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Abstract—Utilizing object proposals as a preprocessing pro-
cedure has been shown its significance in many multimedia
computing tasks. Most state-of-the-art methods devoted to finding
a generic objectness measure for rating the possibilities of the
initial sliding windows with or without objects. In fact, the
object criteria vary from one objectness measure to another,
which leads to the definite bottleneck for the single method. By
observing the performance of the state-of-the-art in the large
dataset, an integrated objectness model is proposed in this paper
by accumulating the advantages from selected state-of-the-art
techniques. First, the initial bounding boxes are generated by
the strategy as same as the method with the highest object
detection rate and slowest intersection over union drop. Second,
these candidate boxes are re-scored based on each method’s
objectness system. Then, a score feature is obtained for each
bounding box. A support vector machines (SVM) is utilized to
train a general model on the training set constructed from a
series of score vectors and the probabilistic scores for the testing
boxes are predicted according to the learned model. The final
proposals are ranked on account of the predicted scores. The
evaluation on the challenging PASCAL VOC 2007 dataset shows
that the proposed method has dominant concentration with better
performance compared to the single state-of-the-art method.

I. INTRODUCTION

Enormous multimedia computing tasks, such as face recog-
nition [1], [2], object detection [3], [4], start from generating
millions of sliding windows. In a word, the sliding window
approaches have dominated many multimedia and vision tasks
for several years. However, some researches [5], [6] indicated
that using a small number of object bounding boxes may
somewhat improve detection accuracy because spurious false
positives are reduced as much as possible. The technique of
producing a small set of candidate windows that probably
contain objects, called object proposals [7], [8], [9], [10],
avoids handling with tremendous amount of bounding boxes
over the traditional sliding window object detection paradig-
m. Generally, object proposal methods can be divided into
segment-based proposals [11], [12] and the window-based
proposals [13], [14], mainly according to the returned proposal
types. However, due to the computational complexity, it is
unpopular for the segment-based proposal methods serving
as a pretreatment process in most detection tasks. Therefore,
we mainly focus on generating bounding box proposals for
their applicability, efficiency and convenience as a pre-filtering
process for reducing the number of initial sliding windows.

Many existing methods, such as Objectness [5], Rahtu [13],
Bing [15] and Edgebox [16] work on assigning a probabilistic

E
d
g
eb

o
x
7
0

O
b
je

ct
n

es
s

R
ah

tu
B

in
g

C
o

lo
r 

Im
ag

e
S

ta
te

-o
f-

th
e-

ar
t 

M
et

h
o

d

Fig. 1. The intrinsic deficiency existing in the proposal results by making a
comprehensive overview of the proposals from single methods, Objectness [5],
Rahtu [13], Bing [15] and Edgebox70 [16]. The solid rectangles indicate the
annotated ground truth and the dashed rectangles illustrate the proposal boxes
by each method. Red means the omitted bounding boxes and Green is the hit
proposals. The light black lines mark the examples of proposal inconsistency
among the different methods.

objectness score to every sliding window. The key procedure
of getting the objectness is designing a specific mechanism
for combining one or more low-level features, such as salien-
cy, color contrast, superpixels, image edges and gradients.
Though a few encouraging achievements have been achieved,
it is inevitable to improperly discriminate real objects in
complicated scenes. It is because that objects under complex
scenes always can not be distinguished far from being enough
based on few image cues. Fig. 1 shows this kind of intrinsic
deficiency, which we called inconsistency, caused by different
objectness emphases. The light black lines mark the example
of inconsistency existing in the proposal results generated
by different methods. It is obviously shown that relying on
different combinations of image features, some methods may
lose efficiency upon objects with unclear color contrast or
indistinct superpixels segments, while other methods may not
tackle the situation with poor edges or gradients. Fig. 1 ex-
plicitly indicates that returning the same number of proposals
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Fig. 2. An overview of the proposed method. Given an input image, the proposal pool is firstly built by candidate boxes generation. Then the score feature
is extracted by considering the selected state-of-the-art methods. Finally, the output proposals are produced by ranking as the new objectness obtained by the
learnt SVM model.

generated by different methods may cover distinct annotated
bounding boxes, i.e., there are poor consistencies in proposals
among different methods, which partly degrade the credibility
of each method. This issue is mainly caused by the distinct
score systems designed by different methods. Due to the
scoring rules are based on different low-level features and each
feature has its scope application, the proposal inconsistency is
distinctly inevitable if only one proposal method is utilized.

