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Abstract. The invention of light field camera provides an approach of
extracting depth from a collection of refocused photos. However, current
depth from focus methods are suffering from the problem of inaccuracy,
especially in the regions of object boundaries. In this paper, we propose
a novel method to extract an accurate depth map from several refocused
images. We first render a collection of images by uniformly changing
the focal length. Then we deduce a rough depth map according to the
amount of blur, which is measured by a multi-scale gradient operator. Fi-
nally, we apply a weighted median filter for refinement, which suppresses
depth noise and supplies a well recovery of object boundaries and fine
structures. The experimental results show that our method outperforms
the built-in method from Lytro light field camera.
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1 Introduction

Depth from focus aims to recover the depth information from a set of refocused
images [1]. Given a few images with different focusing parameters, we can cal-
culate the implicit depth information. And this cast a light on the recovery of
explicit depth information from the implicit information. It has been widely uti-
lized in numerous multimedia applications, such as image-based rendering [2]
and photo editing [3].

Many previous works capture different focused images sequentially, which
are limited to static scenes. To illustrate, two images are acquired by varying
the intrinsic parameters of the camera in [4] and two observations are obtained
by two sets of lens parameters in [5]. Nowadays, the current light field camera
[6] can capture 4D light field images in one shot, which enables rendering of
arbitrary focused images of the same scene. Light field camera benefits various
multimedia research [7,8], including depth extraction [9,10]. However, the effi-
ciency or accuracy are still far from desired. Most previous studies involving
depth recovery pay little attention to the refinement of depth maps, leaving out
defects of inaccurate boundaries between different depths, wavy edges or noises
in the depth maps.
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In this paper, we propose a novel approach for depth from focus, which is
featured for its effectiveness. We observed that depth images are full of smooth
areas. Consequently, patch based depth inferring is far more robust than pixel-
wise calculation. Though the patch based calculation will lead to flattening ef-
fects, it can be corrected by current joint edge-preserving filtering. Specially, we
first obtain a rough depth map from a set of images refocused to different de-
grees, which are acquired by a light field camera in a single shot. In the camera,
when the distance from the center of the lens and the image plane is viewed as
a constant, the variance in focal length brings about different degree of blur-
ring. When the blurring reaches its smallest, say, all the light rays radiated by
an object point and refracted by the lens converges at a single point on the
image plane, the object distance can be deduced from the focal length and the
distance from the image plane to the lens center. Next, a multi-scale gradient
operator and small windows are employed to work out the gradient of each pixel
in images with distinct camera parameters in order to achieve higher accuracy
and to get rid of the impacts of noise. However, these methods may give rise to
vague boundaries or wavy edges which do not cater to the original input light
field image. Therefore, at last, we need a filtering step under the guidance of the
original image. Our work adapts constant time weighted median filtering [11] as
a way of refining the rough depth map.

With the combination of gradient analysis of the input image and a refine-
ment step guided by the original image, we can assure an accurate and reliable
refined depth map.

Our approach outperforms the built-in depth map of the software, Lytro
Desktop [12] in the way that it can recover more of the original outlines of
objects. Moreover, the measure we take, constant time weighted median filtering
[11], works better than the simple guided filtering [13] on the implicit depth map
as it pays more attention to the actual depth of field than the outlines of objects.

2 Related Work

A number of current works devote to the recovery of depth in the images. How-
ever, nearly each of them has several defects.

In [14], a spatial constant σ needs to be evaluated. It needs two images that
are identical except for the aperture size and therefore depth of field. Two σs can
be derived from them and we can thereby work out the depth map. By contrast,
our method works in a light field camera and images with different focal lengths
can be gained. As a consequence, the parameter σ needn’t be evaluated and
large amount of time can be saved. Apart from this, our method does not possess
the “overconstraint” problem that Alex’s work has: if three or more views are
obtained in the process, ambiguity of depth will be caused.

In a real-time focus range sensor [15] , a passive way of evaluating the depth
was adopted: an illumination pattern is projected onto the scene via the same
optical path used to image the scene. This leads to a dominant frequency in the
images gained and a depth map can be acquired by two images of the same view
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with different optical settings. Meanwhile, in [16], active measures are taken to
get the depth map from the two images with distinct camera settings. However,
the depth map derived from either of them is not precise and filters to refine the
map need to be applied.

For passive depth from defocus, rational filters [17] can be adopted. In [17],
median filtering was used in one example and adaptive coefficient smoothing in
another. However, as we will point out, there are some defects in the simple
median filtering. In addition, adaptive coefficient smoothing is only suitable for
an image with background which lacks texture. Our method has overcome this
disadvantage.

