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Abstract Given n points in a circular region C in the plane, we study the problems
of moving the n points to the boundary of G to form a regular n-gon such that the
maximum (min-max) or the sum (min-sum) of the Euclidean distances traveled by the
points is minimized. These problems have applications, e.g., in mobile sensor barrier
coverage of wireless sensor networks. The min-max problem further has two ver-
sions: the decision version and the optimization version. For the min-max problem,
we present an O(n log2 n) time algorithm for the decision version and an O(n log3 n)

time algorithm for the optimization version. The previously best algorithms for the
two problem versions take O(n3.5) time and O(n3.5 logn) time, respectively. For the
min-sum problem we show that a special case with all points initially lying on the
boundary of the circular region can be solved in O(n2) time, improving a previous
O(n4) time solution. For the general min-sum problem, we present a 3-approximation
O(n2) time algorithm. In addition, a by-product of our techniques is an algorithm for
dynamically maintaining the maximum matching of a circular convex bipartite graph;
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our algorithm can handle each vertex insertion or deletion on the graph in O(log2 n)

time. This result may be interesting in its own right.

Keywords Computational geometry · Algorithms and data structures · Circular
region coverage · Barrier coverage · Mobile sensors · Dynamic maximum matching ·
Circular convex bipartite graph

1 Introduction

Given n points in a circular region C in the plane, we study the problems of mov-
ing the n points to its boundary to form a regular n-gon such that the maximum
(min-max) or the sum (min-sum) of the Euclidean distances traveled by the points is
minimized. The problems have applications, e.g., in mobile sensor barrier coverage of
wireless sensor networks. In this paper we present new algorithms that significantly
improve the previous work on these problems.

1.1 Problem Definitions

Let |ab| denote the Euclidean length of the line segment with two endpoints a and
b in the plane. Let C be a circular region in the plane. Given a set of n points
S = {A0,A1, . . . ,An−1} in C (i.e., in its interior or on its boundary), we wish to
move all sensors to n points A′

0,A
′
1, . . . ,A

′
n−1 on the boundary of C that form a

regular n-gon. In other words, A′
0,A

′
1, . . . ,A

′
n−1 are the final positions of the points

in S after their movement. The min-max problem aims to minimize the maximum
Euclidean distance traveled by all points, i.e., max0≤i≤n−1{|AiA

′
i |}. The min-sum

problem aims to minimize the sum of the Euclidean distances traveled by all points,
i.e.,

∑n−1
i=0 |AiA

′
i |.

Further, given a value λ ≥ 0, the decision version of the min-max problem is to
determine whether it is possible to move all points in S to the boundary of C to
form a regular n-gon such that the distance traveled by each point is no more than λ.
Indeed, let λC be the maximum distance traveled by the points in an optimal solution
for the min-max problem. Then, the answer to the feasibility problem is “yes” if and
only if λC ≤ λ. For discrimination, we refer to the original min-max problem as the
optimization version of the min-max problem.

For the min-sum problem, if the points in S are initially located on the boundary
of C, then this case is referred to as the boundary case of the min-sum problem.

1.2 Applications in Wireless Sensor Networks

A Wireless Sensor Network (WSN) is composed of a large number of sensors
which monitor some surrounding environmental phenomenon. Usually, the sensors
are densely deployed either inside the target phenomenon or are very close to it [1].
Each sensor is equipped with a sensing device with limited battery-supplied energy.
The sensors process data obtained and forward the data to a base station. A typical
type of WSN applications is concerned with security and safety systems, such as de-
tecting intruders (or movement thereof) around infrastructure facilities and regions.
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Particularly, it is often used to monitor a protected area so as to detect intruders as
they penetrate the area or as they cross the area border. For example, research ef-
forts have been under way to extend the scalability of wireless sensor networks to the
monitoring of international borders [15, 17].

The study of barrier coverage using mobile sensors was originated in [7, 17] and
later in [2]. Different from the traditional concept of full coverage, it seeks to cover
the deployment region by guaranteeing that there is no path through the region that
can be traversed undetectedly by an intruder, i.e., all possible crossing paths through
the region are covered by the sensors [2, 7, 17]. Hence, an interesting problem is to
reposition the sensors quickly so as to repair the existing security hole and thereby
detect intruders [2]. Since barrier coverage requires fewer sensors for detecting in-
truders, it gives a good approximation of full area coverage. The planar region on
which the sensors move is sometimes represented by a circle. Since sensors have
limited battery-supplied energy, we wish to minimize their movement. Thus, if each
sensor is represented as a point, the problem is exactly our optimal point movement
min-max (the optimization version) or min-sum problem. Further, if each sensor has
energy λ and we want to determine whether this level of energy is sufficient to form
a barrier coverage, then the problem becomes the decision version of the min-max
problem.

1.3 Previous Work and Our Results

For the min-max problem, Bhattacharya et al. [2] proposed an O(n3.5) time algorithm
for the decision version and an O(n3.5 logn) time algorithm for the optimization ver-
sion, where the decision algorithm is based on some observations and brute force and
the optimization algorithm is based on parametric search approach [9, 21]. Recently,
it was claimed in [23] that these two problem versions were solvable in O(n2.5) time
and O(n2.5 logn) time, respectively. However, the announced algorithms in [23] con-
tain errors. In this paper, we solve the decision version in O(n log2 n) time and the
optimization version in O(n log3 n) time, which significantly improve the previous
results.

In fact, the optimization version is equivalent to finding a regular n-gon on the
boundary of C such that the bottleneck matching distance (i.e., the maximum match-
ing distance) between the points in S and the vertices of the n-gon is minimized. The
bottleneck matching problems have been studied, e.g., [6, 12, 13]. Another related
work given by Bremner et al. [3] concerns two sets of points on a cycle (neither set
of points have to form a regular n-gon) and one wants to rotate one set of points to
minimize the matching distance between the two sets.

A by-product of our techniques that is interesting in its own right is an algo-
rithm for dynamically maintaining the maximum matchings of circular convex bi-
partite graphs. Our algorithm handles each (online) vertex insertion or deletion on
an n-vertex circular convex bipartite graph in O(log2 n) time. This matches the
performance of the best known dynamic matching algorithm for convex bipartite
graphs [4]. Note that convex bipartite graphs are a subclass of circular convex bipar-
tite graphs [18]. To our best knowledge, no dynamic matching algorithm for circular
convex bipartite graphs was known before. In fact, our approach can be viewed as a



382 Algorithmica (2015) 72:379–399

combination of the data structure in [4] and the linear time algorithm in [18] for com-
puting a maximum matching in a circular convex bipartite graph. Since dynamically
maintaining the maximum matching of a graph is a basic problem, our result may
find other applications.

For the min-sum problem, an O(n2) time approximation algorithm with approxi-
mation ratio 1 + π was given in [2]. A PTAS, which has a substantially larger poly-
nomial time bound, was also given in [2]. In this paper, we present an O(n2) time
approximation algorithm with approximation ratio 3, which improves the (1 + π)-
approximation result in [2]. However, whether the general min-sum problem is NP-
hard is still left open.

For the boundary case of the min-sum problem, an O(n4) time (exact) algorithm
was given in [23]. We show that the time bound of that algorithm can be reduced to
O(n2).

The rest of this paper is organized as follows. Our algorithm for the decision ver-
sion of the min-max problem is given in Sect. 2, and our algorithm for the optimiza-
tion version is presented in Sect. 3. The min-sum problem is discussed in Sect. 4.
Finally, Sect. 5 concludes.

To distinguish from a normal point in the plane, in the following paper we refer to
each point Ai ∈ S as a sensor.

