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Abstract Most previous works focus on image object proposals while few on video object
proposals. Besides, the existing explorations about video object proposals mainly con-
centrate on localizing the dominant object. In this paper, we aim at exploring a uniform
framework for proposing multi-objects in videos no matter they are in the foreground or
background. The method is derived from image object proposals, and makes best use of
video characteristics. To achieve this task, we propose an adaptive context-aware model for
video object proposals. First, spatial candidate windows are generated by the image method
for acquiring the adequate bounding box samples. Temporal boxes are calculated by the
motion based mapping. Considering the mapping loss, we define a box confidence coeffi-
cient contributing to keeping the proposal consistency and restraining the motion blur. The
output proposal bounding boxes are ranked based on the scores calculated by the weighted
scoring system. The proposed method is separately evaluated on the proposed multi-object
dataset and the public dataset. The results compared with several state-of-the-arts show
that our method has the most satisfactory overall performance for multi-object proposals
in videos.
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1 Introduction

Object proposal generation, i.e., proposing the object-like regions from millions of sliding
windows, has become a promising and helpful technique both in multimedia and computer
vision [44, 56, 57]. It is derived from some visual cognitive and neuropsychological evi-
dence that human can quickly and accurately identify objects without recognizing them [15,
16]. By object proposals, multimedia tasks can concentrate on a few of proposal bounding
boxes probably containing objects, instead of starting from millions of sliding windows.
Utilizing object proposals as a pre-processing procedure, benefits many applications both
in efficiency and effectiveness, e.g. object tracking [26, 67], image/video segmentation [21,
43] and classification [13, 31, 59, 65], video summarization [22, 38], activity recogni-
tion [6, 66], object retrieval [47, 58, 63], multimodality retrieval [10, 12, 61], landmark
recognition [11, 36, 50], and image/video storytelling [14, 35, 62]. Furthermore, it is better
to consider domain knowledge when applying object proposals to some specific or novel
applications.

For most video object proposals start from image object proposals [27, 40, 56], there are
generally two categories of object proposals for both image and video, segment-based pro-
posals [3, 51] and window-based proposals [24, 32]. The former model usually starts from
generating multiple segments and then merges them into the proposed regions. To get better
segments, the sophisticated algorithm is prerequisite which brings more computational con-
sumptions. In contrast, the goal of window-based proposals aims at assigning high scores
to the bounding boxes that probably contain objects. Due to the lightweight design, even
some low-level features can achieve good results both in accuracy and efficiency [9, 68].
Considering the procedures of human vision to recognize objects, roughly localizing and
accurately recognizing, the latter model is more intuitive and suitable for pre-processing.
In this paper, we focus on applying the latter model to videos because of its simplicity,
which contributes to making object proposals much more efficient, especially running as a
pre-processing procedure in videos.

Although many works concentrate on object proposals [8, 33, 34], few previous works
focus on video object proposals in recent years. To the best of our knowledge, most exist-
ing video object proposals mainly devote to proposing moving or dominant objects [27,
40, 53]. Merely locating moving objects has not achieved the goal set by object propo-
sals. It is similar to the technique of moving object segmentation and tracking [28, 54]. To
achieve multi-object proposals in videos, it is straightforward to apply object proposals [2,
9, 45, 68] frame by frame. But experiments find that applying image methods frame by
frame may lead to proposal inconsistency. This experimental phenomenon is illustrated in
Fig. 1b, obviously showing that proposal inconsistency even exists within frames with simi-
lar content and structure. Despite the high detection rate of image object proposals, directly
applying these methods to videos still results in omitting objects. Two reasons lead to this
omitting. One is that there are no dynamic cues in image object proposals because they
are designed for detecting static objects. The other is that motion blur and color ambigu-
ities will degrade the edge or contour based proposal results. Inspired from all the above,
we further explore the criteria that should be considered when applying object proposals
to videos.

Good extendibility Object proposals have been studied a lot and remarkable achieve-
ments have been made. It is wasteful to leave image achievements alone and demonstrate a
different path for videos. Therefore, it is better to seek for a good scheme to extend image
methods to videos.
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Fig. 1 Given (a) an unlabeled video, our model produces (c) a set of spatio-temporal bounding box proposals
for both foreground and background objects at the same time. (b) shows the proposal inconsistency caused
by utilizing image object proposals frame by frame

Multi-object proposals As a pre-processing procedure, a good video object proposal
method should propose all the object-like regions no matter they are in the foreground or
not, dominant or not. Besides, proposing multi-objects will benefit more applications.

Proposal consistency constraint Directly applying object proposals frame by frame
may lead to three defects. First, omitting objects is inevitable even in consecutive or sim-
ilar frames. Second, motion blur and color ambiguities may degrade the edge or contour
based proposal results. Third, temporal information preserved in neighboring frames is not
being used.