In order to eliminate the inconsistency among different
proposal methods as much as possible and keep the computing
efficiency, an integrated model based on the support vector
machines (SVM) is learned according to the score vectors
constructed from the state-of-the-art techniques, which em-
braces general features contributing to generating favorable
proposal results. The overview of the proposed approach is
presented in Fig. 2. First, the initial bounding boxes are
generated by the strategy with the method of comparable
higher detection rate (DR) and slower intersection over union
(IoU) drop. Second, the initial bounding boxes are re-scored
by the selected state-of-the-art methods. Then the score vectors
are constructed for each box and randomly selected as training
set to learn a SVM model. The new objectness scores are
predicted by the probabilistic output of the learnt SVM model.
Finally, the proposals generated by the proposed method are
ranked by the integrated scores. Experiments are performed on
the challenging PASCAL VOC 2007 dataset [17], including
training set, testing set and validation set. Compared to the
state-of-the-arts, the proposed method shows the improved
proposal performance while with the comparable efficiency.

The contribution of this paper can be briefly stated as
follows. First, a straightforward framework is proposed aiming
at taking advantages of the state-of-the-art proposal methods
with little effort. Second, the score vectors are constructed to
improve the detection rate on the specific number of proposals
in an inexpensive way. Third, a simple machine learning
method is adopted to learn a general integrated model to make
best use of the state-of-the-arts and form a better and efficient
paradigm for generating object proposals.

II. RELATED WORK

In this section, a brief summary of the existing proposal
methods and the works related to the proposed framework
are provided. More details about the proposal methods can be
found in the recent survey papers [18].

Object proposals are firstly proposed by Alexe et al. in [5],
aiming at distinguishing windows containing an object from
background windows and reducing the number of true negative
sliding windows. Due to the applicability and efficiency in
object detection [19], it has attracted much more attention
from a growing group of researchers. Alexe et al. [6] presented
a generic objectness measure to quantify how likely it is
for an image window to contain an object of any class.
They explored the image cues of multi-scale saliency, color
contrast, edge density and superpixels straddling and found
that the combinations of multi-scale saliency, color contrast
and superpixels straddling achieve the best performance in
their scoring system. However, it would fail to localize objects
in the images with multiple salient objects or without clear
salient objects. Rahtu et al. [13] proposed a method for
generating the candidate windows and built an effective linear
feature combination to score the windows. The features that
they used include superpixel boundary integral, boundary edge
distribution and window symmetry, i.e. gradients, as well as
the superpixel straddling feature from [5]. This method gives
up considering saliency and color contrast while achieving
an improved results compared to [5]. Because of relying too
much on the superpixels segmentation, it would be caught into
confusion when facing the situation that there are many super-
pixels from different objects in the bounding box. [20], [21]
and [14] separately adopted the gradient feature, saliency cues
and superpixels straddling as same as [5] which achieve good
performance in their application scopes. But mainly relying
on the single image cue has not eliminated the deficiencies
in the previous methods. Cheng et al. [15] raised a very fast
framework to filter the bounding boxes at 300fps by merely
relying on the norm of gradients collected from different image
scales. This work is motivated by the fact that objects are



stand-alone things with well-defined closed boundaries and
centers [22]. Though efficient enough, the detection rate of this
method has a significant drop when increasing the IoU overlap
with the annotated bounding boxes. Zitnick et al. [16] found
that only depending on the image edge feature can improve the
detection rate compared to the state-of-the-arts. This method
leverages both accuracy and efficiency very well and has the
best performance even over the challenging overlap among
the window-based proposals. However, this method would be
easily misled when dealing with the bounding boxes with
edges from multiple objects. There are many other segment-
based proposals, such as [23], [11], [24] and [25], they adopted
much more expensive features such as bag-of-words [26],
SIFT descriptors. They also include some low-level features
of edge and color, size, location, shape, contours with more
complex procedures to achieve the accurate segment results.
Among the segment-based methods, [25] can get the best
detection rate in comparison with the other methods while
need more computing time. In general, due to the complex
of segment-based proposals and its less applicability as a
pre-processing procedure, only window-based methods are
explored in this paper to further improve the detection rate
in an inexpensive way.

