DEPTH SALIENCY BASED ON ANISOTROPIC CENTER-SURROUND DIFFERENCE

Ran Ju, Ling Ge, Wenjing Geng, Tongwei Ren and Gangshan Wu

State Key Laboratory for Novel Software Technology
Nanjing University, China
juran @smail.nju.edu.cn, gelingnju@gmail.com, wjgeng @smail.nju.edu.cn,
rentw @nju.edu.cn, gswu@nju.edu.cn

ABSTRACT

Most previous works on saliency detection are dedicated to
2D images. Recently it has been shown that 3D visual
information supplies a powerful cue for saliency analysis. In
this paper, we propose a novel saliency method that works
on depth images based on anisotropic center-surround dif-
ference. Instead of depending on absolute depth, we mea-
sure the saliency of a point by how much it outstands from
surroundings, which takes the global depth structure into
consideration. Besides, two common priors based on depth
and location are used for refinement. The proposed method
works within a complexity of O(N) and the evaluation on
a dataset of over 1000 stereo images shows that our method
outperforms state-of-the-art.

Index Terms— Saliency detection, depth image

1. INTRODUCTION

Saliency detection [1] is also regarded as visual attention
for human. The activity is a complex process including
visual information gathering and filtering, with its aim to find
the most conspicuous regions rapidly from sight. By only
selecting the salient subset for further processing, the com-
plexity of higher visual analysis can be reduced significantly.
Many applications benefit from saliency analysis, e.g. object
segmentation [2], image classification [3, 4], image/video
retargeting [5, 6], compression [7] and quality assessment [8].

Computational saliency model [ ] performs a feature inte-
gration process similar to human activity, which first extracts
features from input visual information and then integrates
them into a saliency map. Both visual information gathering
and feature extraction contribute largely to saliency detection.
For convenience, most existing works [9, 10, 11] take a 2D
color image as input, which turns out to be insufficient in
certain cases. We give a few examples of saliency detection
results in Fig. 1 (d)-(f).
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Fig. 1. Saliency maps generated by different methods. This
figure illustrates that depth information supplies a powerful
cue for saliency prediction.

A few studies try to investigate the effect of scene depth
for saliency [12]. And recently it has been shown that depth
perception has a strong impact in visual attention [13, 14].
As depth image differs a lot from color image, feature ex-
traction turns out to be a key problem in depth saliency
analysis. Early visual features like depth [15], gradient and
curvature [ 6] easily lead to erroneous detection for the lack
of global consideration, as shown in Fig. 1 (b) and (g). Stereo
saliency [13] prefers unique and nearer regions. However, the
basic assumption that salient regions have zero disparities or
high contrasts to nearby regions turns to be limited and may
easily miss inner parts of salient objects, as shown in Fig. |
(h). Lang et al. [14] model saliency as the the conditional
probability given depth and depth range. The limitation is that
it only cares about absolute depth while missing the global
depth structure information, as shown in Fig. 1 (i).

In this paper we present a novel saliency detection method
based on following considerations:

e The depth prior that nearer regions appear more salient
is effective but may be easily puzzled by nearer back-
grounds. Besides, two regions with the same depth but



different surroundings should be differentiated.

e Salient objects tend to outstand from surrounding back-
grounds. The surroundings should be globally consid-
ered because the inner part of an object tends to be flat
but the entire object may be protruding. This assump-
tion is more effective than depth prior because it prefers
relative depth to absolute depth with considering of
scene structures, which can be seen from the stereo and
human eye fixation dataset [13, 14].

e Center regions are more salient than peripheral due to
the common photography tendency, which has been
shown in previous works [11].

e The computation for saliency should be efficient for
higher level visual processing tasks as stated in [1].

Our method arises from the above considerations. We de-
fine the depth saliency of a point as how much it outstands
from surroundings, which is measured using an anisotropic
center-surround operator. Besides, we employ the depth and
center priors for refinement. Considering of efficiency and
robustness we perform saliency detection on the superpixel
granularity. Our method is O(NN) complex where N is the
number of image pixels. For evaluation we build a dataset that
contains over 1000 stereo images with salient object masks.
The results show that our method can outperform state-of-the-
art on detecting salient regions.