Based on the above considerations, we propose an adaptive context-aware model for
multi-object proposals in videos. Image methods are extended into videos by considering
motion cues and spatial-temporal evolutions in our model. The increasing computational
complexity lies in the motion cues’ calculation, which is inevitable in video processing.
To achieve multi-object proposals, both spatial and temporal bounding box generations are
considered. By adaptively integrated spatial and temporal proposals, the proposal consis-
tency constraint is kept as much as possible. To evaluate the efficiency of the proposed
method, we build a multi-object dataset specially for video object proposals. 30 shots are
collected from five famous movies. This benchmark is suitable for evaluating multi-object
proposals in videos, for the average number of objects achieves 3.34 and the ground truth
is offered frame by frame. For a comprehensive evaluation, we also compare our method
with the state-of-the-art on a public motion segmentation dataset, called Freiburg-Berkeley
motion segmentation dataset [5, 39], including 30 shots with keyframe ground truths. We
extend this motion segmentation dataset to video object proposal dataset by offering anno-
tations per frame in bounding boxes. The proposed method achieves good performance on
both datasets, showing that our method is competent for video object proposals. A similar
work to this paper was proposed in [18], but the context-aware model is absolutely bidi-
rectional and no classifications are considered when conducting motion estimation based
mapping. Different to [18], we present an adaptive context-aware model with more elabo-
rate processings. It can be transformed into a unidirectional model according to the temporal
sequence by omitting the temporal scoring refinement. Therefore, it is more efficient while
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with improved detection rate, which means that it is much easier to apply to real time appli-
cations. Besides, we also expand the proposed dataset and validate the effectiveness of our
method in a public dataset.

The contributions of this paper can be briefly stated as follows.

– We propose an adaptive context-aware model for video object proposals, which con-
tributes to proposing both still and moving objects no matter they are in the background
or foreground in videos;

– We integrate the spatial and temporal boxes by introducing an adaptive and classified
motion based mapping, which can be extended to other applications. On account of no
complicated computations, the efficiency is high enough;

– We employ a temporal scoring refinement mechanism to further improve the detection
rate;

– We build a challenging dataset for multi-object proposals in videos, which is collected
from five famous movies with 30 shots in total (about 3.34 objects per frame), and has
bounding box annotations frame by frame.

The rest of this paper is organized as follows. In Section 2, we give a review of related
works on both frame-based and sequence-based object proposals in videos. Then we intro-
duce the main body of the proposed context-aware model in Section 3 and the temporal
scoring refinement in Section 4. Next, we demonstrate the experimental results and give
some discussions of the results in Section 5. At last, we give a brief conclusion and
perspective of our work in Section 6.

2 Related work

Few methods are specially designed for video multi-object proposals. Most of them usually
start from per-frame object proposals which are then generalized in the temporal domain.
According to our survey on the related work, we generally divide video object proposals
into frame-based object proposals and sequence-based object proposals.

Frame-based object proposals The concept of object proposals is firstly presented by
Alexe et al. in [1] aiming at reducing the number of true negative sliding windows. They
further explored the solution and introduced a generic objectness measure to quantify the
possibility of containing objects for the candidate windows. Rahtu et al. [45] scored the
windows by utilizing an effective linear feature combination, which achieved better results
compared with [1]. By adopting low-level features, such as gradient, saliency, and super-
pixel straddling [1], most methods can achieve good performance in both efficiency and
accuracy. Along with maturity of current techniques, image methods can be directly applied
into video frame by frame. Cheng et al. [9] proposed a very fast method to filter the ini-
tial sliding windows at 300fps by merely utilizing the gradient feature. It seems that this
method has already fulfilled the demands of real time applications in videos, but it can only
achieve better results on 0.5 intersection over union (IoU), which is not applicable in prac-
tical applications. Zitnick et al. [68] leveraged accuracy and efficiency very well by using
the edge feature. Although it has the best performance even over the challenging overlap
among the window-based proposals, the computing time has no competitive advantages
compared with [9]. As to segment-based proposals, such as [3, 37, 46, 52], though achiev-
ing accurate segmented results to some extent, complicated computations may bring much
more time-consuming when applying to videos, making them unsuitable for running as pre-
processing procedures. In short, although frame-based object proposals can achieve the task
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of video multi-object proposals, frame-by-frame usage may lead to proposal inconsistency
among temporal sequences according to experiments. Therefore, temporal information
should be subtly adopted into video object proposals with limited increase of computational
efforts.

Sequence-based object proposals Few methods specially serve video multi-object pro-
posals. Most related works about video object proposals mainly aim at proposing dominant
objects in the temporal domain, which we call them sequence-based object proposals. Gilad
et al. [48] aimed at finding the dominant objects in the scene and obtaining rough, yet con-
sistent segmentations thereof. Due to the usage of multiple segments, it is inapplicable to
serve as a pre-processing procedure. Van den Bergh et al. [53] proposed a novel method
for the online extraction of video superpixels, contributing to delivering tubes of bounding
boxes throughout extended time intervals. Though efficient in acquiring video superpixels,
it is similar to the task of object tracking. Oneata et al. [40] explored the problem of gen-
erating video tube proposals for spatio-temporal action detection. This research is a branch
of action detection in videos, while our method devotes to proposing the category indepen-
dent bounding boxes that probably contain objects no matter they are still or not. Perazzi et
al. [42] performed an SVM-based pruning step to retain high quality foreground proposals.
Xiao et al. [56] presented an unsupervised approach to generate spatio-temporal tubes that
localize the foreground objects. Though considering the importance of proposal consistency,
these methods aim at keeping the proposal consistency of foreground objects. In brief, most
related methods [27, 41, 60] are explicitly defined to propose dominant objects or moving
objects for video object detection. These methods seem to be moving object segmentations
rather than video object proposals.