2 The Decision Version of the Min-Max Problem

For simplicity, we assume the radius of the circle C is 1. Denote by ∂C the boundary
of C. Let λC be the maximum distance traveled by the sensors in S in an optimal
solution for the min-max problem, i.e., λC = min{max0≤i≤n−1{|AiA

′
i |}} among all

possible points A′
0,A

′
1, . . . ,A

′
n−1 on ∂C that form a regular n-gon. Since the sen-

sors are all in C, λC ≤ 2. In this section, we consider the decision version of the
min-max problem on C: Given a value λ, determine whether λC ≤ λ. We present an
O(n log2 n) time algorithm for this problem.

In the following, we introduce some terminology in Sect. 2.1. The main idea of
our algorithm is as follows. First, we model the problem as finding the maximum
matchings in a sequence of O(n) circular convex bipartite graphs in Sect. 2.2, which
is further modeled in Sect. 2.3 as dynamically maintaining the maximum matching
of a circular convex bipartite graph under a sequence of O(n) vertex insertion and
deletion operations. Second, we develop an approach for solving the latter problem
in Sect. 2.3. Specifically, we show that the maximum matching of a circular convex
bipartite graph of O(n) vertices can be dynamically maintained in O(log2 n) time
(in the worst case) for each vertex insertion or deletion. Note that this result is of
independent interest.

2.1 Preliminaries

We first discuss some concepts. A bipartite graph G = (V1,V2,E) with |V1| = O(n)

and |V2| = O(n) is convex on the vertex set V2 if there is a linear ordering on V2, say,
V2 = {v0, v1, . . . , vn−1}, such that if any two edges (v, vj ) ∈ E and (v, vk) ∈ E with
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vj , vk ∈ V2, v ∈ V1, and j < k, then (v, vl) ∈ E for all j ≤ l ≤ k. In other words, for
any vertex v ∈ V1, the subset of vertices in V2 connected to v forms an interval on
the linear ordering of V2. For any v ∈ V1, suppose the subset of vertices in V2 con-
nected to v is {vj , vj+1, . . . , vk}; then we denote begin(v,G) = j and end(v,G) = k.
Although E may have O(n2) edges, it can be represented implicitly by specifying
begin(v,G) and end(v,G) for each v ∈ V1. A vertex insertion on G is to insert a ver-
tex v into V1 with an edge interval [begin(v,G), end(v,G)] and implicitly connect v

to every vi ∈ V2 with begin(v,G) ≤ i ≤ end(v,G). Similarly, a vertex deletion on G

is to delete a vertex v from V1 as well as all its adjacent edges.
A bipartite graph G = (V1,V2,E) is circular convex on the vertex set V2 if there is

a circular ordering on V2 such that for each vertex v ∈ V1, the subset of vertices in V2
connected to v forms a circular-arc interval on that ordering. Precisely, suppose such a
clockwise circular ordering of V2 is v0, v1, . . . , vn−1. If there exist two edges (v, vj ) ∈
E and (v, vk) ∈ E with vj , vk ∈ V2, v ∈ V1, and j < k, then either (v, vl) ∈ E for all
j ≤ l ≤ k, or (v, vl) ∈ E for all k ≤ l ≤ n − 1 and (v, vl) ∈ E for all 0 ≤ l ≤ j . For
each v ∈ V1, suppose the vertices of V2 connected to v are from vj to vk clockwise on
the ordering, then begin(v,G) and end(v,G) are defined to be j and k, respectively.
Vertex insertions and deletions on G are defined similarly.

A maximum matching in a convex bipartite graph can be found in O(n) time [14,
19, 22]. The same time bound holds for a circular convex bipartite graph [18]. Brodal
et al. [4] designed a data structure for dynamically maintaining the maximum match-
ings of a convex bipartite graph that can support each vertex insertion or deletion in
O(log2 n) amortized time. For circular convex bipartite graphs, however, to our best
knowledge, we are not aware of any previous work on dynamically maintaining their
maximum matchings.

In the following, we first present the problem modeling and then give our algo-
rithm for dynamically maintaining the maximum matching of a circular convex bi-
partite graph.

2.2 The Problem Modeling

Recall that in the decision version of the min-max problem, our goal is to de-
termine whether λC ≤ λ. Let P be an arbitrary regular n-gon with its vertices
P0,P1, . . . ,Pn−1 ordered clockwise on ∂C. We first consider the following sub-
problem: Determine whether we can move all sensors to the vertices of P such that
the maximum distance traveled by the sensors is at most λ. Let GP be the bipartite
graph between the sensors A0, . . . ,An−1 and the vertices of P , such that a sensor
Ai is connected to a vertex Pj in GP if and only if |AiPj | ≤ λ. The next lemma is
immediate.

Lemma 1 The bipartite graph GP is circular convex.

Proof This simply follows from the fact that the boundary of any circle of radius λ

can intersect ∂C at most twice. �

To solve the above sub-problem, it suffices to compute a maximum matching M

in the circular convex bipartite graph GP (by using the algorithm in [18]). If M is a
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perfect matching, then the answer to the sub-problem is “yes”; otherwise, the answer
is “no”. Thus, the sub-problem can be solved in O(n) time (note that the graph GP

can be implicitly represented using O(n) space, after O(n logn) time preprocessing).
If the answer to the sub-problem is “yes”, then we say that P is feasible with respect
to the value λ.

If P is feasible, then clearly λC ≤ λ. If P is not feasible, however, λC > λ does
not necessarily hold, because P may not be positioned “right” (i.e., P may not be
the regular n-gon in an optimal solution of the optimization version of the min-max
problem). To further decide whether λC ≤ λ, our strategy is to rotate P clockwise
on ∂C by an arc distance at most 2π/n. Since the perimeter of C is 2π , the arc
distance between any two neighboring vertices of P is 2π/n. A simple yet critical
observation is that λC ≤ λ if and only if during the rotation of P , there is a moment
(called a feasible moment) at which P becomes feasible with respect to λ. Thus, our
task is to determine whether a feasible moment exists during the rotation of P .

Consider the graph GP . For each sensor Ai , denote by E(Ai) = {Pj ,Pj+1,

. . . ,Pk} the subset of vertices of P connected to Ai in GP , where the indices of
the vertices of P are taken as modulo by n. We assume that E(Ai) does not con-
tain all vertices of P (otherwise, it is trivial). Since the arc distance from Pj−1 to Pj

is 2π/n, during the (clockwise) rotation of P , there must be a moment after which
Pj−1 becomes connected to Ai , and we say that Pj−1 is added to E(Ai); similarly,
there must be a moment after which Pk becomes disconnected to Ai , and we say that
Pk is removed from E(Ai). Note that these are the moments when the edges of Ai

(and thus the graph GP ) are changed due to the rotation of P . Also, note that during
the rotation, all vertices in E(Ai) \ {Pk} remain connected to Ai and all vertices in
P \ {E(Ai) ∪ {Pj−1}} remain disconnected to Ai . Hence throughout this rotation,
there are totally n additions and n removals on the graph GP . If we sort all these
additions and removals based on the time moments when they occur, then we ob-
tain a sequence of 2n circular convex bipartite graphs, and determining whether there
exists a feasible moment is equivalent to determining whether there is a graph in
this sequence that has a perfect matching. With the O(n) time maximum matching
algorithm for circular convex bipartite graphs of n vertices in [18], a straightfor-
ward solution for determining whether there is a feasible moment would take O(n2)

time.
To obtain a faster algorithm, we further model the problem as follows. Consider

the addition of Pj−1 to E(Ai). This can be done by first deleting the vertex of GP

corresponding to Ai and then inserting a new vertex corresponding to Ai with its
edges connecting to the vertices in {Pj−1} ∪ E(Ai). The removal of Pk from E(Ai)

can be handled similarly. Thus, each addition or removal on E(Ai) can be trans-
formed to one vertex deletion and one vertex insertion on GP . If we sort all vertex
updates (i.e., insertions and deletions) by the time moments when they occur, then the
problem of determining whether there is a feasible moment is transformed to deter-
mining whether there exists a perfect matching in a sequence of vertex updates on the
graph GP . In other words, we need to dynamically maintain the maximum matching
in a circular convex bipartite graph to support a sequence of 2n vertex insertions and
2n vertex deletions. This problem is handled in the next subsection.
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2.3 Dynamic Maximum Matching in a Circular Convex Bipartite Graph

In this subsection, we consider the problem of dynamically maintaining the maxi-
mum matching in a circular convex bipartite graph to support vertex insertions and
deletions. We treat all vertex updates in an online fashion.