Besides, there are some other works trying to improve the
detection rate among the current state-of-the-arts. Chen et
al. [27] utilized superpixels straddling to refine the proposals
by performing multi-thresholding expansion for each bounding
box. By taking advantages of boundary-preserving superpixels,
this method can be integrated into the existing models to
generate object proposals with both high diversity and accurate
localization. Therefore, the detection rate of this method keeps
a slow drop when the overlap is increased. While the proposed
method in this paper manages to improve the detection rate by
re-scoring with an integrated model and the overall framework
is easier to be reused. Pont-Tuset et al. [28] combined the
proposals from different techniques to benefit the performance
of the existing object proposals. In fact, they focused much
about on exploring the performance of segment-based object
proposals on the dataset of Microsoft Common Objects in
Context (COCO) [29]. On the contrary, the proposed method
mainly devotes to tackling the inconsistency among the current
window-based object proposals and improving the detection
rate in an acceptable IoU value.

III. SVM-BASED INTEGRATED MODEL

To address the solutions to the existing problems, Fig. 2
demonstrates the basic idea of the proposed method as well
as the main procedures for generating the object proposals.
It is obviously shown that the proposed approach aims at
making best use of the current methods to further improve
the detection rate with much higher IoU.

A. Candidate Boxes Generation

The intuitive intention of the proposed approach lies in
yielding the improved detection rate with an applicable IoU by
making best use of the state-of-the-arts as much as possible.

Inspired by the concept of enhancing the advantages and
avoiding the disadvantages, a comprehensive consideration
about the existing works is made to find a better com-
plementary mechanism. For most of the proposal methods
are evaluated in the PSCAL VOC 2007 dataset, a thorough
comparison should be performed on this large dataset with
9963 images to determine an efficient strategy for producing
the initial windows. In fact, densely sampled windows could
also be used as the initial windows, but reusing a more efficient
strategy would further increase the computing efficiency. Three
popular metrics which are introduced in Sec. IV, need to
be calculated according to the proposal results on the entire
dataset. Fig. 3 depicts the general comparisons among the
four selected methods, showing that the Edgebox70 proposed
in [16] has the acceptable detection rate even in a higher
IoU and the DR drops slowly along with the change of IoU.
For further improving the computing efficiency, N I initial
windows for image I generated by [16] are used as the
candidate windows for it has achieved an applicable result
leveraging both accuracy and efficiency. And the scores of the
returned windows are calculated by Eq. (1).

hb =

∑
i(1−max

T

|T |−1∏
j

a(tj , tj+1))mi

2(bw + bh)κ
, (1)

where |T | is the length of an ordered path T of edge groups.
a(tj , tj+1) is the affinity between the edge groups tj and tj+1.
mi is the sum of the magnitudes for all edges in the edge
group. The detailed description about this scoring system is
introduced in [16]. Although this method has to score many
sliding windows, the computing time is very efficient to only
half second for the adoption of using a structured edge detector
proposed in [30] and reduced runtime by [31].

B. Score Features Extraction

After taking the image cues of some existing window-based
proposal methods into consideration, it is found that most
proposal methods prefer to use low level features. We roughly
classified these cues into image saliency, color contrast, super-
pixel, image edge and gradient. And the usage of these cues
is ticked as shown in Table III-B, which contributes to give
a general impression of the usage distribution of each cue on
different method. Tabulating each image cue by adding the
ticks for every method visually shows that the combinations
of the methods proposed in [16], [6], [13] and [15] contains
the utmost image cues adopted by the most existing work.
We assume that by combining the popular and efficient image
cues together with a machine learning model, the inconsistency
can be minimized by the feature complementary mechanism.
Fortunately, these methods have published their source codes
for further research study. Therefore, it is convenient to reuse
the score system of each method.

We adopt the abbreviations of Edgebox [16], Objectness [6],
Rahtu [13] and Bing [15] for these methods in this paper. An
effective solution to build a relationship among the state-of-
the-arts is constructing score features f I

b for each bounding



Fig. 3. The performance of the state-of-the-art methods on the entire PASCAL VOC 2007 dataset with 9963 images.

box b in an image I , defined in Eq. (2), where si indicates the
score calculated by the evaluation systems designed by each
method and n is the number of methods being used. Let s1
represent the score calculated by Edgebox, s2 by Objectness,
s3 by Rahtu and s4 by Bing. For one candidate bounding box
b in an image I , s1 = hb,s2 = p(obj|C), s3 = p(y, Y ), s4 =
ol. The detailed calculations are shown as Eq. (1), Eq. (3),
Eq. (4) and Eq. (8). For further exploring, one could refer to
the corresponding works.

