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Introduction of 
RGB-D Image Segmentation
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RGB-D Image Segmentation
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 Image segmentation plays a foundational role in various 
applications of RGB-D images

refocusingsalient object detection
object retrieval retargeting
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Why RGB-D Image Segmentation 
is Different?
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 Depth brings more information in discriminating objects from 
background, but it has different characteristics to color

How to measure color and depth similarities in a combined 
framework but with different strategy?

 Depth causes the extra computational cost

How to reduce computational cost in RGB-D segmentation , 
especially in the situations with high efficiency requirements?
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Our Work
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 Propose a novel RGB-D image segmentation method

– Utilize Euclidean distance for color similarity measurement and 
geodesic distance for depth similarity measurement, and combine 
them in graph cut method

– Hierarchically segment RGB-D image on image pyramid by only 
processing the boundary regions based on the initial segmentation 
result
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HGG Segmentation Method:
Hierarchical Graph Cut with Geodesic 
Distance
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Overview
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GG Segmentation
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 Preliminary：Graph Cut
– Objective function

– Procedure
• Generate the terminal nodes of 

foreground and background
• Measure the similarity of each pixel 

to source node S and sink node T
• Calculate the gradients between 

adjacent pixels
• Obtain min-cut by optimization

T

S

𝐸 𝐿 = 𝜆𝑅 𝐿 + 𝐵 𝐿

region boundary
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Color and Depth Similarity
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 Color similarity
– Euclidean distance of color space

 Depth similarity
– Geodesic distance

ΔDAC ΔDBC

Depth difference

Geodesic distance
ΔDACAC ΔDΔDΔDΔDΔDΔDΔDBC

A

C

BBBB

ΔDBC = ΔDAC

G(A, C) ≠ G(B, C)
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Regional and Boundary Penalty
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𝐸 𝐿 = 𝜆𝑅 𝐿 + 𝐵 𝐿

color color

depth depth
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Observation
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 Computational cost increases rapidly when image resolution 
increases

 The segmentation results on different image scales have 
similar appearance, and difference only occurs on boundary 
precision

coarse

fine
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Hierarchical Segmentation
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 Construct a scale space {I0, I1, . . . , In} for each RGB-D image I

Pyramid of  RGB-D 
channels

RGB-D image

segmentation 
result

construction 
area of graph

G
G

 segm
entation

𝑛 = log𝜌
𝜑

𝐼
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Experimental Results
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Dataset and Experimental Settings
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 Dataset
– NJU400: 400 stereo image pairs
– RGBD Benchmark: 1,000 RGB-D images

 Platform
– PC with a four-core 3.40 GHz CPU and 8GB memory
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Methods for Comparison
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 GC: Graph Cut [ICCV, 2001]
 GB: Grabcut [TOG, 2004]
 MGC: Hierarchical Graph Cut [ICCV, 2005]
 GDD: Only depth with geodesic distance
 RGBD: Using depth as the fourth channel [SSVM, 2015]
 GG: Our method without hierarchical strategy 
 HGG: Our method with hierarchical strategy
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Comparison
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 Effectiveness comparison
– Criteria: Precision, recall, F-measure (beta = 0.3)

 Efficiency comparison
– Execute each method 10 times to obtain its average running 

time of segmentation

GC GB MGC GDD RGBD GG HGG

precision 0.7163 0.9361 0.7575 0.8542 0.8419 0.9272 0.8946

recall 0.7254 0.5558 0.7360 0.8921 0.7796 0.9032 0.9287

Fβ 0.7184 0.8084 0.7524 0.8627 0.8267 0.9215 0.9022

GC GB MGC GDD RGBD GG HGG

Time(s) 0.4340 5.6015 0.0828 32.0488 0.3423 32.2416 0.1131
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Examples of Comparison
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Conclusion
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Conclusion
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 Contribution
– Propose a novel interactive segmentation method for RGB-D images
– Combine different similarity measurement strategies on color and 

depth to improve segmentation effectiveness
– Utilize hierarchical strategy to improve segmentation efficiency

 Future work
– Further explore the potential of depth for RGB-D image segmentation
– Apply the proposed method in various applications of RGB-D images