Let G = (V1,V2,E) with |V1| = O(n) and |V2| = O(n) be a circular convex bi-
partite graph on the vertex set V2, i.e., the vertices of V2 connected to each vertex in
V1 form a circular-arc interval on the sequence of the vertex indices of V2. Suppose
V2 = {v0, v1, . . . , vn−1} is ordered clockwise. Recall that a vertex insertion on G is to
insert a vertex v into V1 with an edge interval [begin(v,G), end(v,G)] such that v is
(implicitly) connected to all vertices of V2 from begin(v,G) clockwise to end(v,G).
A vertex deletion is to delete a vertex v from V1 and all its adjacent edges (implic-
itly). Our task is to design an algorithm for maintaining the maximum matching of
G to support such update operations (i.e., vertex insertions and deletions) efficiently.
Below, we present an algorithm with an O(log2 n) time per update operation.

Our approach can be viewed as a combination of the data structure in [4] for
dynamically maintaining the maximum matching in a convex bipartite graph and
the linear time algorithm in [18] for computing a maximum matching in a circular
convex bipartite graph. We refer to them as the BGHK data structure [4] and the LB
algorithm [18], respectively. We first briefly describe the BGHK data structure and
the LB algorithm.

The BGHK data structure [4] is a binary tree T , and each node of T maintains a
balanced binary tree. This data structure can be constructed in O(n log2 n) time and
can support each vertex insertion or deletion in O(log2 n) amortized time. Consider a
vertex insertion, i.e., inserting a vertex v into V1. Let M ′ (resp., M) be the maximum
matching in the graph before (resp., after) the insertion. Let |M| denote the number
of matched pairs in M . After the data structure is updated (in O(log2 n) amortized
time), the value |M| can be reported in O(1) time and M can be reported in O(|M|)
time. The data structure can also determine in O(1) time whether v is matched in M .
Further, if another vertex v′ ∈ V1 was matched in M ′ but is not matched in M , then
it is easy to see that v must be matched in M . Intuitively, the reason that v′ is not
matched in M is to “make room” for v to be matched (refer to [4] for more details).
When this case occurs, we say that v replaces v′ and v′ is called the replacement, and
the data structure is able to report the replacement in O(1) time. Note that as shown
in [4], although an update on the graph can cause dramatic changes on the maximum
matching, the sets of the matched vertices in V1 (and V2) can change by at most one
vertex. Thus, there is at most one such replacement v′. Similarly, consider deleting a
vertex v from V1. After the data structure is updated, the value |M| can be reported
in O(1) time and M can be reported in O(|M|) time. The data structure can also
find out whether v was matched in M ′ in O(1) time (refer to [4] for the details). If a
vertex v′ ∈ V1 was not matched in M ′ but is matched in M , then v must be matched
in M ′. When this case occurs, we say v′ is the supplement, which can be determined
in O(1) time.

The LB algorithm [18] finds a maximum matching in a circular convex bipartite
graph G = (V1,V2,E) by reducing the problem to two sub-problems of computing
the maximum matchings in two convex bipartite graphs G1 and G2. Some details
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are summarized below. For any vertex v ∈ V1, if begin(v,G) ≤ end(v,G), then v is
called a non-boundary vertex. Otherwise, v is a boundary vertex; the edges connect-
ing v to vbegin(v,G), vbegin(v,G)+1, . . . , vn−1 in V2 are called lower edges, and the other
edges connecting v are upper edges. Based on the graph G, a convex bipartite graph
G1 = (V1,V2,E1) is defined as follows. Both its vertex sets are the same as those
in G. For each vertex v ∈ V1 in G, begin(v,G1) = begin(v,G); if v is a non-boundary
vertex, then end(v,G1) = end(v,G), and otherwise end(v,G1) = n− 1 + end(v,G)

(note that this value of end(v,G1) is used only for comparison in the algorithm al-
though there are not so many vertices in V2). The LB algorithm has two main steps.
The first step is to compute a maximum matching in G1, which can be done in O(n)

time [14, 19, 22]. Let M(G1) be the maximum matching of G1. Next, another con-
vex bipartite graph G2 = (V1,V2,E2) is defined based on M(G1) and G, as fol-
lows. Both its vertex sets are the same as those in G. For each non-boundary ver-
tex v ∈ V1 in G, begin(v,G2) = begin(v,G) and end(v,G2) = end(v,G). For each
boundary vertex v ∈ V1 in G, there are two cases: If v is matched in M(G1), then
begin(v,G2) = begin(v,G) and end(v,G2) = n − 1; otherwise, begin(v,G2) = 0
and end(v,G2) = end(v,G). The second step of the LB algorithm is to compute a
maximum matching in G2 (in O(n) time), denoted by M(G2). It was shown in [18]
that M(G2) is also a maximum matching of the original graph G. Note that although
the maximum matching in G1 may not be unique, the LB algorithm works correctly
regardless of which maximum matching of G1 is computed in the first step.

We now discuss our algorithm for dynamically maintaining a maximum matching
in the circular convex bipartite graph G. As for preprocessing, we first run the LB
algorithm on G, after which both the convex bipartite graphs G1 and G2 of G are
available. We then build two BGHK data structures for G1 and G2, denoted by T (G1)

and T (G2), respectively, for maintaining their maximum matchings. This completes
the preprocessing, which takes O(n log2 n) time. In the following, we discuss how to
perform vertex insertions and deletions.

Consider a vertex insertion, i.e., inserting a vertex v into V1 with the edge interval
[begin(v,G), end(v,G)]. To perform this insertion, intuitively, we need to update the
two BGHK data structures T (G1) and T (G2) in a way that mimics some behavior of
the LB algorithm. Specifically, we first insert v into the graph G1 by updating T (G1).
Based on the results on G1 (e.g., whether there is a replacement) and the behavior
of the LB algorithm, we modify G2 by updating T (G2) accordingly. In this way, the
maximum matching maintained by T (G2) is the maximum matching of G after the
insertion. The details are given below.

Let G′
1 and G′

2 be the two graphs that would be produced by running the LB
algorithm on G with the new vertex v (and its adjacent edges). Let M(G1), M(G2),
M(G′

1), and M(G′
2) be the maximum matchings of G1,G2,G

′
1, and G′

2, respectively.
Depending on whether v is a boundary vertex, there are two main cases.

• If v is a non-boundary vertex (i.e., begin(v,G) ≤ end(v,G)), then G′
1 can be

obtained by inserting v into G1. Hence we insert v into T (G1). Depending on
whether there is a replacement, there are two cases.
– If no replacement, then G′

2 can be obtained by inserting v into G2. Thus, we
simply insert v into T (G2) and we are done.