f I
b = {s1, s2, ..., si, ..., sn}, (2)

p(obj|C) =
p(obj)

cue∈C∏
p(cue|obj)∑

c p(c)
cue∈C∏

p(cue|c)
, (3)

where c ∈ {obj, bg}, cue ∈ C and C = {C|MS,CC, SS}.

p(y, Y ) = F (w1BI(y), w2BE(y, Y ), w3WS(y, Y )), (4)

where y is one of the bounding boxes in the set of windows Y .
F (·) represents a learnt function for the feature combinations
and the weight vector w is learnt by Eq. (5). BI(y), BE(y, Y )
and WS(y, Y ) separately represents superpixel boundary in-
tegral, boundary edge distribution and window symmetry, i.e.,
image gradients, defined in [13].

min
w,ζ

1

2
∥ w ∥2 +

∑
i

ζi, (5)

s.t. < w, ϕij > − < w, ϕik > ≥ ∆ik −∆ij − ζijk, (6)

ζijk ≥ 0 ∀i, j, k ζi =
∑
j,k

ζij,k, (7)

where ζi is a slack variable of image i, ϕ is the feature vector
constructed by BI(·), BE(·) and WS(·). ∆ij and ∆ik are the
corresponding loss of the jth bounding box and the kth box
to the ith window. The main schemes for getting the score
calculated by [13] are listed from Eq. (4) to Eq. (7). Refer
to [13] for more details.

ol = viq· < w, gl > +tiq, (8)

where viq and tiq separately denote the coefficient and the bias
terms for each quantized size q of image i. w ∈ R64 represents

TABLE I
THE IMAGE CUE DISTRIBUTION FOR SOME WINDOW-BASED PROPOSALS

XXXXXXXXMethod
Feature saliency color superpixel edge gradient

Objectness [6]
√ √ √

Rahtu [13]
√ √ √

Feng [21]
√

Zhang [20]
√

RandSeeds [14]
√

Bing [15]
√

Edgebox [16]
√

the learnt linear model from different quantized window sizes
of each image. And gl is the learnt general objectness measure,
NG feature, introduced in [15]. By inputting each bounding
box b ∈ N I to different scoring system extracted from the
current works, a score feature f I

b for image I of one bounding
box b is constructed for the following SVM-based learning.

C. SVM Model Construction

SVM is a widely used technique in solving many multime-
dia computing tasks for its convenience and efficiency. Due to
the distribution of the score feature constructed in this paper is
unknown, we attempt to use different kernel function to learn
a best model. For the introducing of Lagrange multipliers, a
SVM optimization problem can be described as follows:

min
α

1

2

NW∑
i=1

NW∑
j=1

αiαjyiyjK(fi · fj)−
NW∑
i=1

αi, (9)

s.t.

NW∑
i=1

yiα = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., NW , (10)

where NW is the selected number of samples from the N I

initial windows. K(fi · fj) is the kernel function, mainly
including linear, polynomial, radial basis function (RBF) and
sigmoid. Both fi and fj are the score vectors which are
introduced in Sec. III-B for the bounding boxes. And C is
a regulation parameter. The Lagrange multiplier is denoted as
αi, therefore the weight vector of the learnt model can be
expressed as:

w =

NW∑
i=1

αiyifi. (11)



For there are many excellent SVM tools, we adopt the
implementation of LIBSVM [32] to learn the scoring model.
For getting the continuous scores, the model is trained by the
probability estimates, i.e., we adopt the SVM as a classification
model while utilizing its probability output to assign a new
score for a bounding box. We construct the training set firstly
by calculating the VOC overlap score for every bounding box
with Eq. (12) and each bounding box is labelled by Eq. (13).

siou =
area(bi ∩ bgt)

area(bi ∪ bgt)
, (12)

l(i) =

{
1, siou > τ
0, otherwise.

(13)

Then the testing data matrix F = [f1, ..., fn] ∈ Rd×n with
the corresponding label vector L = [l1, ..., ln] ∈ R1×n is built
by randomly extracting m (m ≪ n) boxes from the initial n
windows for each image in the test set, including both positive
and negative boxes which are scored by different methods
presented in the previous section.

D. Predicted Score based Re-ranking

The objective of the proposed method is to learn a generic
model contributing to grade the bounding box by taking
the advanced state-of-the-art into consideration. In fact, the
scoring model learned in Sec. III-C can be treated as a general
objectness measure to assign a score for one bounding box. In
the prediction stage, the first step for image object proposals
is generating a series of bounding boxes by the initial window
generation method. Then each bounding boxes are scored
based on the different methods for acquiring a score feature.
Let yb denote y conditional on the event that b has the high
possibility of being an object, so the classification setting can
be simply described as follows:

yb =

{
1, with probability pb
0, with probability 1− pb,

(14)

where pb indicates the probability of being an object for a
bounding box and is used as the final score for each box.

