategies

Distance measure Details

Class Output probabilities of each region utilizing
a pre-trained classifier

Spatial Center coordinates of each region

Visual Visual features of each region

Number of SR Details

kN selecting k nearest regions in the response
space

kNF selecting k/2 nearest and k/2 farthest
regions in the response space

as the fitness function. Searching w with GA is time con-
suming, thus we may also directly set w = 1 for efficiency
purpose. Experimental results show that selecting support-
ing regions with w = 1 achieves similar performances with
the optimized w when k is large.

An extreme situation is to use all regions in an image
as supporting regions. We define this special model as Ex-
treme Approximated Supporting Region Graph (EASRG).
The performance of those strategies will be evaluated in the
experiment section.

5 Experiments

5.1 Datasets

We applied our model on annotating three natural image
datasets, including the 7-class Corel image database, the
9-class and the 21-class MSRC dataset [7]. The Corel im-
age dataset consists 100 images, in which each image is
180 × 120 pixels and includes objects like “rhino, polar
bear, water, snow, vegetation, ground and sky”. We selected
60 images for training and the remaining 40 for testing. The
9-class MSRC dataset contains 240 pixel-wise annotated
images with approximately 240 × 320 pixels, including ob-
jects like “building, grass, tree, cow, sky, aeroplane, face,
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car and bicycle”. The 21-class MSRC dataset contains 591
pixel-wise annotated images with approximately 240 × 320
pixels, including objects like “building, grass, tree, cow,
sheep, sky, aeroplane, water, face, car, bicycle, flower, sign,
bird, book, chair, road, cat, dog, body and boat”. On the 9-
class MSRC dataset, we split the images into 120 training
and 120 testing. On the 21-class MSRC dataset, we divided
the images into a training set with 296 images and a testing
set with 295 images.

5.2 Segmentation and feature extraction

First, each image was over-segmented into small regions,
each of which was labeled with the dominant class label for
the region. Void regions were ignored for both training and
testing. We used the SLIC code provided by Achanta [1, 2]
to segment each image into approximately 200 regions. Im-
ages from the Corel dataset were first resized into 240×320
for consistency. After segmentation, the average number of
superpixels in the Corel dataset was 161.39. The 9-class
MSRC dataset had 174.09 superpixels in each image, and
the 21-class MSRC dataset had 175.74 superpixels in each
image.

For each region, we extracted local visual features in-
cluding color, intensity, texture, geometry and location [13].
Color features were extracted from the color values of each
image region. The initial RGB image was converted into dif-
ferent color spaces, including YCrCb and Lab. Moreover, a
supersaturated RGB image was generated by increasing the
saturation of initial image. Thus, there were 4 different im-
ages (RGB, YCrCb, Lab and supersaturated RGB) and each
contained 3 channels. For each channel, 4 moments features
were extracted, including mean, variance, skewness and kur-
tosis. Intensity features were extracted from the grayscale
images. Each image was first converted to grayscale and 4
moments features were extracted from each region similar
with Color features.

Texture features were extracted by utilizing Gabor and
Laplacian of Gaussian filters. Gabor filters were defined as:

Greal(x, y)

= exp
(−(

X2 + γ 2Y 2)/(2σ 2)) cos
(
(2πX)/λ

)
Gimaginary(x, y)

= exp
(−(

X2 + γ 2Y 2)/(2σ 2)) cos
(
(2πY)/λ

)
(13)

where x, y were the coordinates, X = x cos(θ) + y sin(θ)

and Y = −x sin(θ) + y cos(θ) with orientation θ (in ra-
dians), aspect ratio γ , effective width σ and spatial fre-
quency λ. In the following experiments, θ takes {0,π/4,

π/2,3π/4}, γ ∈ {0.25,1,4}, σ ∈ {2,4,8} and λ = 1.
Laplacian of Gaussian (LoG) filters were defined as:

LoG(x, y) = 1/
(
πσ 4)(r2 − 1

)
exp

(−r2) (14)

where r2 = (x2 + y2)/(2σ 2). In the following experiments,

σ = {2 i
2 | i = 1, . . . ,5}.