With the emergence of deep learning, increasing works turn to deep architecture for
help. There is no exception in the task of object proposals [19, 20, 30]. Zhang et al. [64]
leveraged a Convolutional-Neural-Network model to generate location proposals of salient
objects. Kong et al. [29] presented a deep hierarchical network for handling region pro-
posal generation and object detection jointly. Hayder et al. [23] proposed an approach to
co-generate object proposals in multiple images by introducing a deep structured network
that jointly predicted the objectness scores and the bounding box locations of multiple
object candidates. Though most of these methods have achieved pleasing results, Chavali et
al. [7] reported the gameability of the current object proposal evaluation protocol especially
for learning-based methods, for they argued that the choice of using a partially annotated
dataset for evaluation of object proposals is problematic. Learning-based methods define an
object as the set of annotated classes in the dataset, which obscures the boundary between
a proposal algorithm and an object detector. In order to generalize object proposals as a
pre-processing procedure in videos and localize category independent objects as much as
possible, the low-level feature is more receivable and explicable.

3 Adaptive context-aware object proposal model

Given a video, we aim at generating a series of spatio-temporal bounding box proposals
for both foreground and background objects at the same time by leveraging advantages of
image object proposals and the basic feature in videos. Our solution devotes to minimizing
the additional computing cost as much as possible to make it suitable for a pre-filtering
process and improving the detection rate compared with the frame-by-frame usage of image
object proposals. The main procedures are outlined in Fig. 2, including spatial candidate
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Fig. 2 The framework of the proposed method. bcc is the box confidence coefficient

box generation, temporal box mapping, box confidence coefficient calculation and weighted
scoring system. The temporal scoring refinement will be introduced in Section 4.

3.1 Spatial candidate box generation

The standard practice for generating initial bounding box is starting from densely sampled
sliding windows. Millions of these windows are filtered by well-designed selective rules.
In fact, there is no need to generate so many boxes for every frame. Proposal boxes gener-
ated by image methods can be used as initial candidate boxes. There are three benefits of
generating spatial candidate boxes by image methods. First, image methods can generate
proposals including both foreground and background objects. Second, the detection rate of
image methods has increased a lot for meeting the demands of applications. Third, starting
from image methods will significantly increase the computing efficiency because of sav-
ing time for handling so many boxes. Let t represent the tth frame ft of one video. n is the
number of generated spatial candidate boxes B

(t)
n which can be shown as:

Bt
n = {bi |bi ∈ I (ft , M) , n ≤ M}, (1)

where M is the maximum number of generated bounding boxes. The computing consuming
can be adjusted by setting M .

3.2 Temporal box mapping

As a pre-processing procedure, there is no need to pay much attention to feature extrac-
tion or bounding box matching. In order to make an effective temporal box mapping, we
classify the surrounded relationship between the bounding box and the object based on the
motion fields. Each frame has a corresponding motion field, e.g., calculated by an optical
flow method. We manage to use motion distribution to guide the temporal box mapping.
It is obvious that the bounding box should be moved according to the motion of main part
surrounded by it, which is regarded as the displacement of the object. Therefore, it is signif-
icant to find the exact displacement of the object. To achieve this target, we firstly optimize
the initial bounding box set Bt

n of frame t by making each box approach to the boundary of
objects. Let bi(bi ∈ Bt

n) represent one generated bounding box, the coordinates of bi can
be denoted as:

cbi
= {(xi

l , y
i
l )|l ∈ [1, P ], l ∈ N+, P ≥ 2}, (2)
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where (xi
l , y

i
l ) are the coordinates of bounding box bi . l is the numerical order of sampling

points which is greater than 2. l ∈ N+ means that l is a positive integer. We use four corners
as sampling points in our experiments.

Let fbi
represent the corresponding motion field of bounding box bi , the optimization

can be illustrated as (3).

cbo
i

= arg min
xi
l ,y

i
l

∑
[fbi

(�(�(xi
l , y

i
l , β))) − fbic

(xi
c, y

i
c)], (3)

where �(�) represents a transformation of coordinates, and �(�) does shrink to the bounding
box’s coordinates. β is the step size rate for each shrink which equals 0.1 in our experiments.
In optimization process, we utilize �(�) transformation to find the midpoint of each edge
of the rectangle with the bounding box’s shrinking. Because of comparing with the four
corners, midpoints have more possibilities to approach the object. It is more helpful than
relying on the four corners to map the temporal box. Our new temporal box is mapped based
on its corresponding motion map. Not every bounding box can be optimized within fixed
iterations. If the box can be converged, the new coordinates c

bt+1
i,1

can be denoted as shown

in (4).