For the training stage can be finished during the offline, the
main computing time for the proposed method rests in the
calculation for extracting the score features. In fact, the time
consuming of the original methods is all within several seconds
including the process of generating millions of initial windows.
In the scope of the proposed method, we firstly adopt the
same tactics for generating the initial windows which only
takes around 1s. For acquiring the score features, only limited
bounding boxes need to be input into different score system
to get the corresponding scores. This procedure can be easily
performed in parallel. Even without the parallel, the computing
efficiency can also achieve several seconds. The final proce-
dure of the proposed framework is ranking the proposals based
on the new score pb. It is noted that the proposed framework
can be treated as a new scheme making best use of the state-of-
the-art with little efforts but with comparable improvements.
The integration of the existing work is definitely not limited

to four, more diverse combinations can be tried to get further
improved performance.

IV. EXPERIMENTS

A. Experimental Settings

The proposed approach is evaluated on the PSCAL VOC
2007 dataset [33] which contains 9963 images from 20 cate-
gory, 2501 for training data, 4952 for testing data and 2510
for validation data. Unlike the tag annotations [34], the ground
truth is annotated by labelling bounding boxes around the
object-like parts. All experimental results are separately report-
ed on the test set and the validation set for cross validation.
The parameters are set as {N,n, τ,m} = {104, 4, 0.7, 20},
which means that only N = 104 initial candidate windows
are generated, the score features are constructed from n = 4
methods, the labeled data are constructed based on τ = 0.7
and m = 20 bounding boxes of each image are selected as the
training set. Besides, all the experiments are conducted on a
machine with a 3.4GHz Intel i7-4770 CPU and 16GB memory.
By taking the comprehensiveness into account, four state-of-
the-art methods are compared with the proposed approach,
including OBJECTNESS [5], RAHTU [13], BING [15] and
EDGEBOX70 [16]. After multiple comparisons, we find that
the linear kernel with default parameters got the best results.
We also treat the average DR of all the methods as a baseline in
comparison. All the scores are calculated on the similar initial
windows generated by the introduced method in Sec. III-A.

The authors’ public source codes with optimized parameters
in their papers are adopted in all the experiments for efficiency
and fairness. Three popular evaluation metrics are utilized
to quantitatively evaluate the performance of the proposed
method. They are the detection rate (DR) with given number
of windows (#WIN) (DR-#WIN), DR with variational IoU
threshold covered by ground truth annotations for a fixed
number of proposals (DR-IOU), and the average detection rate
(ADR), i.e., average recall (AR) [18] between 0.5 and 1 by
averaging over the overlaps of the images’ annotations with
the closet matched proposals (ADR-#WIN). Let #GT represent
the number of the annotative ground truth for one image, o
be the IoU overlap, the DR-#WIN and ADR are separately
calculated according to Eq. (15) and Eq. (16).

DR-#WIN =
#(o > ϵ)@#WIN

#GT
ϵ ∈ {x|0.5 ≤ x ≤ 1}, (15)

ADR = 2

∫ 1

0.5

DR(o)do, (16)

where DR-#WIN is curved by a fixed IoU threshold ϵ between
0.5 and 1 with incremental number of windows, while DR-
IOU is plotted based on the different IoU between 0.5 and 1
with a fixed number of windows. And the ADR is calculated
according to the different DR on distinct IoU with changing
number of proposals.



(a) Color image       (b) Ground truth         (c) Edgebox70          (d) Objectness (e) Rahtu (f) Bing                     (g) Ours

Fig. 4. The improvement of the proposed approach (g) on the inconsistency among the different methods (c-f). (a) is the original color images and (b) shows
the annotated ground truth bounding boxes of the dataset.

B. Comparison with the State-of-the-Art

Generally, each method has distinct procedures to generate
limited proposals. The key idea of the proposed method lies in
utilizing these unique score systems to assign a score vector for
the same bounding box so that the new objectness score can
be predicted based on the simple machine learning method.
The most noteworthy is that the score features are constructed
based on different objectness system for the same candidate
windows. But the problem is that some original methods
only selectively calculate a part of the sliding windows and
generate a few proposals. Hence, some modifications should
be executed on the original methods. Therefore, it is necessary
to evaluate the proposal performance generated by the original
methods and the single performance on the same initial bound-
ing boxes. Meanwhile, the average performance of the four
popular state-of-the-art methods is calculated as the baseline
to show the improvement of the proposed method.