Algorithmica (2015) 72:379–399 387

– Otherwise, let v′ be the replacement. So v′ was matched in M(G1) but is not
matched in M(G′

1). Depending on whether v′ is a boundary vertex, there are
two subcases.
• If v′ is a non-boundary vertex, then again, G′

2 can be obtained by inserting v

into G2. We thus insert v into T (G2) and we are done.
• If v′ is a boundary vertex, then since v′ was matched in M(G1), according

to the LB algorithm, v′ with the edge interval [begin(v′,G),n − 1] is in G2.
After the insertion of v into G1, v′ is not matched in M(G′

1). Thus, accord-
ing to the LB algorithm, G′

2 can be obtained by deleting v′ (with the edge
interval [begin(v′,G),n − 1]) from G2, inserting v′ with the edge interval
[0, end(v′,G)] into G2, and finally inserting v into G2.

In summary, for this subcase, we delete v′ (with the edge interval
[begin(v′,G),n − 1]) from T (G2) and insert v′ with the edge interval
[0, end(v′,G)] into T (G2). Finally, we insert v into T (G2), and we are done.

• If v is a boundary vertex (i.e., begin(v,G) > end(v,G)), then according to
the LB algorithm, G′

1 can be obtained by inserting v with the edge interval
[begin(v,G),n − 1 + end(v,G)] into G1. Thus we insert v with the edge inter-
val [begin(v,G),n − 1 + end(v,G)] into T (G1). Depending on whether there is a
replacement, there are two cases.
– If no replacement, then depending on whether v is matched in M(G′

1), there are
two subcases.
• If v is matched, then according to the LB algorithm, G′

2 can be obtained by
inserting v with the edge interval [begin(v,G),n−1] into G2. Thus, we insert
v with the edge interval [begin(v,G),n − 1] into T (G2), and we are done.

• If v is not matched, then according to the LB algorithm, G′
2 can be obtained

by inserting v with the edge interval [0, end(v,G)] into G2. We thus insert v

with the edge interval [0, end(v,G)] into T (G2), and we are done.
– Otherwise, there is a replacement v′. So v′ was matched in M(G1) but is not

matched in M(G′
1), and v is matched in M(G′

1). Depending on whether v′ is a
boundary vertex, there are two subcases.
• If v′ is a non-boundary vertex, then since v is matched in M(G′

1), G′
2 can be

obtained by inserting v with the edge interval [begin(v,G),n − 1] into G2.
We thus insert v with the edge interval [begin(v,G),n − 1] into T (G2).

• If v′ is a boundary vertex, then according to the LB algorithm, G′
2 is the graph

obtained by deleting v′ (with the edge interval [begin(v′,G),n − 1]) from
G2, inserting v′ with the edge interval [0, end(v′,G)] into G2, and finally
inserting v with the edge interval [begin(v,G),n − 1] into G2.

Thus, we delete v′ (with the edge interval [begin(v′,G),n − 1]) from
T (G2), and insert v′ with the edge interval [0, end(v′,G)] into T (G2). Fi-
nally, we insert v with the edge interval [begin(v,G),n − 1] into T (G2).

This completes the description of our procedure for handling a vertex insertion.
Next, consider a vertex deletion, i.e., deleting a vertex v from V1 of G. Our pro-

cedure for this operation proceeds in a manner symmetric to the insertion procedure,
and we briefly discuss it below. Define the two graphs G′

1 and G′
2 similarly as above.

• If v is a non-boundary vertex, then we delete v from T (G1). If no supplement, then
we delete v from T (G2) and we are done. Otherwise, let v′ be the supplement. So
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v′ was not matched in M(G1) but is matched in M(G′
1). Depending on whether v′

is a boundary vertex, there are two cases.
– If v′ is a non-boundary vertex, then we delete v from T (G2) and we are done.
– If v′ is a boundary vertex, then we delete v′ with the edge interval [0, end(v′,G)]

from T (G2) and insert v′ with the edge interval [begin(v′,G),n − 1] into
T (G2). Finally, delete v from T (G2), and we are done.

• If v is a boundary vertex, then we delete v (with the edge interval [begin(v,G),n−
1 + end(v,G)]) from T (G1). Depending on whether there is a supplement, there
are two cases.
– If no supplement, then depending on whether v was matched in M(G1), there

are two subcases. If v was matched, then we delete v (with the edge interval
[begin(v,G),n−1]) from T (G2); otherwise, we delete v (with the edge interval
[0, end(v,G)]) from T (G2).

– Otherwise, let v′ be the supplement. So v′ was not matched in M(G1) but
is matched in M(G′

1), and v was matched in M(G1). Since v was matched
in M(G1), according to the LB algorithm, G2 contains v with the edge in-
terval [begin(v,G),n − 1]. If v′ is a non-boundary vertex, then we delete v

(with the edge interval [begin(v,G),n − 1]) from T (G2) and we are done.
Otherwise, since v′ was not matched in M(G1), according to the LB al-
gorithm, G2 contains v′ with the edge interval [0, end(v′,G)]; since v′ is
matched in M(G′

1), according to the LB algorithm, G′
2 should contain v′

with the edge interval [begin(v′,G),n − 1]. Therefore, we delete v′ (with the
edge interval [0, end(v′,G)]) from T (G2), insert v′ with the edge interval
[begin(v′,G),n − 1] into T (G2), and finally delete v (with the edge interval
[begin(v,G),n − 1]) from T (G2).

This completes the description of our vertex deletion procedure.
As shown in Sect. 2.2, the decision version of the min-max problem can be trans-

formed to the problem of dynamically maintaining the maximum matching in a cir-
cular convex bipartite graph subject to a sequence of vertex insertions and deletions.
Hence, the correctness of our algorithm for the decision version hinges on the cor-
rectness of our dynamic maximum matching algorithm for circular convex bipartite
graphs. Yet, the correctness of our (online) dynamic maximum matching algorithm
for circular convex bipartite graphs can be seen quite easily. This is because our pro-
cedures for performing vertex insertions and deletions are both based on the fact that
they simply mimic the behavior of the LB algorithm (while implementing their pro-
cessing by the means of the BGHK data structures).

For the running time of our algorithm, each update operation involves at most
two vertex insertions and two vertex deletions on T (G1) and T (G2), each of which
takes O(log2 n) amortized time [4]; thus, it takes O(log2 n) amortized time in total.
Actually, the BGHK data structure in [4] supports vertex insertions and deletions not
only on V1 but also on V2. Inserting vertices on V2 may make the tree unbalanced,
and that is why its running time is amortized. However, if vertices are inserted only on
V1, then the tree will never become unbalanced and thus each update takes O(log2 n)

time in the worst case. In our problem formulation, the vertex updates indeed are only
on V1. Denote by M(G) the maximum matching in G. We then have the following
result.
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Theorem 1 A data structure on a circular convex bipartite graph G = (V1,V2,E)

can be built in O(n log2 n) time for maintaining its maximum matching M(G) so that
each online vertex insertion or deletion on V1 can be done in O(log2 n) time in the
worst case. After each update operation, |M(G)| can be reported in O(1) time and
M(G) can be reported in O(|M(G)|) time.

Since the decision version of the min-max problem has been reduced to dynam-
ically maintaining the maximum matching in a circular convex bipartite graph un-
der a sequence of 2n vertex insertions and 2n vertex decisions, we solve the dy-
namic maximum problem as follows. After each update operation, we check whether
|M(G)| = n, and if this is true, then we report λC ≤ λ and halt the algorithm. If all
4n updates have been processed but it is always |M(G)| < n, then we report λC > λ.
Based on Theorem 1, we have the result below.