c
bt+1
i,1

= Mapping(cb
t,o
i

, ωfb
t,o
i

(�(xi
l , y

i
l )) + (1 − ω)fb

t,o
ic

(xi
c, y

i
c)), (4)

where Mapping(�) is a motion field based mapping function that transforms pairs of coor-
dinates to another. ω is used to weight the object’s displacement for suppressing the noisy
motion as much as possible. As to the bounding boxes that cannot be optimized, motion
mapping is performed on the four corners based on the corresponding motion. It is noted
that we utilize a median filter with s × s patch to filter the motion vector of each cor-
ner to do denoising. Then the mapped coordinates of bounding box bt+1

i,2 can be denoted
as:

c
bt+1
i,2

= Mapping(cbt
i
, ωfbt

i
(�(xi

l , y
i
l )) + (1 − ω)fbt

ic
(xi

c, y
i
c)), (5)

The difference of (4) and (5) lies in the referred bounding box. If the initial generated
bounding box can be optimized, then the input for mapping temporal box is the optimized
box bo

i , while the input is the original box bi . This tactic contributes to making the proposed
bounding box fit the object’s boundary as much as possible. The final mapped temporal box
set can be described as:

Bt+1
n = {bt+1

i | bt+1
i ∈ bt+1

i,1 or bt+1
i ∈ bt+1

i,2 , i ∈ [1, n]}, (6)

Merely guided by the motion field, not every bounding box can be successfully optimized.
The strategy is that keeping the bounding box containing the background object moving
with the object yet without obvious appearance change. Meanwhile, making the bounding
box containing the moving object shifting with the object yet with approaching change to
its surrounding object. We also give a detailed algorithm description in Algorithm 1.
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3.3 Box confidence coefficient calculation

Due to the motion blur, not every temporal mapping can bring the pleasing result. For exam-
ple, inaccurate motion fields may lead to ambiguous displacements. In order to reduce the
impact of obscure moving, not every frame is suitable for temporal box mapping. There-
fore, an adaptive strategy should be introduced to determine whether the bounding boxes of
the current frame can be temporally mapped or not. Different from directly evaluating the
accuracy of motion fields, we introduce a concept of box confidence coefficient bcc, which
is calculated by making statistics of the box loss of each frame after achieving the temporal
mapping, as shown in (7).

bcc =
Nbt

loss

NBt
n

, (7)

where bloss
t represents the set of lost bounding boxes, which can be denoted as (8):

bt
loss = {bt

i | wbt
i
hbt

i
≤ T h2}. (8)

w � h is the area of one bounding box, i.e., the number of pixels. It is assumed that the map-
ping error may increase along with the increment of smaller bounding boxes. We utilize (9)
to make a decision whether the bounding boxes of current frame can be mapped or not. If
D = 1, we recommend generating bounding boxes by temporal mapping. The detailed pro-
cedures for achieving adaptive context-aware temporal mapping are illustrated in Algorithm
2. It is different from Algorithm 1. Algorithm 1 describes the procedure for generating tem-
poral bounding boxes, while Algorithm 2 emphasizes the procedure when to generate boxes
by spatial methods.

Dt+1 =
{
1, bcc ≤ T h3
0, otherwise

(9)
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3.4 Weighted scoring system

Bounding box based object proposals are ranked based on window scores. For spatial boxes
are generated by image methods, window scores are assigned by the scoring system of
image method. The spatial score s

t,s
bi

of one bounding box bi for tth frame can be denoted as:

s
t,s
bi

= IS(ft , b
t
i ), (10)

where IS(�) is the scoring system of image method. It is different from the function I (�)
described in Section 3.1. The former is used for assigning a score for each window, while
the latter serves as the spatial bounding box generation by the image object proposals.

As to temporal mapped bounding boxes, there are two steps to get the final scores. First,
these mapped windows should be scored by (10) to get their spatial scores. Second, con-
sidering that these windows are mapped from the previous frame, temporal impacts should
be considered into the scoring system. To simplify the scoring procedure, we adopt a linear
weighted scoring strategy for temporal mapped bounding boxes, as shown in (11).

s
t,tm
bi

= λst−1
bi

+ (1 − λ)s
t,s
bi

, (11)

where s
t,tm
bi

means the temporal score st,tm for the bounding box bi . Although the scores
for temporal mapped windows are assigned between two neighboring frames, the mapping
relationship can occur within several frames. The bounding boxes and the scores of those
boxes are synthetically considered and acquired in the temporal sequences by the proposed
context-aware model because of the global and temporal strategies.

4 Temporal scoring refinement

Although the improved results can be acquired by merely utilizing the above processings,
further refinement can also be applied to the generated window-based proposals. There are
two ways to do the refinement. One is adjusting the shape of generated proposals. The other
is refining the scores of generated proposals to make sure that the proposals with objects
could get top ranks. We choose to do the temporal scoring refinement for we have achieved
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the pleasing improvement in the previous processing steps. Besides, our method aims at
presenting a pre-processing routine, which means that the refinement strategy should be
designed as simple as possible.