2. APPROACH
2.1. Depth Acquisition

We first consider how to acquire depth information. There
are a lot of devices to capture depth like Time of Flight
(ToF) camera, laser range scanner, structured light scanner
etc. In this work we choose to recover depth maps from stereo
images because they are easy to capture and popular in daily
life. And hence we can easily collect data for evaluation from
resources like image website, daily life photographing and 3D
movie snapshots. The depth image is generated using Sun’s
optical flow method [17] for its accuracy and robustness. An
example is shown in Fig. 1 (b) where nearer pixels appear
brighter and vice versa.

2.2. Anisotropic Center-Surround Difference

According to our basic assumption that visual attention is
more easily to be paid to regions outstanding from surround-
ings, we search for a depth feature for measurement. A simple
description is the center-surround operator such as Difference
of Gaussian (DoG). The limitation is that DoG misses global
information on a fine scale and ignores details on a large scale
as illustrated in Fig. 2.

To overcome this problem, we propose to perform an
anisotropic scan along multiple directions. In each scan-
line, we assume the pixel with the minimum depth value as
background and calculate the difference between the center
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Fig. 2. Limitation of DoG. (a) Input image. The white box
appears conspicuous. (b) Only edge areas of the white box
are detected. (c) The edge details are missed.
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Fig. 3. Sharp and smooth edges comparison.

pixel and background. The depth change in between is not
considered because we believe whether a sharp nor smooth
edge would change the saliency of the center pixel. An
example is shown in Fig. 3. The saliency values of point A in
the sharp and smooth cases are assumed the same due to the
equal magnitude they stand out from the lower point B. The
depth change only affects the saliency of the boundary areas.

Compared to DoG, the proposed operator performs an
anisotropic center-surround difference (ACSD) measure. Ob-
viously the operator is easily to be interfered by noise. So
we first perform a Gaussian smoothing with o5 = 7 on the
depth image. Besides, considering that distant pixels are less
significant, we set a maximum scan length L for each scan-
line. In our experiments we set L as a third of the diagonal
length. The ACSD is summed over eight scanning directions
as shown in Fig. 4. Now we give the mathematical description
of our anisotropic center-surround difference measure:

acsa(p) = d(p) — min(dy), k € [1, L] ey
Dacsa(p) = Z Diesd(p) @)
1€[1,8]
where D’ __,(p) indicates the ACSD value of pixel p along the

scanline i. d(p) is the depth value of pixel p. & is the index of
the pixels along the scan path 4 and limited to L. D,.sq(p)
is the ACSD of pixel p which sums the ACSDs in eight
directions. In Fig. 4 we show the pixels with minimum depth
values in each scanline. In this example the center point gets
a high saliency as it appears outstanding in all the scanning
directions. What we concerns more is the ground that extends
from far to near. Obviously the distant background gets very
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Fig. 4. Example of the ACSD operator.

low ACSD value and thus looks inapparent. The nearer part
of the ground, which is located at the bottom of the image,
has a definitely high depth value. However, it shows less
conspicuity because it gets high ACSD values only in the
upper three directions. In the horizontal and lower directions
it is inhibited effectively.

2.3. Saliency Computation and Refinement

To deal with noises and errors in depth images, the salien-
cy detection is performed on the granularity of superpixels,
which is generated using SLIC [18] on the color images.
The number of superpixels is set as the length of diagonal
in pixels. Then we compute the ACSD for each superpixel at
the centroid. The depth value of the centroid is calculated as
the mean depth value over the superpixel. Then the saliency
is rescaled to [0, 255] and assigned to each pixel to form an
initial saliency map Sgesq.

Next we refine the initial result using two common priors.
First is that regions nearer to viewers appear more salient. We
may binarize the depth image using a threshold varying from
near to far (depth value ranges from 255 to 0) to calculate the
recall versus cumulative depth percent curve. As illustrated
in Fig. 5, the top 50% nearer pixels gives a 95.78% recall
rate of the salient region. And thus we remain the saliency of
top 50% close pixels unchanged and add a linear weighting
d(p)/dso to the remaining pixels, where dsq is the top 50%
threshold. The second prior is that salient objects tend to
locate at the center [11, 19]. Similar to [11], we add a 2D
Gaussian G(z,y,0,,0,) centered at the image with o, and
oy equal to half of the width and height of the image.