Theorem 2 Given a value λ, we can determine whether λC ≤ λ in O(n log2 n) time
for the decision version of the min-max problem.

3 The Optimization Version of the Min-Max Problem

In this section, we consider the optimization version of the min-max problem, and
present an O(n log3 n) time algorithm for it. The main task is to compute the
value λC .

To compute λC , we will first show in Sect. 3.1 that there exist a set D of distances
such that λC ∈ D. Consequently, λC can be determined by searching D and using
the decision algorithm in Theorem 2. However, since D is too large, it would take
too much time to search D. To resolve the issue, in Sect. 3.2 we find a much smaller
subset of D such that λC is still in the subset. Further, we show in Sect. 3.3 that the
smaller subset can be determined implicitly such that the value λC can be computed
in totally O(n log3 n) time by using the decision algorithm in Theorem 2.

3.1 Preliminaries

Let o be the center of C. For simplicity of discussion, we assume that no sensor lies
at o. Denote by Xi and Yi the two points on ∂C which are closest and farthest to each
sensor Ai , respectively. Clearly, Xi and Yi are the two intersection points of ∂C with
the line passing through Ai and the center o of C (see Fig. 1(a)). The lemma below
has been proved in [23].

Lemma 2 [23] Suppose an optimal solution for the min-max optimization problem is
achieved with λC = |AiA

′
i | for some i ∈ {0, . . . , n−1}. Then either A′

i is the point Xi ,
or there is another sensor Aj (j �= i) such that λC = |AjA

′
j | also holds. In the latter

case, any slight rotation of the regular n-gon that achieves λC in either direction
causes the value of λC to increase (i.e., it makes one of the two distances |AiA

′
i | and

|AjA
′
j | increase and the other one decrease).



390 Algorithmica (2015) 72:379–399

Fig. 1 (a) The points Xi and Yi

on ∂C for Ai ; (b) |AiA
′
i
| =

|Aj A′
j
|

The points on ∂C satisfying the conditions specified in Lemma 2 may be consid-
ered as those defining candidate values for λC , i.e., they can be considered as some
vertices of possible regular n-gons on ∂C in an optimal solution. The points Xh of all
sensors Ah (0 ≤ h ≤ n − 1) can be easily determined. Define D1 = ⋃n−1

h=0{|AhXh|},
which can be computed in O(n) time. But, the challenging task is to handle all the
pairs (Ai,Aj ) (i �= j ) such that the distance from Ai to a vertex of a regular n-
gon is equal to the distance from Aj to another vertex of that n-gon and a slight
rotation of the n-gon in either direction monotonically increases one of these two
distances but decreases the other. We refer to such distances as the critical equal
distances. Denote by D2 the set of all critical equal distances. Let D = D1 ∪ D2.
By Lemma 2, λC ∈ D. Thus, if D is somehow available, then λC can be deter-
mined by using our algorithm in Theorem 2 in a binary search process. Since D1
is readily available, the key is to deal with D2 efficiently. An easy observation is
max0≤h≤n−1 |AhXh| ≤ λC . We can use the algorithm in Theorem 2 to check whether
λC ≤ max0≤h≤n−1 |AhXh|, after which we know whether λC = max0≤h≤n−1 |AhXh|.
Below, we assume max0≤h≤n−1 |AhXh| < λC (otherwise, we are done). Thus, we
only need to focus on finding λC from the set D2.

It has been shown in [23] that |D2| = O(n3). Of course, our goal is to avoid
an O(n3) time solution. To do so, first we determine a subset D′

2 of D2 such that
λC ∈ D′

2 but with |D′
2| = O(n2). Furthermore, we do not compute D′

2 explicitly.
Specifically, our idea is as follows. We show that the elements of D′

2 are the y-
coordinates of a subset of intersection points among a set F of O(n) functional curves
in the plane such that each curve is x-monotone and any two such curves intersect in
at most one point at which the two curves cross each other. (Such a set of curves is
sometimes referred to as pseudolines in the literature.) Let AF be the arrangement of
F and |AF | be the number of vertices of AF . Without computing AF explicitly, we
will generalize the techniques in [10] to compute the k-th highest vertex of AF for
any integer k with 1 ≤ k ≤ |AF | in O(n log2 n) time. Consequently, with Theorem 2,
the value λC can be computed in O(n log3 n) time. The details are given below.

3.2 Determining the Set D′
2

Let P be an arbitrary regular n-gon with its vertices P0,P1, . . . ,Pn−1 placed clock-
wise on ∂C. Suppose the distances of all the pairs between a sensor and a vertex of
P are d1 ≤ d2 ≤ · · · ≤ dn2 in sorted order. Let d0 = 0. Clearly, d0 < λC ≤ dn2 (the
case of λC = 0 is trivial). Hence, there exists an integer k with 0 ≤ k < n2 such that
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λC ∈ (dk, dk+1]. One can find dk and dk+1 by first computing all these n2 distances
explicitly and then utilizing our algorithm in Theorem 2 in a binary search process.
But that would take Ω(n2) time. In the following lemma, we give a faster procedure
without having to compute these n2 distances explicitly.

Lemma 3 The two distances dk and dk+1 can be obtained in O(n log3 n) time.

Proof We apply a technique, called binary search in sorted arrays [8], as follows.
Given M arrays Ai , 1 ≤ i ≤ M , each containing O(N) elements in sorted order, the
task is to find a certain element δ ∈ A = ⋃M

i=1 Ai . Further, assume that there is a
“black-box” decision procedure Π available, such that given any value a, Π reports
a ≤ δ or a > δ in O(T ) time. An algorithm is given in [8] to find the sought element
δ in A = ⋃M

i=1 Ai in O((M + T ) log(NM)) time. We use this technique to find dk

and dk+1, as follows.
Consider a sensor Ai . Let S(Ai) be the set of distances between Ai and all vertices

of P . In O(logn) time, we can implicitly partition S(Ai) into two sorted arrays in
the following way. By binary search, we can determine an index j such that Xi lies
on the arc of ∂C from Pj to Pj+1 clockwise (the indices are taken as module by n).
Recall that Xi is the point on ∂C closest to Ai . If a vertex of P is on Xi , then define
j to be the index of that vertex. Similarly, we can determine an index h such that Yi

(i.e., the farthest point on ∂C to Ai ) lies on the arc from Ph to Ph+1 clockwise. If a
vertex of P is on Yi , then define h to be the index of that vertex. Both j and h can
be determined in O(logn) time, after which we implicitly partition S(Ai) into two
sorted arrays: One array consists of all distances from Ai to Pj ,Pj−1, . . . ,Ph+1, and
the other consists of all distances from Ai to Pj+1,Pj+2, . . . ,Ph (again, all indices
are taken as module by n). Note that both these arrays are sorted increasingly and each
element in them can be obtained in O(1) time by using its index in the corresponding
array.

Thus, we obtain 2n sorted arrays (represented implicitly) for all n sensors in
O(n logn) time, and each array has no more than n elements. Therefore, by using
the technique of binary search in sorted arrays, with our algorithm in Theorem 2 as
the black-box decision procedure, both dk and dk+1 can be found in O(n log3 n) time.
The lemma thus follows. �

By applying Lemma 3, we have λC ∈ (dk, dk+1]. Below, for simplicity of discus-
sion, we assume λC �= dk+1. Thus λC ∈ (dk, dk+1). Since max0≤h≤n−1 |AhXh| < λC ,
we redefine dk := max{dk,max0≤h≤n−1 |AhXh|}. We still have λC ∈ (dk, dk+1). Let
D′

2 be the set of all critical equal distances in the range (dk, dk+1). Then λC ∈ D′
2.