Our strategy is derived from temporal consistency constraint. Good methods should meet
the demands of temporal consistency when they are applied into videos [4, 25, 55]. As to
scores of neighboring frames, the consistency constraint is also essential, i.e., the mapped
box should have scoring consistency compared with its neighboring boxes. We utilize a
centered moving average filter to do the temporal scoring refinement. Therefore, the refined
score sr

bi
(t) of the bounding box bi in tth frame can be updated by (12).

sr
bi

(t) = s(t − �−1
2 ) + s(t − �−1

2 + 1) + ... + s(t) + ... + s(t + �−1
2 )

�
, (12)

where � is an adaptive moving window size to eliminate the score noise across the tem-
poral domain separated by (9). It is noted that our refinement is performed on the temporal
domain, centered by the current frame. Therefore, it can be used as a post-processing pro-
cedure to further improve the detection rate. Meanwhile, due to only relying on temporal
score denoising, the improvement is limited.

5 Experiment and analysis

5.1 Dataset

The proposed method is evaluated on two datasets. One is designed for multi-object propos-
als and built in this paper. The other is a public dataset specially for motion segmentation,
called Freiburg-Berkeley motion segmentation dataset [5, 39]. The former dataset is built
from five famous movies, Mission Impossible, Monsters University, Kung Fu Panda, X-
Men and Toy Story. We randomly select six shots from each movie, forming 30 shots in
total. Five subjects, three men and two women, are invited to annotate the dataset. They
firstly annotated some keyframes and then mapped the bounding boxes to the other frames
by motion-based mapping. Finally, they adjusted the annotations with obvious offsets. By
this way, we offered bounding box annotations for every frame in the proposed dataset. For
a multi-object proposal dataset, the average number of the proposed dataset achieves 3.34.
The detailed description of our dataset is depicted in Table 1.

As to the FBMS-59 dataset [5, 39], there are 29 shots for training set and 30 shots
for testing set. For there is no learning process in the proposed method, i.e., the proposed
framework is an unsupervised method, we only adopt the testing set to do the experiments.
Because of being designed for motion segmentation task, the ground truths are object seg-
mentations. Besides, only few keyframes are labeled. In fact, video frames are different
from image sets. Although containing consecutive frames, objects may not occur in every

Table 1 Description of the
proposed dataset. Num. Shot is
the number of shots, Ave. Obj. is
the number of average objects,
and Ave. Frame is the number of
average frames of all shots in
each movie

Shot Source Resolution Num. Shot Ave. Obj. Ave. Frame

Mission Impossible 640*268 6 2.7 41

Monsters University 640*360 6 4.2 81

Kung Fu Panda 640*272 6 2.2 96

X-Men 640*266 6 3.3 55

Toy Story 960*540 6 4.3 61
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frame. Because the task of our method focuses on proposing the object-like windows, we
pay much attention to the frames with objects. It is noted that some keyframes only contain
a tiny part of objects, and some of neighboring frames contain no objects. It is impossible
to recognize the objects from those frames. Therefore, we re-annotated this dataset in the
same way with labeling the proposed dataset, and removed several frames without obvious
main objects. To make an overall illustration, we classified this testing set, FBMS-30, based
on its categories to 13 classes. Table 2 shows the details of our annotated FBMS-30 dataset.

5.2 Experimental setting

Our approach is implemented using Matlab on a desktop PC with an Intel i5 4590 CPU and
8GB memory. To show the efficiency of the proposed method for eliminating the proposal
inconsistency in sequential frames, we compare our method with the state-of-the-art bound-
ing box based object proposals: Edgebox [68], Bing [9], Rahtu [45] and Objectness [2].
Considering the efficiency and fairness, the authors’ public source codes with optimized
parameters in their papers are adopted in all the experiments. Three popular evaluation met-
rics are utilized to quantitatively evaluate the performance of the proposed method, the same
as [17]. They are the detection rate (DR) with given number of windows (#WIN) (DR-
#WIN), DR with variational IoU threshold covered by ground truth annotations for a fixed
number of proposals (DR-IOU), and the average detection rate (ADR), i.e., average recall
(AR) [24] between 0.5 and 1 by averaging over the overlaps of the images’ annotations with
the closest matched proposals (ADR-#WIN). Let #GT represent the number of the annota-
tive ground truth for one image, o be the IoU overlap, the DR-#WIN and ADR are separately
calculated according to (13) and (14).

DR-#WIN = #(o > ε)@#WIN

#GT
ε ∈ {x|0.5 ≤ x ≤ 1}, (13)

ADR = 2
∫ 1

0.5
DR(o)do, (14)

Table 2 Description of FMBS dataset [5, 39]. Num. Shot is the number of shots, Ave. Obj. is the number of
average objects, and Ave. Frame is the number of average frames of all shots in each category