In our work, each of the series of images will be put to good use and a fine
approach to filter the depth map will be utilized.

3 Approach

In this section, the input light field image is broken up into numbers of images
and n images with different focal lengths are drawn from them uniformly, where
n is a parameter given by hand according to our demand on the precision of
the depth map. The gradient images are derived from the n differently refocused
images using a multi-scale gradient operator. A rough depth map is acquired
analyzing the gradient images. And a refined depth map is gained by filtering
the rough one, as shown in Fig. 1.

Fig. 1. A framework of our method.

3.1 Images with Different Focal Length

When the light rays radiated by an object point and refracted by the lens con-
verge at a single point on the image plane, the following equation is satisfied:
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gradient (far focus) gradient (medium focus) gradient (near focus)

Fig. 2. The gradient maps with different focal lengths.
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where f refers to the focal length, u refers to the object distance, and v represents
the image distance.

Suppose an image plane is placed at a distance of v from the lens. Any object
point placed behind the focus on the other side of the lens, which does not possess
a distance of u from the lens, will cast a circle of confusion on the image plane.
Whether the object is placed behind or in front of the intended distance u, a
blurring of image can not be avoided.

In light field cameras, images with different camera parameters can be ac-
quired from a single shot. What we need is a change in the focus to utilize the
Eq. (1) to help us recover the field depth.

In practice, we need a uniform change in focal length, either from far to near
or from near to far, so as to gain convenience in the processing procedure. In this
paper, n refocused images can be gained from the input light field image with
uniform change in focal length from far to near, with the help of the matching
photo processing software of the light field camera.

In addition, an all-clear image with the largest f-number (the ratio of the
focal length to the diameter of the aperture) is also available by the camera.

3.2 Acquisition of Rough Depth

A gradient map for each of the n images need to be worked out in the first
place. A multi-scale gradient operator as shown in Eq. (2) and (3) will work. It
is superior to a simple Sobel or Scharr operator as the former ones may ignore
the effects of smooth edges and are prone to noise.

Pl,k(x, y) = Ak(2lx, 2ly), (2)
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Gk(x, y) =
m∑
l=0

Ql,k(
x

2l
,
y

2l
), (3)

where l refers to the lth layer of the Gaussian Pyramid, whose maximum m can
be adapted according to the characteristics of the input image; k refers to the
index of the image picked and Ak refers to the pixel values of the kth image; Pl,k

is an image resizing Ak to its 1
2l

. Being the lth layer of the Guassian Pyramid;
Ql,k is Pl,k processed with the Sobel operator, and all Ql,ks add up to the final
gradient image Gk of Ak.

As shown in Fig. 2, the gradient varies as the focal length changes.
In order to raise precision and eliminate the effects of noise, a window at a

certain width can be used to analyze the gradient of the very pixel at its center,
as shown in Eq. (4). In this equation, w(x) indicates the window at whose center
is x. This also helps us reduce the impact of small trembles when shooting the
series of images, which leads to dislocation in some of the n images.

G̃k(x) =
∑

y∈w(x)

Gk(y). (4)

In practice, integral image [18] , which is also known as summed area table,
is used in order to speed up the processing procedure. What’s more, the edges
of the images need to be paid attention to, and a mirror reflection of pixels on
the edge tends to be a good solution.

A 25×25 or 15×15 window is usually used according to the objects’ structures
which make up the image. Small windows are appropriate for images with fine
structures.

In this way, an optimized gradient value G̃k(x) is gained for each pixel ac-
cording to the values of its neighbors. For the pixels with the same coordinate in
the n images, the maximum optimized gradient indicates that the pixel is at its
sharpest, leading to a rough estimation of the optimal focus length of the very
pixel.

Suppose that a pixel reaches its sharpest at the image indexed k, where

k = argmax
k

G̃k(x), k ∈ N+, k 6 n. (5)

The largest focal length being max(f) and the smallest being min(f) in all n
images, the optimal focal length of the pixel can be roughly represented as the
following:

fo =
n− k + 1

n
(max (f)−min (f)) + min (f). (6)

Therefore, according to Eq. (1), the rough depth of the very pixel can be
estimated as:

ũ =
fov

v − fo
. (7)

where v is a known camera parameter.
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input light field image rough depth map refined depth map

Fig. 3. Rough depth map refinement. The refined depth map in the third column is
gained from the second column by constant time weighted median filtering [11] under
the guidance of the image with largest f-number.