Each image was converted to grayscale and convolved
with a bank of filters and momtents features were extracted
from the response images. In the experiments, Gabor filters
took 36 configurations, LoG filters took 5 configurations,
and this resulted in 41 different response images. For each
reponse image, 4 moments features (mean, variance, skew-
ness and kurtosis) were extracted. Thus, 164 texture features
were extracted for each region in total.

Geometry features were extracted from image regions
with the statistical properties of the shapes, including area,
perimeter, perimeter area ratio and three moments features
of coordinates {E(x2) − E(x)2,E(y2) − E(y)2,E(xy) −
E(x)E(y)}, where E was the expectation. Location features
were extracted by estimating the center coordinates of each
image region, including {xcenter, ycenter, x

2
center + y2

center}.
A total of 225 visual features were extracted from each

region, including 48 Color features, 4 Intensity features, 164
Texture features, 6 Geometry features and 3 Location fea-
tures. According to [13], we trained boosted classifiers for
each class and used the outputs of the boosted classifiers as
features instead of the raw appearance features. Feature ex-
traction and training boosted classifiers were performed by
utilizing STAIR Vision Library [13] provided by Stephen
Gould.

The time cost of segmentation and feature extraction are
shown in Table 2. All the following experiments were run
on a PC with 2.4 GHz Core i5 CPU and 2 G RAM. Using
boosted features improves the classification accuracy and re-
duces the training time as well. Figure 5 shows the compar-
isons of training time and classification accuracy with raw
features (RFS) and boosted features (BFS) on two MSRC
datasets. We evaluated two different features with two state-
of-art classifiers, random forests (RF) [4] and conditional
random fields (CRF). The experimental results show that the
training speed and classification accuracy are both improved
by utilizing boosted features. On the other hand, BFS can
also be used as initial class probabilities to select supporting
regions. As a result, in the following experiments, we used
boosted features to evaluate different annotation methods.

Table 2 Time costs of over-segmentation and feature extraction (sec-
onds per image)

Steps (seconds per image) Corel-7 MSRC-9 MSRC-21

Over-segmentation 0.353 0.324 0.311

Feature extraction 0.505 0.470 0.505

Generate boosted features 0.031 0.039 0.060
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Fig. 5 Comparison of training time and classification accuracy with raw features (RFS) and boosted features (BFS) on the 9-class and 21-class
MSRC dataset

5.3 Comparisons of different supporting region selection

Different supporting regions can be selected by utilizing dif-
ferent features. We use c, s, v as the abbreviation of ‘class’,
‘spatial’ and ‘visual’, N is the abbreviation of ‘nearest’ and
F is the abbreviation of ‘farthest’.

In order to evaluate the efficiency of the different se-
lecting methods, we compared the annotation accuracy of
ASRG with 8 different methods on all three datasets.

(1) c-kN: class-KN, select k nearest regions with class prob-
abilities

(2) c-kNF: class-KNF, select k/2 nearest and k/2 farthest
regions with class probabilities

(3) s-kN: spatial-KN, select k nearest regions with spatial
locations

(4) s-kNF: spatial-KNF, select k/2 nearest and k/2 farthest
regions with spatial locations

(5) v-kN: visual-KN, select k nearest regions with visual
features

(6) v-kNF: visual-KNF, select k/2 nearest and k/2 farthest
regions with visual features

(7) c-kN-GA: class-KN, select k nearest regions with class
probabilities using optimized weights

(8) c-kNF-GA: class-KNF, select k/2 nearest and k/2 far-
thest regions with class probabilities using optimized
weights

The details of training ASRG are described in Algo-
rithm 1.