Shot Source Resolution Num. Shot Ave. Obj. Ave. Frame

Camel 680*540 1 1 100

Cars 640*480 4 1.8 35

Cats 640*480,640*360,450*253 3 1.7 197

Dogs 600*400 2 1 310

Farm 720*405 1 2 252

Giraffes 600*400 1 2 320

Goats 500*333 1 3 280

Horses 720*405,480*360,620*349 3 3.7 499

Lion 720*405 1 1 156

Marple 450*350,350*288 6 1.5 303

People 600*338,640*480 3 1.7 83

Rabbits 480*270,680*400,600*338 3 2 226

Tennis 530*380 1 2 466
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Fig. 3 Comparisons of spatio-temporal bounding box proposals for 5 sequential frames from one shot of
our dataset. These proposals are generated by Rahtu [45], Objectness [2], Bing [9], Edgebox [68] and our
method from the first line to the fifth line.Green solid rectangles are the annotated ground truths, while green
dashed rectangles are the hit proposals. The red solid rectangles are the missed ground truths. (o = 0.7 and
#WIN=1000)

where DR-#WIN is curved by a fixed IoU threshold ε between 0.5 and 1 with incremental
number of windows, while DR-IOU is plotted based on the different IoU between 0.5 and 1
with a fixed number of windows. And the ADR is calculated according to the different DR
on distinct IoU with changing the number of proposals.

Fig. 4 Comparisons of spatio-temporal bounding box proposals for 5 sequential frames from one shot of
our dataset. These proposals are generated by Rahtu [45], Objectness [2], Bing [9], Edgebox [68] and our
method from the first line to the fifth line.Green solid rectangles are the annotated ground truths, while green
dashed rectangles are the hit proposals. The red solid rectangles are the missed ground truths. (o = 0.7 and
#WIN=1000)
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Fig. 5 Comparisons of spatio-temporal bounding box proposals for 5 sequential frames from one shot of
our dataset. These proposals are generated by Rahtu [45], Objectness [2], Bing [9], Edgebox [68] and our
method from the first line to the fifth line.Green solid rectangles are the annotated ground truths, while green
dashed rectangles are the hit proposals. The red solid rectangles are the missed ground truths. (o = 0.8 and
#WIN=1000)

As to parameter settings, they are set as {M,ω, s, T h1, T h2, T h3, λ} =
{104, 0.5, 5, 3, 100, 0.01, 0.5}. We use M = 104 as the upper bound for the number of gen-
erated bounding boxes. ω and λ are the weight value, we set both of them 0.5. s × s is the

Fig. 6 Comparisons of spatio-temporal bounding box proposals for 5 sequential frames from one shot of
our dataset. These proposals are generated by Rahtu [45], Objectness [2], Bing [9], Edgebox [68] and our
method from the first line to the fifth line.Green solid rectangles are the annotated ground truths, while green
dashed rectangles are the hit proposals. The red solid rectangles are the missed ground truths. (o = 0.8 and
#WIN=1000)
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Fig. 7 Comparisons of spatio-temporal bounding box proposals for 7 sequential frames from one shot of
FBMS dataset. These proposals are generated by Rahtu [45], Objectness [2], Bing [9], Edgebox [68] and our
method from the first line to the fifth line. Green solid rectangles are the annotated ground truths, while green
dashed rectangles are the hit proposals. The red solid rectangles are the missed ground truths. (o = 0.7 and
#WIN=1000)

window size that we use to filter the motion fields, and we set s = 5. T h1 is used to define
the similar motion difference in pixel and set as 3. T h2 is the area of the bounding box
regarded as the lost one, set as 100. T h3 is the threshold contributing to determining tem-
poral mapping or not, set as 0.01. Besides, we utilize [49] to calculate the motion fields in

Fig. 8 Comparisons of spatio-temporal bounding box proposals for 7 sequential frames from one shot of
FBMS dataset. These proposals are generated by Rahtu [45], Objectness [2], Bing [9], Edgebox [68] and our
method from the first line to the fifth line.Green solid rectangles are the annotated ground truths, while green
dashed rectangles are the hit proposals. The red solid rectangles are the missed ground truths. (o = 0.7 and
#WIN=1000)
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Fig. 9 Comparisons of spatio-temporal bounding box proposals for 7 sequential frames from one shot of
FBMS dataset. These proposals are generated by Rahtu [45], Objectness [2], Bing [9], Edgebox [68] and our
method from the first line to the fifth line.Green solid rectangles are the annotated ground truths, while green
dashed rectangles are the hit proposals. The red solid rectangles are the missed ground truths. (o = 0.8 and
#WIN=1000)

our experiments for its accuracy and efficiency. In fact, any motion field type with adequate
accuracy and high efficiency can be utilized in our framework. As to the video’s basic fea-
ture, it is better to be pre-computed, while it can also be integrated into our model if it is
efficient enough.

Fig. 10 Comparisons of spatio-temporal bounding box proposals for 7 sequential frames from one shot of
FBMS dataset. These proposals are generated by Rahtu [45], Objectness [2], Bing [9], Edgebox [68] and our
method from the first line to the fifth line.Green solid rectangles are the annotated ground truths, while green
dashed rectangles are the hit proposals. The red solid rectangles are the missed ground truths. (o = 0.8 and
#WIN=1000)
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Fig. 11 Detection rate curves of different methods with (a) o = 0.7 and (b) o = 0.8 on our dataset

5.3 Comparison

Our method focuses on eliminating the proposal inconsistency when applying object pro-
posals frame by frame, and manages to yield twice the results with half the effort by
introducing image object proposals into videos. Besides, we aim at presenting a framework
suitable for pre-processing and probably extending to real time applications by improving
hardware configurations. Considering that few methods are specially for spatio-temporal
bounding box based multi-object proposals in videos, we compare the proposed method
with the bounding box based state-of-the-arts [2, 9, 45, 68], according to the survey in
[24], performed on the temporal sequences frame by frame. Considering both accuracy and
efficiency of the existing object proposals, we recommend the frame-by-frame usage of
Edgebox [68] as the baseline in achieving the task of video multi-object proposals.