We show below that |D′
2| = O(n2) and λC can be found in O(n log3 n) time without

computing D′
2 explicitly.

Suppose we rotate the regular n-gon P = (P0,P1, . . . ,Pn−1) on ∂C clockwise
by an arc distance 2π/n (this is the arc distance between any two adjacent vertices
of P ). Let Ai(Ph(t)) denote the distance function from a sensor Ai to a vertex Ph

of P with the time parameter t during the rotation. Clearly, the function Ai(Ph(t))

increases or decreases monotonically, unless the interval of ∂C in which Ph moves
contains the point Xi or Yi ; if that interval contains Xi or Yi , then we can further
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divide the interval into two sub-intervals at Xi or Yi , such that Ai(Ph(t)) is monotone
in each sub-interval. The functions Ai(Ph(t)), for all Ph’s of P , can thus be put
into two sets Si1 and Si2 such that all functions in Si1 monotonically increase and
all functions in Si2 monotonically decrease. Let m = |Si1|. Then m ≤ n. Denote by
di

1 < di
2 < · · · < di

m the sorted sequence of the initial values of the functions in Si1.
Also, let di

0 = 0 and di
m+1 = 2 (recall that the radius of C is 1). It is easy to see

that the range (dk, dk+1) obtained in Lemma 3 is contained in [di
j , d

i
j+1] for some

0 ≤ j ≤ m. The same discussion can be made for the distance functions in the set Si2
as well.

Since we rotate P by only an arc distance 2π/n, during the rotation of P , each
sensor Ai can have at most two distance functions (i.e., one decreasing and one
increasing) whose values may vary in the range (dk, dk+1). We can easily identify
these at most 2n distance functions for the n sensors in O(n logn) time. Denote by
F ′ the set of all such distance functions. Clearly, all critical equal distances in the
range (dk, dk+1) can be generated by the functions in F ′ during the rotation of P .
Because every such distance function either increases or decreases monotonically
during the rotation of P , each pair of one increasing function and one decreasing
function can generate at most one critical equal distance during the rotation. (Note
that by Lemma 2, a critical equal distance cannot be generated by two increasing
functions or two decreasing functions.) Since |F ′| ≤ 2n, the total number of critical
equal distances in (dk, dk+1) is bounded by O(n2), i.e., |D′

2| = O(n2). For conve-
nience of discussion, since we are concerned only with the critical equal distances in
(dk, dk+1), for each function in F ′, we restrict it to the range (dk, dk+1) only.

Let the time t be the x-coordinate and the function values be the y-coordinates
of the plane. Then each function in F ′ defines a curve segment that lies in the strip
of the plane between the two horizontal lines y = dk and y = dk+1. We refer to a
function in F ′ and its curve segment interchangeably, i.e., F ′ is also a set of curve
segments. Clearly, a critical equal distance generated by an increasing function and
a decreasing function is the y-coordinate of the intersection point of the two corre-
sponding curve segments. Note that every function in F ′ has a simple mathematical
description. Below, we simply assume that each function in F ′ is of O(1) complexity.
Thus, many operations on them can each be performed in O(1) time, e.g., computing
the intersection of a decreasing function and an increasing function.

The set D′
2 can be computed explicitly in O(n2) time, after which λC can be easily

found by binary search. Below, we develop a faster solution without computing D′
2

explicitly, by utilizing the property that each element of D′
2 is the y-coordinate of

the intersection point of a decreasing function and an increasing function in F ′ and
generalizing the techniques in [10].

3.3 Computing λC

A slope selection algorithm for a set of points in the plane was given in [10]. We will
extend this approach to solve our problem. The following lemma is needed.

Lemma 4 For any two increasing (resp., decreasing) functions in F ′, if the curve
segments defined by them are not identical to each other, then the two curve segments
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Fig. 2 Illustrating the proof of
Lemma 4: (a) Pa = Pb ;
(b) Pa �= Pb

intersect in at most one point and they cross each other at their intersection point (if
any).

Proof We only prove the decreasing case. The increasing case can be proved simi-
larly. Let Ai(Pa(t)) and Aj(Pb(t)) be two decreasing curves in F ′, where Ai(Pa(t))

(resp., Aj(Pb(t))) is the distance function between the sensor Ai (resp., Aj ) and the
vertex Pa (resp., Pb) of the regular n-gon P , and the two curve segments defined by
Ai(Pa(t)) and Aj(Pb(t)) are not the same. Since each sensor has at most one de-
creasing function in F ′, we have Ai �= Aj . We assume that during the (clockwise)
rotation of P , Ai(Pa(t)) = Aj(Pb(t)) at the moment t = t1 and t1 is the first such
moment. Below, we prove that Ai(Pa(t)) = Aj(Pb(t)) cannot happen again for any
t > t1 in the rotation. There are two cases: Pa = Pb and Pa �= Pb .

For any two points p and q , let l(p, q) denote the line passing through the two
points and pq denote the line segment with endpoints p and q whose length is |pq|.
Recall that o is the center of the circle C. Let Pa(t1) and Pb(t1) be the positions of
Pa and Pb at the moment t1, respectively.

• Pa = Pb . Clearly, Pa(t1) = Pb(t1). Let l be the perpendicular bisector of the line
segment AiAj . At the moment t1, since |AiPa(t1)| = |AjPa(t1)|, Pa(t1) is at one
of the two intersection points of l and ∂C. Further, since Ai(Pa(t)) is a decreasing
function, Pa(t1) must be on the right side of the line l(Ai, o) if we walk from Ai

to o (see Fig. 2(a)). Similarly, Pa(t1) must be on the right side of the line l(Aj , o)

(going Aj to o). Let z be the other intersection point of l and ∂C. It is easy to
see that z is on the left side of either the line l(Ai, o) or the line l(Aj , o). Note
that dk ≥ max0≤h≤n−1 |AhXh|. Thus, dk ≥ |AiXi | and dk ≥ |AjXj |. During the
rotation of P , since both Ai(Pa(t)) and Aj(Pb(t)) are always larger than dk , Pa(t)

cannot pass any of Xi and Xj , and thus Pa(t) cannot arrive to the position z during
the rotation. Hence, Ai(Pa(t)) = Aj(Pb(t)) cannot happen again after t1.

Further, recall that t1 is the first moment from the beginning of the rotation
with Ai(Pa(t)) = Aj(Pb(t)). Without loss of generality, we assume Ai(Pa(t)) <

Aj (Pb(t)) for any time t < t1 (as the example shown in Fig. 2(a)). It is easy to
see that Ai(Pa(t)) > Aj (Pb(t)) for any time t > t1, which implies that the two
functions cross each other at their intersection point.

• Pa �= Pb . At the moment t1, we have |AiPa(t1)| = |AjPb(t1)|. Assume to the
contrary that at some moment t2 > t1, we also have Ai(Pa(t2)) = Aj(Pb(t2)).
Suppose at the moment t2, Pa(t2) is at the position P ′

a and Pb(t2) is at the po-
sition P ′

b (see Fig. 2(b)). Then |AiP
′
a| = |AjP

′
b|. Since Pa and Pb are rotated
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simultaneously, the arc distance from Pa(t1) to P ′
a is equal to the arc distance

from Pb(t1) to P ′
b , and thus |Pa(t1)P

′
a| = |Pb(t1)P

′
b|. Consider the two triangles

�Pb(t1)AjP
′
b and �Pa(t1)AiP

′
a (shown with red solid segments in Fig. 2(b)).