We used the boosted features as class probabilities to se-
lect class supporting regions, and the raw visual features
were utilized to select visual supporting regions. The spa-
tial supporting regions were selected by utilizing the center

Algorithm 1 Processes of training ASRG

Input:
Training images {Id | d = 1, . . . ,D}
number of supporting regions k

supporting region selecting strategies {N, NF}
response feature types {class, visual, spatial}

Output:
Optimized parameters θ

1: Apply over-segmentation on training images, where image Id
is segmented into Nd regions

2: Extract appearance visual features a for each image region
3: Train boosted features b for each region according to [13]
4: for Each image Id , d = 1, . . . ,D do
5: for Each region rdi , i = 1, . . . ,Nd in image Id do
6: Extract response features fdi

7: if using visual features then
8: fdi = adi

9: else if using class features then
10: fdi = bdi

11: else if using spatial features then
12: fdi = [xcenter

di
, ycenter

di
]T , where (xcenter

di
, ycenter

di
) is

the center coordinates of rid
13: end if
14: end for
15: Calculate and sort the response values according to Eq. (12)

with fdi

16: if using kN then
17: Select k supporting regions with smallest response values
18: else if using kNF then
19: Select k/2 supporting regions with smallest response val-

ues and k/2 regions with the largest response values
20: end if
21: Generate supporting features sdi for each region
22: end for
23: Maximize the likelihood according to Eq. (9) using stochastic

gradient descent
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Fig. 6 Annotation accuracies of ASRG with different supporting re-
gion selection strategies. The top row shows the performance on the
7-class Corel dataset by selecting supporting regions with c (class), s
(spatial) and v (visual). The second row shows the performance on the
9-class MSRC dataset and the bottom row shows experimental results

on the 21-class MSRC dataset. The curve with square markers is the
accuracy of using kN (k nearest) supporting regions and the curve with
triangle markers is that of using kNF (k/2 nearest and k/2 farthest)
supporting regions, where k takes 2, 5, 10, 20, 40, 80, 120
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Fig. 7 Annotation accuracies of ASRG with supporting region se-
lected by utilizing class response with optimized weights. The curve
with square markers is the accuracy of using kN (k nearest) supporting

regions and the curve with triangle markers is that of using kNF (k/2
nearest and k/2 farthest) supporting regions, where k takes 2, 5, 10, 20,
40, 80, 120

Fig. 8 Time costs of training, prediction and generating supporting features (sp features) and accuracy comparisons of RF, CRF and ASRG on
the 9-class and 21-class MSRC dataset. In ASRG, supporting regions were selected by utilizing class-kN and class-kNF with k = 120

coordinates of image regions. Figure 6 shows the accuracy
of ASRG with supporting regions selected using (1)–(6).

With the increase of k, the annotation accuracy has been
significantly improved. The performance of kNF is better
than kN on all three datasets because kNF not only uses con-
textual information from the selected regions with small dis-
tances, but also captures the co-occurrences of “foreground”
and “background” regions. Besides, using class probabili-
ties to select supporting regions achieves better performance
than using spatial and visual features. Figure 7 shows the ac-
curacy of ASRG with supporting regions selected using (7)
and (8). By comparing Figs. 6 and 7, we observe that the op-
timized weights achieves better annotation accuracy when
k is small. However, with the increase of k, directly using

w = 1 may achieve similar performance to that of optimized
weights. Therefore, we directly set w = 1 if we choose large
k for efficiency consideration.

5.4 Evaluation of training and prediction speed

In order to evaluate the time cost of ASRG, we compared
ASRG with two state-of-art classifiers, random forest (RF)
and conditional random fields (CRF). ASRG is a light-
weighted classifier, with which training and prediction is
much efficient than CRF. In order to utilize ASRG for an-
notation, supporting regions were selected and supporting
features were then calculated. Figure 8 shows the compar-
isons of time costs of RF, CRF and ASRG on two MSRC
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datasets. In ASRG, supporting regions were selected by uti-
lizing class-kN and class-kNF with k = 120. We observe
that training time of ASRG is much less than CRF and
slightly more than RF. The prediction speed of ASRG is
also very fast and similar to RF. The reason is that prediction
with CRF need to do iterative inference but prediction with
ASRG is able to output the conditional probability directly.
To summarize, ASRG is much efficient in both training and
prediction procedure. Moreover, ASRG achieves better per-
formance on three datasets compared with CRF.