Fig. 12 Detection rate curves of different methods with (a) o = 0.7 and (b) o = 0.8 on FBMS dataset
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Fig. 13 DR-IOU curves of different methods on (a) our dataset and (b) FBMS dataset with #WIN=1000

Qualitative evaluation For we evaluate our method on two datasets, we separately exhibit
qualitative comparisons with different methods from Figs. 3 to 10. The green solid rectangle
is the ground truth, and the green dashed rectangle is the hit proposal. Those red solid
rectangles are the missing matched ground truths. In order to show the performance of our
method on IoU 0.7 and 0.8, both of which are the accepted intersection over union with
the bounding box ground truth in real applications, we present two kinds of comparative
results for each dataset. Figures 3 and 4 exhibit the five consecutive proposals for two shots
in our dataset when #WIN=1000 and IoU o = 0.7 in the proposed dataset, and Figs. 5 and
6 exhibit the five consecutive proposals for two shots in our dataset when #WIN=1000 and
IoU o = 0.8 in the proposed dataset. Figures 7 and 8 show seven sequential proposal results
of two shots in FBMS dataset when #WIN=1000 and IoU o = 0.7, and Figs. 9 and 10
show seven sequential proposal results of two shots in FBMS dataset when #WIN=1000

Fig. 14 ADR-#WIN curves of different methods on (a) our dataset and (b) FBMS dataset with o ∈ [0.5, 1]
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Fig. 15 Detection rate curves of the shots from different movies in our dataset. a–e are separately from
Mission Impossible, Monsters University, Kung Fu Panda, X-Men and Toy Story with o = 0.7

and IoU o = 0.8. The spatio-temporal bounding box proposals generated by Rahtu [45],
Objectness [2], Bing [9], Edgebox [68] and Ours are placed in rows. Obviously, our method
achieves the best performance in eliminating the proposal inconsistency both in IoU 0.7 and
0.8 on different datasets.

Fig. 16 The comparison of detection rate distribution on different category of FBMS dataset with o = 0.7
and #WIN=800
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Table 3 Comparison of our method and the frame usage proposal method with different #WIN under o =
0.7, o = 0.8 and average IoU on our dataset

Method Type
#WIN=300 #WIN=1000

0.7-DR 0.8-DR ADR 0.7-DR 0.8-DR ADR

Rahtu [45] Window 0.54 0.36 0.40 0.76 0.54 0.54

Objectness [2] Window 0.18 0.05 0.17 0.19 0.05 0.18

Bing [9] Window 0.36 0.09 0.36 0.37 0.09 0.37

Edgebox [68] Window 0.81 0.47 0.55 0.94 0.57 0.61

Ours∗ Window 0.86 0.62 0.59 0.98 0.73 0.64

Ours Window 0.88 0.64 0.59 0.98 0.74 0.65

Quantitative evaluation In order to present an overall performance of the proposed
method, we make a comprehensive quantitative evaluation by utilizing three popular metrics
in object proposals, DR-#WIN, DR-IOU and ADR-#WIN defined in Section 5.2. Figure 11a
and b show the detection rate on our dataset with IoU=0.7 and IoU=0.8, and Fig. 12a and
b are drawn for FBMS dataset with the same settings as Fig. 11. We give the DR-IOU
curve for our dataset and FBMS dataset in Fig. 13a and b. Figure 14a and b illustrate the
ADR-#WIN curve for both our dataset and FBMS dataset. For our dataset consists of five
different movies, we also give the separate quantitative evaluations on the shots in differ-
ent movies to show the improvement distributions in Fig. 15. It is shown that the proposed
method can achieve the best results on each movie set compared with others. As to FBMS
dataset, we give an overall evaluation on different classes classified from FBMS dataset in
Fig. 16. The height of the bar represents the detection rate on IoU= 0.7 and #WIN=800. It
is shown that the proposed method can achieve good performance on different categories,
i.e., there is no obvious category bias. To make a further comparison, we also present the
detailed comparison of the detection rate between our method and the state-of-the-art on
our dataset and FBMS dataset with different proposal numbers under IoU=0.7, IoU=0.8 in
Tables 3 and 4.