2.4. Complexity Analysis

SLIC is O(N) complex and generate O(L) superpixls where
L is a third of the diagonal length. ACSD is also O(L)
complex as the scan length is limited to L. And thus the S, .sq
computation is O(L?) complex. Suppose the aspect ratio of
the image is r, we can get L? = @N . The complexity
of depth and center prior based refinement is also O(N).
According to the above we conclude that our saliency method
works within an O(N') complexity.
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Fig. 5. Recall versus cumulative depth percent curve.

3. EXPERIMENTS AND ANALYSIS

3.1. Dataset and Experiment Settings

We collect stereo images from Internet, 3D movies and pho-
tographs taken by a Fuji W3 stereo camera. As the labeling
results on 2D images may be a little different from that in real
3D environments, we perform mask labeling in a 3D display
environment by using Nvidia 3D Vision. We first collect
more than 20000 stereo images totally. Next, following the
procedure in [20], we selected 5913 images each of which
contains a salient object of moderate size. After that, four
volunteers are invited to label the salient object masks. At
last, 1382 high quality and consistently labeled images are
selected for evaluation.

We employ the widely used precision-recall curve to e-
valuate the performance of our method. Specifically, we
obtain a binary image from the saliency map using a grad-
ually increasing threshold from 0 to 255 and compare with
the groundtruth salient object mask to get the precision and
recall. We choose three state-of-the-art methods work on
color images namely CNTX [9], RC [10], PCA [1 1] and three
depth saliency methods namely CURV [16], SS [13], DP [14]
for comparison. Besides, the depth images are directly treated
as saliency maps (named DEPTH) to evaluate the depth prior.

3.2. Results and Discussion

We show a few saliency maps generated by different methods
in Fig. 6. The precision-recall curves are given in Fig. 7.
Almost all of the depth image based methods perform bet-
ter than the color image based methods. An exception is
CURY, which is based on depth curvature. The precision
decreases quickly as recall increases because CURV detects
local regions instead of entire objects. And this suggests
that curvature is not proper for salient object detection task
in depth images. The maximum precision of the three color
image based methods would not exceed 0.6, while DEPTH
reaches a precision more than 0.7. An explanation is that
salient objects may look inapparent in color or context but
conspicuous in 3D perception. This suggests that 2D col-
or information is insufficient for saliency detection and 3D
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Fig. 6. Saliency comparisons of different methods. The first column shows the left views of the stereo images. The second and
third column shows the depth images and ground truth salient object masks repectively. The next three columns are the saliency
results of color image based methods. The last four columns show the results of depth saliency methods.

depth cues may supply a more powerful prediction for visual
attention in certain cases. Similar results and conclusions
are stated in [13, 14]. An interesting phenomenon is that
DEPTH keeps almost a constant precision rate of 0.7 at the
recall rates from 0.1 to 0.8. This corresponds to the top 5%
to 30% close pixels in Fig. 5. That is to say, in this range

each pixel has a 70% probability to appear salient. The DP _E 0.6
method which leverages prior probabilities shows no obvious S
improvement to DEPTH. This can be explained that relative E 0.4

depth contributes more to saliency than absolute depth values.
SS performs the most close to our method as it takes relative
depth into consideration. As stated in Section 1, the limitation
is that its preference to unique regions may miss inner regions

of objects, which can be seen in Fig. 6. | = op |1 : :
We implement our method in C++ and test on a machine o= OuRs I, : :
with a 3.4GHz Intel i7-4770 CPU and 16GB memory. Typ- 0 0.2 04 pecan”® 0.8 !
ically for a 1280 x 720 image, the running time is 0.718s.
Specifically, the superpixel segmentation takes 0.656s and Fig. 7. Precision-recall curves of different methods.

saliency computation takes 0.062s.
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