Since |AiPa(t1)| = |AjPb(t1)|, |AiP
′
a | = |AjP

′
b|, and |Pa(t1)P

′
a | = |Pb(t1)P

′
b|,�Pb(t1)AjP

′
b is congruent to �Pa(t1)AiP

′
a . Thus, the two angles ∠AiPa(t1)P

′
a =

∠AjPb(t1)P
′
b . Further, it is easy to see ∠oPa(t1)P

′
a = ∠oPb(t1)P

′
b . Consequently,

we have ∠oPa(t1)Ai = ∠oPb(t1)Aj .
But, if ∠oPa(t1)Ai = ∠oPb(t1)Aj , then we can show that the two functions

Ai(Pa(t)) and Aj(Pb(t)) define exactly the same curve segment. The proof is
nothing but the inverse of the above argument. Specifically, consider any time mo-
ment t3 > t1 before the end of the rotation. Suppose at the moment t3, Pa is at
the position P ′′

a and Pb is at the position P ′′
b . Since ∠oPa(t1)Ai = ∠oPb(t1)Aj

and ∠oPa(t1)P
′′
a = ∠oPb(t1)P

′′
b , we have ∠AiPa(t1)P

′′
a = ∠AjPb(t1)P

′′
b . Fur-

ther, since |AiPa(t1)| = |AjPb(t1)| and |Pa(t1)P
′′
a | = |Pb(t1)P

′′
b |, �Pb(t1)AjP

′′
b is

congruent to �Pa(t1)AiP
′′
a . Thus, |AiP

′′
a | = |AjP

′′
b |, i.e., Ai(Pa(t)) = Aj(Pb(t))

at any time t = t3 > t1. Similarly, we can also show that at any time moment
t3 < t1, Ai(Pa(t3)) = Aj(Pb(t3)). Hence, Ai(Pa(t)) and Aj(Pb(t)) define ex-
actly the same curve segment. But this contradicts with the fact that the curve
segments defined by these two functions are not the same. This implies that
Ai(Pa(t)) = Aj(Pb(t)) cannot happen again at any moment t > t1.

Further, without loss of generality, we assume Ai(Pa(t)) < Aj (Pb(t)) for any
time t < t1 (as the example shown in Fig. 2(b)). We then show that Ai(Pa(t3)) >

Aj (Pb(t3)) for any time t3 > t1, which means that the two functions cross
each other at their intersection point. We briefly discuss this. Again, suppose at
the moment t3, Pa is at the position P ′′

a and Pb is at the position P ′′
b . First,

since Ai(Pa(t)) < Aj (Pb(t)) for any time t < t1, it must be |oAj | > |oAi |
(this can be proved by similar techniques as above and we omit the details).
Consider the two triangles �oAiPa(t1) and �oAjPb(t1) (at the moment t1).
Since |AiPa(t1)| = |AjPb(t1)|, |oPa(t1)| = |oPb(t1)|, and |oAj | > |oAi |, we have
∠oPb(t1)Aj > ∠oPa(t1)Ai , which further implies ∠AjPb(t1)P

′′
b < AiPa(t1)P

′′
a .

Consider the triangles �Pb(t1)AjP
′′
b and �Pa(t1)AiP

′′
a . Due to |AiPa(t1)| =

|AjPb(t1)|, |Pa(t1)P
′′
a | = |Pb(t1)P

′′
b |, and ∠AjPb(t1)P

′′
b < AiPa(t1)P

′′
a , it must be

|AjP
′′
b | < |AiP

′′
a |. In other words, Ai(Pa(t)) > Aj (Pb(t)) at any time t = t3 > t1.

The lemma thus follows. �

We further extend every curve segment in F ′ into an x-monotone curve, as fol-
lows. For each increasing (resp., decreasing) curve segment, we extend it by attach-
ing two half-lines with slope 1 (resp., −1) at the two endpoints of that curve segment,
respectively, such that the resulting new curve is still monotonically increasing (resp.,
decreasing). Denote the resulting new curve set by F . Obviously, an increasing curve
and a decreasing curve in F intersect once and they cross each other at their inter-
section point. For any two different increasing (resp., decreasing) curves in F , by
Lemma 4 and the way we extend the corresponding curve segments, they can in-
tersect in at most one point and cross each other at their intersection point (if any).
In other words, F can be viewed as a set of pseudolines. Let AF be the arrangement
of F . Observe that the elements in D′

2 are the y-coordinates of a subset of the vertices
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of AF . Since λC ∈ D′
2, λC is the y-coordinate of a vertex of AF . Denote by |AF | the

number of vertices in AF . Of course, we do not want to compute the vertices of AF

explicitly. By generalizing some techniques in [10], we have the following lemma.

Lemma 5 The value |AF | can be computed in O(n logn) time. Given an integer k

with 1 ≤ k ≤ |AF |, the k-th highest vertex of AF can be found in O(n log2 n) time.

Proof First of all, because every function in F ′ is of O(1) complexity, we can deter-
mine in O(1) time whether a curve segment in F ′ intersects a given horizontal line,
and if “yes”, then compute the intersection. Thus, for every curve in F , we can also
compute its intersection with any horizontal line in O(1) time. Let N = |F | ≤ 2n.

Recall that the curve segments in F ′ are all in the horizontal strip between y = dk

and y = dk+1. Thus, all vertices of AF above the horizontal line y = dk+1 are inter-
sections of the newly attached half-lines. We can easily determine the highest vertex
of AF in O(n logn) time, e.g., by using the approach in [10]. Let l be a horizon-
tal line higher than the highest vertex. Denote by f1, f2, . . . , fN the sequence of
the curves of F sorted in increasing order of the x-coordinates of their intersections
with l. Similarly, we can determine the lowest vertex of AF in O(n logn) time. Let
fπ(1), fπ(2), . . . , fπ(N) be the sequence of the curves of F sorted in increasing order
of the x-coordinates of their intersections with a horizontal line below the lowest ver-
tex of AF . Since the curves in F can be viewed as a set of pseudolines, as in [10],
the number of inversions in the permutation π , which can be computed in O(n logn)

time, is equal to |AF |. In summary, we can compute |AF | in O(n logn) time.
To compute the k-th highest vertex of AF , we choose to generalize the O(n log2 n)

time algorithm in [10]. Let L be a set of n lines in the plane and AL be the arrange-
ment of L. An O(n log2 n) time algorithm was given in [10] for computing the k-th
highest vertex of AL (1 ≤ k ≤ |AL|) in O(n log2 n) time based on parametric search
[9, 21]. The main property used in the algorithm [10] is the following one. Denote by
l1, l2, . . . , ln the sequence of lines in L sorted in increasing order of their intersections
with a horizontal line above the highest vertex of AL. Given any horizontal line l′,
let lπ(1), lπ(2), . . . , lπ(n) be the sequence of lines of L sorted in increasing order of
their intersections with l′. Then, the number of vertices of AL above l′ is equal to the
number of inversions in the permutation π .