3.3 Attainment of Accurate Depth

Median filtering needs to be used so as to remove outlier noise. However, a simple
median filter may result in the loss of sharp features of an image. Consequently,
in order for suppressing the influence of nearby pixels in different colors along
with preserving sharp edges and fine structures, the method of weighted median
filtering is used:

f(x , i) , δ(V (x )− i), (8)

h(x , i) =
∑

x ′∈N (x)

b(x ,x ′)f(x ′, i), (9)

where x represents the pixel’s coordinate; V (x ) represent its value in the rough
depth map; V equals to ũ in Eq. (7); δ is the delta function which equals to 0
when V (x ) = i and 1 otherwise.

Meanwhile, h(x , i) can be illustrated as a local histogram and b(x ,x ′) is the
weight function. In order for the feature of the input image to be preserved, we
can use guided filter weights for b(x ,x ′).

In a guided filter [13] , the local linear model is represented as:

ak = (Σk + εU)−1(
1

|w|
∑
i∈wk

Iipi − µkp̄k), (10)

bk = p̄k − aT
k µk, (11)

qi = āT
i Ii + b̄i, (12)

where ak is a 3 × 1 coefficient vector, q is a linear transformation of I in the
window wk centered at the pixel k, Σk is a 3 × 3 covariance matrix of I and U
is a 3× 3 identity matrix.

In Fig. 3, a refined depth map is gained from a rough one under the guidance
of the image with the largest f-number. Compared with the rough depth map,
noises have been removed and the outlines of objects tend to be more accurate.
Additionally, the depth map of the background has a tendency to be softer,
which conforms to our real life perception.
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4 Experiments

4.1 Experimental Settings

In our experiments, n = 64 is used for drawing images at different focal lengths
from the input light field image. A 25 × 25 window and m = 2 is used for
calculating the optimized gradient of images with few fine structures. In the
mean time, 15× 15 windows and m = 0 is used for images with fine structures.
Windows too small may lead to extra black edges or white holes for objects while
windows too large may result in blocks of colors.

As we want to make full use of the 8 digits of the grayscale images for a
depth map, we apply [0,1,2,...,255] for the vector of disparities. However, if the
calculating process were too time-consuming on a certain machine, especially for
images with big sizes, the number of disparities could be reduced. A little sacrifice
on the diversity of gray scale of the depth map can save a great amount of time.
In addition, the local window radius for guided filter weights is usually set to
1
40 of the maximum of the input image’s width and height. The regularization
parameter is ε = 10−4.

4.2 Results and Discussions

Our depth map has proven to correspond more with the original image. It can be
seen from Fig. 4, the built-in depth maps of Lytro Desktop tend to have wavy
edges while constant time weighted median filtering [11] helps us smooth the
structures. On the other hand, the outlines of objects in the built-in depth map
is not so accurate as ours. Our method can show fine structures which appear
in the original image.

The use of constant time weighted median filtering [11] also helps us erase
some white or black blocks in the rough depth maps caused by the ambiguity
of gradient change of small areas in the input light field image, just as shown
in Fig. 5. The lack of texture results in this ambiguity, and a smooth surface or
highlights on objects may accounts for the lack of texture.

In order for a better result, images with high variance in focal length is
preferred. This contributes to the n images having greater discrimination in
gradient with each other. In practice, objects which are close enough to the
camera lens and objects which are far away enough in the input images are
preferred so as to achieve high variance in focal length.

Compared to the results of the simple guided image filtering [13], this weighted
median filtering [11] using guided filter weights pays more attention to the ac-
tual depths of the original image. As is shown in Fig. 6, the former method may
produce halo effects and pays too much to the structure of the objects as well as
the lighting condition on the surface of the objects. However, the latter method
only reflects the depth information we need, which leads to accuracy.

There are still some limitations in our method. For objects with large tex-
tureless areas like the sky, our method will fail to predict the accurate depth for
the lack of gradients. Fortunately, textureless regions can be easily detected to
prevent errors in applications.
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input light field image Lytro Desktop’s built-in our method

Fig. 4. A comparison between the Lytro Desktop’s built-in depth map and our depth
map. The first two light field images are available at http://lightfield-forum.com/.

5 Conclusion

In this paper, we have presented a novel depth from focus method from a se-
ries of images using a light field camera. By employing the multi-scale gradient
operator, we achieved a robust measurement for the amount of blur. Besides,
by using the constant time weighted median filtering, accurate depth maps with
clear boundaries are obtained. The experiments have proven that our measure
surpasses the built-in measure in the Lytro light field camera.
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input light field image rough depth map refined depth map

Fig. 5. Constant time weighted median filtering [11] removes black and white blocks
caused by the ambiguity in the gradient change.

input light field image guided image filtering weighted median filtering

Fig. 6. A comparison between guided image filtering [13] and constant time weighted
median filtering [11]. The light field images are available at http://lightfield-
forum.com/.
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