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ABSTRACT

Current saliency detection methods mainly work on ex-
ploring the potential of low-level and high-level visual
features, such as color, texture and face, but treat location
information as a weak assistance or completely ignore
it. In this paper, we reveal the importance of location
information in saliency detection. We analyze the largest
public image dataset for saliency detection THUS10000,
and find the relationship between content location and
saliency distribution. To further validate the effect of
location information, we propose two location based saliency
detection approaches, location based Gaussian distribution
and location based saliency propagation, which make use of
no or weak assistance of image content. Experimental results
show that location based saliency detection can obtain much
better performance than random selection, even better than
most state-of-the-art saliency detection methods.

Categories and Subject Descriptors

I.2.10 [Artificial Intelligence]: Vision and Scene Un-
derstanding; I.4.9 [Image Processing and Computer
Vision]: Applications

General Terms

Algorithms, Human Factors

Keywords

Saliency detection, location information, patch representa-
tion, saliency propagation

1. INTRODUCTION
Saliency detection, i.e. detecting the regions attracting

human attention from image content, plays an important
role in many vision and multimedia tasks [4]. It usually
generate the salient regions without high level processing,
and supplies a better allocation of computing resource.
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Thus, saliency detection has been used as a fundamental of
many multimedia applications, such as image classification
[13] and information retrieval [14].

In the past years, various saliency detection methods
have been proposed. The existing methods mainly focus
on exploring the potential of some low-level features, such
as color and texture, in saliency detection. Itti et al. [5]
first proposed a computational model for gaze prediction,
and Borji et al. made an excellent summary [3]. These
methods works in a bottom-up manner by integrating early
visual features across multiple scales, which aims at predict
the fixation point and tends to highlight edges or corners of
objects. A few recent works try to detect the entire salient
objects based on early visual information like color, texture
etc. Achanta et al. [1] propose to centering the intensities
of whole images to highlight the salient objects. Liu et al.

[10] made a combination of local and global color features
to infer the salient object. Cheng et al. [4] employ global
color contrast for salient object detection, which shows both
high accuracy and efficiency in the THUS10000 dataset.
Margolin et al. [11] try to measure the pattern differences of
patches using PCA and achieves encouraging results in five
open datasets [1, 2, 10, 12].

Besides the low-level features, some saliency detection
methods also pay attention to making use of some high-level
visual information. In [6], Jia et al. propose to combine high
level saliency priors by objectness measurement with low
level appearance models. Jiang et al. [7] explore uniqueness,
focusness and objectness for salient region detection. These
methods, though have limitations in particular images,
achieve satisfactory results in general open datasets which
are consisted of natural images.

Compare to the above mentioned low-level and high-
level features, location information has been only studied
in few previous works [8, 9, 10]. One reason to avoid using
location information in saliency detection is salient objects
may appear in any location in some special applications,
such as surveillance. But in more common applications,
for example, detecting salient regions in natural images,
location provides useful information.

In this paper, we focus on revealing the importance of
location information in saliency detection. We first analyze
the relationship between location and saliency distribution
on THUS10000 dataset, which includes 10000 images with
pixel-level manually labeled saliency maps. We calculate
the mean value and variance of all the saliency maps and
analyze the results. Furthermore, we propose two location
based saliency detection, including location based Gaussian
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Figure 1: Analysis of THUS10000 dataset. (a) Example of source images. (b) Corresponding manually
labeled saliency maps. (c) Mean of all saliency maps. (d) Variance of all saliency maps.

distribution and location based saliency propagation, and
further validate the effect of location information in saliency
detection on THUS10000 dataset.

2. RELATIONSHIP BETWEEN LOCATION

AND SALIENCY DISTRIBUTION
Location information plays an important role in salient

content representation. Inspired by the characteristics of
human visual perception, salient objects are usually placed
in the center or golden section ratio of image in photography.