In our problem, since any two curves in F can intersect each other in at most
one point and they cross each other at their intersection point, the above property
still holds for AF . Thus, the O(n log2 n) time algorithm in [10] is applicable to our
problem. Therefore, we can find the k-th highest vertex of AF in O(n log2 n) time,
and the lemma follows. �

A remark: Optimal O(n logn) time algorithms were also given [10, 16] for finding
the k-th highest vertex of AL. However, these algorithms are overly complicated.
Further, even they can be made work for our problem, it does not benefit our overall
solution for the optimization version because its total time is dominated by other
parts of the algorithm. Hence, the much simpler O(n log2 n) time solution (for finding
the k-th highest vertex of AF ) suffices for our purpose. In addition, the randomized
O(n logn) time algorithms [11, 20] may also be used to finding the k-th highest
vertex of AF .
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Recall that λC is the y-coordinate of a vertex of AF . Our algorithm for computing
λC then works as follows. First, compute |AF |. Next, find the (|AF |/2)-th highest
vertex of AF , and denote its y-coordinate by λm. Determine whether λC ≤ λm by the
algorithm in Theorem 2, after which one half of the vertices of AF can be pruned
away. We apply the above procedure recursively on the remaining vertices of AF ,
until λC is found. Since there are O(logn) recursive calls to this procedure, each of
which takes O(n log2 n), the total time for computing λC is O(n log3 n).

Theorem 3 The min-max optimization problem is solvable in O(n log3 n) time.

4 The Min-Sum Problem

In this section, we present our new algorithms for the min-sum problem. We show
that the boundary case of this problem is solvable in O(n2) time, which improves the
O(n4) time result in [23]. We also give an O(n2) time approximation algorithm with
approximation ratio 3 for the general min-sum problem, which improves the (1+π)-
approximation O(n2) time algorithm in [2]. Note that a PTAS algorithm was give in
[2], which has a substantially larger polynomial time bound.

4.1 The Boundary Case

For the boundary case, the O(n4) time algorithm in [23] uses the O(n3) time Hungar-
ian algorithm to compute a minimum weight perfect matching in a complete bipartite
graph. However, the graph for this case is very special in the sense that all its vertices
lie on the boundary of a circle. By using the result in [5], we can actually find a min-
imum weight perfect matching in such a graph in O(n) time. Therefore, if we follow
the algorithmic scheme in [23] but replace the Hungarian algorithm by the algorithm
in [5], the boundary case can be solved in O(n2) time. For completeness, we give the
details below.

Recall that in the boundary case of the min-sum problem, all sensors are on the
boundary ∂C of C. Let A0,A1, . . . ,An−1 denote the initial positions of the n sensors
on ∂C, and A′

0,A
′
1, . . . ,A

′
n−1 denote their goal positions on ∂C that form a regular

n-gon. Denote by �C the sum of the distances traveled by all n sensors in an optimal
solution of the min-sum problem, i.e., �C = min

∑n−1
i=0 |AiA

′
i |. Note that the moving

paths of the sensors are not restricted on the boundary of C. The following lemma
has been proved in [23].

Lemma 6 [23] There exists an optimal solution for the boundary case of the min-sum
problem with the following property: There exists a sensor Ai which does not move,
i.e., Ai = A′

i .

Based on Lemma 6, the boundary case can be solved as follows. For each sensor
Ai , 0 ≤ i ≤ n − 1, let P(Ai) be the regular n-gon on ∂C such that Ai is one of its
vertices. Denote by Hi the complete bipartite graph between the set of all sensors and
the set of all vertices of P(Ai) such that the weight of an edge connecting a sensor
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and a vertex of P(Ai) is defined as their Euclidean distance. We compute a minimum
weight perfect matching Mi in Hi , for each 0 ≤ i ≤ n − 1, and the one that gives
the minimum weight defines an optimal solution for our original problem. Here, the
weight of a perfect matching is the sum of all edge weights of the matching.

The running time of the above algorithm is dominated by the step of computing
the minimum weight perfect matchings in the graphs Hi . The algorithm in [23] uses
the O(n3) time Hungarian algorithm for computing such matchings in the graphs Hi .

Let H be a complete bipartite graph with two vertex sets of cardinalities n1 and
n2, respectively, such that all its vertices lie on the boundary of a circle and each edge
weight is the Euclidean distance between two such vertices (the edges are represented
implicitly). A maximum cardinality matching of H consists of min{n1, n2} edges. An
algorithm was given in [5] for computing a minimum weight maximum cardinality
matching in H in O(n1 + n2) time (i.e., the total sum of edge weights in the output
maximum cardinality matching is as small as possible). Note that the graph H has
the quasi-convex property [5].

Since in our algorithm, all vertices of every complete bipartite graph Hi lie on
∂C, the linear time algorithm in [5] can be applied to compute a minimum weight
maximum cardinality matching of Hi in O(n) time, for 0 ≤ i ≤ n − 1. (Note that a
maximum cardinality matching in the graph Hi is a perfect matching, and vice versa.)
Consequently, the total running time of our algorithm is O(n2).

Theorem 4 The boundary case of the min-sum problem can be solved in O(n2) time.

4.2 The General Case

We give our 3-approximation O(n2) time algorithm for the general min-sum prob-
lem.

Let A0, . . . ,An−1 be the sensors in C. Our approximation algorithm works as
follows. (1) For each sensor Ai , i = 0, . . . , n − 1, compute the point Xi on ∂C that is
closest to Ai . (2) By using the algorithm in Theorem 4, solve the following min-sum
boundary case problem: Viewing the n points X0,X1, . . . ,Xn−1 as pseudo-sensors
(which all lie on ∂C), find n points on ∂C as the goal positions for the pseudo-sensors
such that the sum of the distances traveled by all n pseudo-sensors is minimized. Let
X′

i be the goal position for each Xi (0 ≤ i ≤ n − 1) in the optimal solution thus
obtained. We then let X′

i be the goal position for each sensor Ai , 0 ≤ i ≤ n − 1, for
our original min-sum problem. This completes the description of our approximation
algorithm.

Clearly, with Theorem 4, the time complexity of the above approximation algo-
rithm is O(n2). The lemma below shows that the approximation ratio of this algo-
rithm is 3.

Lemma 7 The approximation ratio of our approximation algorithm is 3.

Proof Let � = ∑n−1
i=0 |AiX

′
i |. Let A∗

0,A
∗
1, . . . ,A

∗
n−1 be the goal positions of all sen-

sors (i.e., A∗
i is the goal position for each sensor Ai , 0 ≤ i ≤ n − 1) in an optimal

solution for the min-sum problem. Let �C = ∑n−1
i=0 |AiA

∗
i |. Our task is to prove

� ≤ 3 · �C .
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First,
∑n−1

i=0 |XiX
′
i | ≤ ∑n−1

i=0 |XiA
∗
i |, and |AiXi | ≤ |AiA

∗
i | holds for each 0 ≤ i ≤

n − 1. Then,

� =
n−1∑

i=0

|AiX
′
i | ≤

n−1∑

i=0

(|AiXi | + |XiX
′
i |
)

(triangle inequality)

=
n−1∑

i=0

|AiXi | +
n−1∑

i=0

|XiX
′
i | ≤

n−1∑

i=0

|AiXi | +
n−1∑

i=0

|XiA
∗
i |

≤ 2 ·
n−1∑

i=0

|AiXi | +
n−1∑

i=0

|AiA
∗
i | (triangle inequality)

≤ 3 ·
n−1∑

i=0

|AiA
∗
i | = 3 · �C.

The lemma thus follows. �

Hence, we conclude with the following result.

Theorem 5 There exists an O(n2) time approximation algorithm for the min-sum
problem with approximation ratio 3.

5 Conclusions

In this paper, we present new algorithms for the min-max and min-sum versions for
moving points to cover circular regions. Our results significantly improve the previ-
ous work. We also develop an algorithm for dynamically maintaining the maximum
matching of a circular convex bipartite graph, which is of independent interest. One
open problem is whether the general min-sum version is solvable in polynomial time.
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