Different with RF and CRF, ASRG needs extra time to
generate supporting features. The time to generate support-
ing features of class-kNF is slightly more than that of class-
kN, and the time of training ASRG is similar. Figure 9 shows
time costs of training ASRG with different number of sup-
porting regions selected using class probabilities on the 9-
class MSRC dataset. With the increase of k, both the time of
generating supporting features and training ASRG do not in-

Fig. 9 Time costs (seconds per image) of training ASRG with differ-
ent number of supporting regions selected using class probabilities on
the 9-class MSRC dataset

crease. It is due to the fact that no matter how many support-
ing regions we selected, the weighted distances of all region
pairs were needed to be computed as described in Eq. (12).
After that, regions in the image were sorted and k supporting
regions were selected. Then, supporting features were gen-
erated from selected regions. As the main time costs came
from calculating distances, k did not influence the time to
generate supporting features. Since the dimension of sup-
porting features was fixed and did not increase with k, the
training time did not increase either.

5.5 Comparing annotation accuracy with the state-of-art
methods

We used Random Forests (RF) and Conditional Random
Fields (CRF) as baseline methods. As shown in Fig. 6,
ASRG with supporting regions selected using class proba-
bilities achieves better performance than using spatial and
visual features. Meanwhile, as described above, directly us-
ing w = 1 achieves similar performance to that of using op-
timized weights while being more efficient. Thus, we only
evaluated the performance of ASRG with supporting regions
selected using class probabilities and w = 1. Tables 3, 4
and 5 provides the comparisons of annotation accuracy on
each class and the overall accuracy on different methods on
all three datasets. We compared four different algorithms,
RF, CRF, ASRG with class-120N and ASRG with class-
120NF. On all three datasets, ASRG performs better than
RF and CRF, in which ASRG with class-120NF is further
better than ASRG with class-120N.

Table 6 shows the performance comparisons of the pro-
posed methods and other state-of-art methods. We evaluated
the performance of ASRG with 120 supporting regions se-
lected using class, visual and spatial. Selecting supporting
regions with class-120NF achieves the best performance on

Table 3 The annotation
accuracies of different methods
on 7-class Corel dataset using
RF, CRF, ASRG with
class-120N supporting regions
and ASRG with class-120NF
supporting regions

Algorithm Rhino Polar bear Water Snow Vegetation Ground Sky Overall

RF 73 79 68 82 67 78 81 74

CRF 79 85 78 90 72 85 81 81

c-120N 79 80 87 90 71 84 81 81

c-120NF 80 82 85 91 73 87 81 83

Table 4 The annotation
accuracies of different methods
on 9-class MSRC dataset using
RF, CRF, ASRG with
class-120N supporting regions
and ASRG with class-120NF
supporting regions

Algorithm Building Grass Tree Cow Sky Airplane Face Car Bicycle Overall

RF 74 95 80 58 93 47 76 66 62 80

CRF 84 94 87 77 95 67 80 79 72 86

c-120N 82 95 84 76 95 69 95 85 71 87

c-120NF 81 95 86 80 96 78 92 87 74 88
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Table 5 The annotation
accuracies of different methods
on 21-class MSRC dataset using
RF, CRF, ASRG with
class-120N supporting regions
and ASRG with class-120NF
supporting regions