To validate the effect of location information in saliency
representation, we make statistics on a public image dataset
THUS10000 [4]. To the best of our knowledge, it is
the largest dataset with various source images for saliency
detection (Figure 1(a)). Though another saliency detection
image dataset THUS15000 provided by the same authors
includes more source images, its source images are limited in
five categories. To each source image, THUS10000 provides
a pixel-level manually labeled saliency map (Figure 1(b)).
We resize all the saliency maps to square and calculate the
mean value and variance of the resized saliency maps. As
shown in Figure 1(c) and (d), we can find that the region
near to image center has high mean value and low variance
value, which means the centric regions of most images are
assigned to high saliency values. On the contrary, the region
far from image center has low mean value and variance value,
which means these regions are always treated as not salient
in detection.

3. LOCATION BASED SALIENCY

DETECTION

3.1 Location based Gaussian Distribution
Inspired by Figure 1(c), we utilize content-independent

location based Gaussian distribution to detect saliency
regions. We decompose the image into M ×N patches, i.e.,
the number of patches is MN , and assign the saliency value
to each patch pm,n based on its normalized distance to the
center of image:

sm,n =
1

2πσ2
e
−

(m′
−1)2+(n′

−1)2

2σ2 , (1)

where m′ = 2m

M+1
and n′ = 2n

N+1
are the normalized

coordinate of patch pm,n to the center (M+1

2
, N+1

2
); σ is

a parameter to adjust saliency distribution, and σ2 = 0.4 in
our experiments.

Based on Eq. (1), we obtain the initial saliency map, and
further normalize its value to the range of [0, 1] and resize

it to source image size.

3.2 Location based Saliency Propagation
Location based Gaussian distribution emphasizes the

importance of location information but completely ignores
image content, which may limit the performance of saliency
detection. In fact, the images with different content should
have different saliency maps even the salient regions may
locate near to the image centers. Hence, we bring image
content information in location based saliency detection.

To keep the dominant role of location information in
saliency detection, we only make a weak use of image
content, i.e., propagating the saliency between the patches
with similar mean color. We initialize the saliency value of
each patch pi,j with Eq. (1) and propagate the saliency from
all the patches to pi,j :

s
′

i,j = ω(:, pi,j)
T s, (2)

where ω(:, pi,j) = [ω(p1,1, pi,j) . . . ω(pM,N , pi,j)]
T is the

propagation weight vector of all the patches to patch pm,n,
and s = [s1,1 . . . sM,N ]T is the saliency vector composed of
the saliency values of all the patches.

We define the propagation weight based on the normalized
spatial distance and color similarity between two patches:

ω(pm,n, pi,j) = ωs(pm,n, pi,j) · ωc(pm,n, pi,j). (3)

Here, ωs(pm,n, pi,j) is the weight based on spatial distance
between patch pm,n and pi,j :

ωs(pm,n, pi,j) = e
−

(m′
−i′)2+(n′

−j′)2

σ2 , (4)

where σ is a parameter to adjust saliency distribution, and
(m′, n′) and (i′, j′) are the normalized coordinates of patch
pm,n and pi,j same to Eq. (1).

And ωc(pm,n, pi,j) is the weight based on the distance
between the mean color values of patch pm,n and pi,j :

ωc(pm,n, pi,j) = 1− ||cm,n − ci,j ||2, (5)

where cm,n and ci,j are the mean color values of patch pm,n

and pi,j in L∗a∗b∗ color space.
To make the saliency propagation convergence, we nor-

malize the propagation weights of each patch to other
patches, and conserve the saliency in propagation:

ω
∗(pm,n, pi,j) =

ω(pm,n, pi,j)
∑M

i=1

∑N

j=1
ω(pm,n, pi,j)

. (6)

Based on Eq. (2)-(6), saliency map is iteratively updated
by propagating saliency among patches till the change of
saliency map is less than a pre-defined threshold, which
equals 1

MN
in our experiments.
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Figure 2: ROC curve for LGD using
different patch decomposition.
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Figure 3: ROC curve for LSP using
different patch decomposition.
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Figure 4: Comparison of ROC
curves for different saliency detec-
tion methods.
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Figure 5: Example of saliency maps generated by
LGD using different patch decomposition. (a)-
(d) Initial saliency maps using different patch
decomposition in 8 × 8, 16 × 16, 32 × 32 and 64 × 64.
(e) Source images. (f) Saliency maps generated by
LGD using patch decomposition in 32× 32.