Qualitative evaluation Fig. 4 shows that the improvement
of the proposed approach compared with the four state-of-
the-art methods by utilizing the same initial bounding boxes.
The red solid rectangles represent the annotated ground truth
which is omitted by the top 100 proposals. Fig. 4 (g) shows
the hit proposals of our method. It is obviously shown that by
integrating the advantages of the current state-of-the-art, the
new proposals can benefit from the distinct objectness score.
For example, there are three annotations of the image in the
first row, but every the single method fails to cover all the
annotations. While due to the usage of complementarity effect,
the proposed method can cover all the ground truth with only
100 proposals. The other images can also express this kind of

improvement clearly.
Quantitative evaluation The quantitative performances in

both test set and validation set in PASCAL VOC dataset are
illustrated in the first and second row of Fig. 5 respectively.
The first column depicts the DR-#WIN, the second column
shows the DR-IOU and the third column is the ADR-#WIN.
It is clearly shown that the proposed approach outperforms
the original state-of-the-art methods, which are shown as long
dashed lines. According to the learnt objectness model, the
true positive proposals can get higher scores than from relying
on single score system, shown as the solid lines. The DR-
#WIN curve is drawn based on the 0.8 IoU, illustrating that
the proposed method improves the detection rate compared to
the state-of-the-art even in such a challenging overlap value. In
fact, the proposed method can achieve good performance under
the popular IoU between 0.5 and 1, such as 100 proposals
shown in the second column of Fig. 5. It is worth noted that for
benefiting from the state-of-the-art methods, we preserve the
limited bounding boxes generated by the method with highest
DR and slowest DR-IOU drop and re-score these bounding
boxes according to the unique scoring system presented by the
different methods. Considering both accuracy and efficiency,
only 104 windows are generated as the initial candidate boxes
in the whole experiments, which is far less than the number
of initial windows compared to the state-of-the-art methods.
Nonetheless, the proposed integrated model has achieved the
improved detection rate, and not only outperforms the original
methods, but also being superior to the methods with single
score system. The average detection rate also presents the
superiority of the proposed approach under the changing IoU
and number of proposals. The integrated model is learnt in



Fig. 5. The comparisons of the detection rate on the PASCAL VOC 2007 test set (the first row) and validation set (the second row).

the training set, while performs better both in the test set
and validation set. Therefore, the proposed method has a
good generalization ability. And the computing efficiency for
predicting an objectness score for a bounding box is obviously
efficient. Meanwhile, in view of the most research results in
the field of object detection, 0.8 overlap is highly competent
for fulfilling most tasks.

C. Discussion

More sample results are presented in Fig. 6. It could be
shown that the proposed method could cover much more
ground truth with only top 100 proposals on highly overlap
with the annotated bounding boxes. And Fig. 7 are some
results showing that the proposed approach may also omit
some ground truth windows. Such failures can be explained
in three aspects. First, some annotations are too small or far
away from the salient objects. And some annotations contain
the incomplete objects. These factors make it hard to localize
every kinds of annotations accurately. Second, the proposed
model are built on making best use of the state-of-the-art
methods, it would lose efficiency when most of the methods
could not present good objectness. Third, we only adopt 104

windows as the initial candidate boxes, which is much less
than the number of sliding windows. Hence, the diversity of
the windows may be degraded in some way. But the little loose
in the diversity can bring highly efficiency.

V. CONCLUSION

In this paper, a straightforward but ingenious framework
is proposed for object proposals aiming at taking advantages
of the state-of-the-arts. By utilizing an SVM learnt integrated

Fig. 7. The demonstration of omitted proposals for the proposed method.

model, the popular rich features are interacted with each
other to form a complementary function for object proposals,
which is helpful to improve the detection rate while with
little efforts. Furthermore, the proposed method could be
effortlessly extended by making the different combinations
among the good object proposal methods. Experiments show
that the proposed framework is propitious to enhance the
advantages of the state-of-the-arts and minimize the disad-
vantages by adopting a complementarity effect superiority.
Acknowledgements. This work is supported by the National
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Fig. 6. Illustration of the ground truth (the solid and green rectangle) and the true positive object proposals (the dashed and green rectangle) generated by
the proposed integrated model for the PASCAL VOC 2007 test and validation images.
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