Running time comparison For our contribution lies in eliminating proposal inconsis-
tency occurring among the temporal sequences, we only compare the running time in
generating object proposals. As to the motion field calculation, it has been pre-computed in

Table 4 Comparison of our method and the frame usage proposal method with different #WIN under o =
0.7, o = 0.8 and average IoU on FBMS dataset

Method Type
#WIN=300 #WIN=1000

0.7-DR 0.8-DR ADR 0.7-DR 0.8-DR ADR

Rahtu [45] Window 0.56 0.37 0.40 0.75 0.53 0.51

Objectness [2] Window 0.29 0.06 0.27 0.30 0.07 0.28

Bing [9] Window 0.28 0.09 0.31 0.28 0.09 0.32

Edgebox [68] Window 0.83 0.52 0.56 0.90 0.56 0.60

Ours∗ Window 0.85 0.60 0.58 0.93 0.64 0.61

Ours Window 0.87 0.61 0.58 0.94 0.64 0.61
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Table 5 Average running time comparison on our dataset

Rahtu[45] Objectness[2] Bing[9] Edgebox[68] Ours∗ Ours

Code Matlab, C++ Matlab, C++ C++ Matlab, C++ Matlab, C++ Matlab, C++
Time(s) 5.5 4.66 0.03 0.91 0.57 0.58

our framework for motion is the basic feature in videos and many achievements on motion
calculations exist. In a word, our model only relies on the calculated motion fields, while
not on motion calculation methods. Table 5 shows the comparison of our method and the
state-of-art in running time for generating temporal object proposals. Although not efficient
as Bing [9], it is shown that the proposed method achieves better performance both in accu-
racy and efficiency. In addition, our running time is the average computational time across
all the resolutions of our dataset.

5.4 Discussion

Our method manages to extend image object proposals to videos, by proposing multi-objects
instead of only focusing on dominant objects in videos. It is designed for multi-object pro-
posals compared with those moving object segmentation methods. Besides, the proposed
method can eliminate the proposal inconsistency caused by frame-by-frame usage of image
object proposals. In general, the proposed method has both advantages and disadvantages.
The good characters can be summarized as good performance, category independent and
unsupervised, meanwhile we also give the limitations of our method.

Good performance Figure 13 shows that the proposed method has low IoU drop. Our
method achieves good results on both IoU 0.7 and 0.8, while some state-of-the-art methods

Fig. 17 More results about spatio-temporal bounding box proposals generated by the proposed method for
our dataset. The green solid rectangle is the annotated ground truth and the green dashed rectangle is the hit
proposal. (o = 0.8 and #WIN=1000)
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Fig. 18 More results about spatio-temporal bounding box proposals generated by the proposed method for
FBMS dataset. The green solid rectangle is the annotated ground truth and the green dashed rectangle is the
hit proposal. (o = 0.8 and #WIN=1000)

can only achieve the improvement on a fixed IoU or a lower IoU value. Considering the
requirements from real applications, IoU 0.7 and 0.8 are sufficient enough to leverage accu-
racy and practicability. Figures 17 and 18 illustrate more results on some temporal frames in
our dataset and FBMS dataset. Although without any complicated calculation, our method
can localize the object as much as possible.

Category independent From the experimental dataset perspective, there are many kinds
of objects including regular and irregular shapes. Figures 15 and 16 show the detection
rate on different movies and categories. It could be seen that there is no obvious category
bias. No matter the object is real or imaginary, the proposed method can make a further
improvement, though there are differences in the improved values. Therefore, our method
is category independent which is suitable for applying to practical applications.

Unsupervised method There is no learning stage and no category tendentiousness in our
method. Therefore, it is an unsupervised method independent of datasets. Because of no
prerequisite, our method is more propitious to be utilized as a pre-processing procedure.

Limitations Our method is an extension of image object proposals in videos as a pre-
processing procedure. Therefore, some defects in image method may be inherited. But
this issue can be fixed with the boosting of image object proposals. Furthermore, because
of motion blur and the inaccurate motion field, bounding box proposals cannot be accu-
rately mapped for every frame. If most bounding boxes cannot be temporally or accurately
mapped, our method may degrade to frame-by-frame usage. That’s why we did not achieve
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significant improvements on every shot. Fortunately, with the advance of motion field
estimation, the problem will be hopefully solved in the near future.

6 Conclusion

An adaptive context-aware model is proposed for video object proposals in this paper. It
aims at eliminating proposal inconsistency when applying image methods frame by frame,
while taking advantages of both image methods and video features. By introducing the pro-
posed context-aware model, image object proposals can be successfully migrated into video
processing, yielding twice the results with half the effort. To evaluate the efficiency of pro-
posed video multi-object proposals, we build a specific multi-object dataset with bounding
box based ground truths annotated frame by frame, and we also annotate one public dataset
in the same way. Experiments on these challenge datasets demonstrate that the proposed
approach outperforms the performance by utilizing the state-of-the-art method on the single
frame in sequences.

Our future work will focus on the refinement strategy of our method to make a further
improvement on the object detection rate rather than only refining on the ranking temporal
scores. We will also manage to explore the parameter optimization of our model to provide
more targeted parameter settings.

Acknowledgements This work is supported by the National Science Foundation of China under Grant
No.61321491, and Collaborative Innovation Center of Novel Software Technology and Industrialization.

References

1. Alexe B, Deselaers T, Ferrari V (2010) What is an object? In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 73–80. IEEE

2. Alexe B, Deselaers T, Ferrari V (2012) Measuring the objectness of image windows. IEEE Transactions
on Pattern Analysis and Machine Intelligence 34(11):2189–2202
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