4. EXPERIMENTS

4.1 Dataset and Experiment Setting
We validate the location based saliency detection ap-

proaches on THUS10000 dataset, including location based
Gaussian distribution (LGD) and location based saliency
propagation (LSP). To each approach, we evaluate its
performance under four kinds of patch settings, including
the pixel numbers of 8× 8, 16× 16, 32× 32 and 64× 64. All
the experiments were implemented in Matlab on a computer
with 3.4GHz CPU and 8GB memory.

4.2 Experimental Results
Figure 5 shows the examples of saliency maps generated

by LGD approach. In LGD approach, the initial saliency
map is generated by based on the normalized distance to
image center, and normalized to the value range [0, 1] and
resized to image size. So the saliency maps generated using
different patch decomposition are similar. Figure 2 and
Table 1 show the performance of LGD using different patch
decomposition. It shows that different patch decomposition

(a) (b) (c) (d) (e) (f)

Figure 6: Example of saliency maps generated by
LSP using different patch decomposition. (a) Source
image. (b) Manually labeled groundtruth. (c)-
(f) Saliency maps generated by LSP using patch
decomposition in 8× 8, 16× 16, 32× 32 and 64× 64.

has little influence to saliency detection performance. And
it is obvious that location information has positive effect to
saliency detection even completely ignoring image content.

Figure 6 shows the examples of saliency maps generated
by LSP approach. Different to LGD approach, the number
of patches influences the saliency detection performance in
LSP approach. The increasing of patch number makes the
patch size smaller, which benefits to obtain more accurate
salient region boundaries, such as the top and middle rows
in Figure 6. Meanwhile, the color values within each patch
will be more similar, which may lead to the mean color
values of patches are more distinct and prevent the saliency
propagation among patches, such as the bottom row in
Figure 6. Figure 3 and Table 1 show the performance of
LSP approach using different patch decomposition. We can
find that the performance of saliency detection is improved
when increasing patch number from 8× 8 to 32× 32, but it
doesn’t change when further increasing patch number.

We also compared the location based saliency detec-



Table 1: AUC of ROC curves for LGD and LSP
using different patch decomposition.

LGD LSP

8× 8 0.85 0.87
16× 16 0.85 0.90
32× 32 0.85 0.91
64× 64 0.85 0.91

tion approaches with the state-of-the-art saliency detection
methods. All the saliency detection results of 17 compared
methods are provided by THUS10000 dataset [4]. Different
to only location information is used in our approach, all
the features are allowed to use in these saliency detection
methods. Figure 4 shows the comparison result of RoC
curves for different saliency detection methods. It shows
that the performance of LSP approach is better than some
state-of-the-art saliency detection methods.

4.3 Discussion
In the experiments, we also find some limitation of loca-

tion based saliency detection. When the salient region and
background both have complex structures, the performance
of LSP approach will degenerate to LGD, such as the top
row in Figure 7, especially when the number of patch is
large. The reason is only mean value of each patch may
be distinct to each other and the saliency propagation from
each patch to others become uniform. Another situation of
our drawback is shown in the bottom row of Figure 7. For
only very simple image content feature, mean color value of
each patch, is used to determine the propagation weight, the
salient region cannot be distinguished from the background.
The saliency of center region is propagated to the similar
background part, and the rest part of background is detected
as salient regions.

5. CONCLUSIONS
In this paper, we reveal the importance of location

information in saliency detection. Based on the analysis
of relationship between image content location and saliency
distribution, we find that location information has obvious
influence to saliency. Furthermore, we propose two location
based saliency detection approach, which completely ignores
image content and uses weak assistance of image content,
respectively. It shows that the location based saliency
detection methods can obtain much better performance than
random selection, even better than some state-of-the-art
saliency detection methods.
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