Algorithm Building Grass Tree Cow Sheep Sky Airplane Water Face Car Bicycle

RF 64 94 78 42 59 91 32 65 59 44 51

CRF 82 92 87 61 82 93 59 73 63 72 66

ASRG c-120N 74 94 83 66 83 95 61 63 68 79 69

ASRG c-120NF 79 93 85 74 81 95 74 68 75 79 74

Algorithm Flower Sign Bird Book Chair Road Cat Dog Body Boat Overall

RF 62 29 3 67 11 71 37 22 38 3 67

CRF 79 51 6 83 24 73 57 35 54 4 76

ASRG c-120N 92 46 16 89 47 79 46 49 59 25 78

ASRG c-120NF 81 49 27 89 42 82 72 54 68 25 80

Table 6 Comparison of our
results on three datasets with
other state-of-art methods

Algorithm MSRC-9 MSRC-21 Corel-7

Multiscale CRF [14] – – 80.0 %

PLSA-MRF [36] 82.3 % 73.5 % –

Textonboost [30] – 72.7 % 74.6 %

CRFσ loc + glo [37] 84.9 % – –

TextonForests [29] – 72 % –

Schroff et al. [27] 87.2 % 71.7 % –

Yang et al. [39] – 75.1 % –

Gould et al. 08 [12] 88.5 % 76.5 % 77.3 %

Gould et al. 09 [11] – 76 % –

Munoz et al.[23] – 78 % –

Harmony Potential [10] – 77 % –

Hierarchical CRF [18] – 86 % –

ASRG c-120N 86.6 % 77.6 % 81.5 %

ASRG c-120NF 88.1 % 79.8 % 82.7 %

ASRG s-120N 86.8 % 77.6 % 81.6 %

ASRG s-120NF 87.6 % 78.3 % 81.8 %

ASRG v-120N 86.6 % 76.8 % 81.4 %

ASRG v-120NF 86.5 % 77.8 % 81.8 %

EASRG 87.9 % 77.1 % 82.1 %

the Corel and the 21-class MSRC dataset. On the 9-class
MSRC dataset, it achieves similar performance comparing
with [12] and is better than other methods. On the 21-class
MSRC dataset, Ladicky et al. [18] achieved 86 % on this
dataset. However, they achieved 81 % by just using base-
line CRF, which is better than other methods, and this is
probably due to its using of complex visual features. In
[18], the features of each pixel was extracted; but in our
method visual features were extracted from the segmented

regions, which was much faster. We also evaluated the per-
formance of EASRG, which used all regions in the im-
age as supporting regions. The experimental results show
that EASRG achieves competitive performance compared
with other methods. Since EASRG does not need to select
supporting regions, it directly generates supporting features
from all regions in the image, which can be regarded as a
type of global features. Thus, it is a bit faster than ASRG
which comes with selection procedures. Figure 10 illustrates
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Fig. 10 Annotation results of the sample images from three datasets.
The first and the second columns show the sample images and their
ground-truth annotations (GT). The third column shows the annotation
results of Random Forests (RF), and the fourth column shows the an-

notation results of Conditional Random Fields (CRF). The right two
column show the annotation results of ASRG with supporting regions
selected using class-kN and class-kNF, with k = 120

the exemplar images, ground-truth annotations and the an-
notation results using different methods.

The proposed ASRG model is also capable of utilizing
supporting regions selected from different images. On the
21-class MSRC dataset, we manually selected two similar

training images for each testing image, and for each region
we selected supporting regions from the image and other
two selected images, by which the overall accuracy achieves
83 %. In our future work, we intend to work on selecting
supporting regions in similar images automatically. Mean-
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while, this can also be employed to process videos by se-
lecting supporting regions between different frames.

6 Conclusion

This paper proposes a directed graph model aiming to cap-
ture contextual information extracted from selected sur-
rounding regions. Improved on the traditional context-based
classification which utilized adjacent regions as supporting
regions, such as Conditional Random Fields, we use the sup-
porting regions selected from surrounding image regions by
using the class labels, visual or spatial information in the
proposed new graph model and achieve better performance
than that of CRF and other state-of-art methods.
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