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Abstract—We present a general and flexible video-level framework for learning action models in videos. This method, called temporal
segment network (TSN), aims to model long-range temporal structures with a new segment-based sampling and aggregation module.
This unique design enables our TSN to efficiently learn action models by using the whole action videos. The learned models could be
easily deployed for action recognition in both trimmed and untrimmed videos with simple average pooling and multi-scale temporal
window integration, respectively. We also study a series of good practices for the implementation of TSN framework given limited
training samples. Our approach obtains the state-the-of-art performance on five challenging action recognition benchmarks: HMDB51
(71.0%), UCF101 (94.9%), THUMOS14 (80.1%), ActivityNet v1.2 (89.6%), and Kinetics400 (75.7%). In addition, using the proposed
RGB difference for motion models, our method can still achieve competitive accuracy on UCF101 (91.0%) while running at 340 FPS.
Furthermore, based on the proposed TSN framework, we won the video classification track at the ActivityNet challenge 2016 among
24 teams.
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1 INTRODUCTION

Video-based action recognition has drawn considerable
attention from the academic community [1], [2], [3], [4],
[5], owing to its applications in many areas like security
and behavior analysis. For action recognition in videos,
there are two crucial and complementary cues: appearances
and temporal dynamics. The performance of a recognition
system depends, to a large extent, on whether it is able to ex-
tract and utilize relevant information therefrom. However,
extracting such information is non-trivial due to a number of
difficulties, such as scale variations, view point changes, and
camera motions. Thus it becomes crucial to design effective
representations to tackle these challenges while learning
categorical information of action classes.

Recently, Convolutional Neural Networks (Con-
vNets) [6] have achieved great success in classifying
images of objects [7], [8], [9], scenes [10], [11], [12], and
complex events [13], [14]. ConvNets have also been
introduced to solve the problem of video-based action
recognition [1], [15], [16], [17]. Deep ConvNets come with
excellent modeling capacity and are capable of learning
discriminative representations from raw visual data in large-
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scale supervised datasets (e.g., ImageNet [18], Places [10]).
However, unlike image classification, improvement brought
by end-to-end deep ConvNets remains limited compared
with traditional hand-crafted features for video-based
action recognition.

We argue that the application of ConvNets to action
recognition in unconstrained videos is impeded by three
major obstacles. First, although long-range temporal struc-
ture has been proven crucial for understanding the dynam-
ics in traditional methods [19], [20], [21], [22], [23], it has not
been considered as a critical factor in deep ConvNet frame-
works [1], [15], [16], [17]. These methods usually focus on
appearances and short-term motions (i.e., up to 16 frames),
thus lacking the capacity to incorporate long-range temporal
structure. Recently there are a few attempts [4], [24], [25] to
deal with this problem. These methods mostly rely on dense
temporal sampling with a pre-defined sampling interval,
which would incur excessive computational cost when ap-
plied to long videos. More importantly, the limited memory
space available severely limits the duration of video to be
modeled. This poses a risk of missing important information
for videos longer than the affordable sampling duration.

Second, existing action recognition methods were mostly
devised for trimmed videos. However, to deploy the learned
action models in a realistic setting, we often need to
deal with untrimmed videos (e.g., THUMOS [26], Activi-
tyNet [27]), where each action instance may only occupy
a small portion of the whole video. The dominating back-
ground portions may interfere with the prediction of action
recognition models. To mitigate this issue, we need to take
account of focusing on action instances and avoiding the
influence of background video at the same time. Therefore,
it is a non-trivial task to apply the learned action models to
action recognition in untrimmed videos.

Third, training action recognition models often meets a
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number of practical difficulties: 1) training deep ConvNets
usually requires a large volume of training samples to
achieve optimal performance. However, publicly available
action recognition datasets (e.g., UCF101 [28], HMDB51 [29])
remain limited in both size and diversity, making the model
training prone to over-fitting. 2) optical flow extraction to
capture short-term motion information becomes a computa-
tional bottleneck for deploying the learned models to large-
scale action recognition datasets.

These challenges motivate us to study the action recogni-
tion problem in this paper from the following three aspects :
1) how to effectively learn video representation that captures long-
range temporal structure; 2) how to exploit these learned ConvNet
models for the more realistic setting of untrimmed videos; 3) how
to efficiently learn the ConvNet models given limited training
samples and apply them on large scale data.

To capture long-range temporal structure, we develop
a modular video-level architecture, called temporal segment
network (TSN), which provides a conceptually simple, flex-
ible, and general framework for learning action models
in videos. It is based on our observation that consecutive
frames are highly redundant, where a sparse and global temporal
sampling strategy would be more favorable and efficient in this
case. The TSN framework first extracts short snippets over
a long video sequence with a sparse sampling scheme,
where the video is first divided into a fixed number of
segments and one snippet is randomly sampled from each
segment. Then, a segmental consensus function is employed
to aggregate information from the sampled snippets. By this
means, temporal segment networks can model long-range
temporal structures over the whole video, in a way that its
computational cost is independent of the video duration. In
practice, we comprehensively study the effect of different
segment numbers and propose five aggregation functions
to summarize the prediction scores from these sampled
snippets, including three basic forms: average pooling, max
pooling, and weighted average, as well as two advanced
schemes: top-K pooling and adaptive attention weighting.
The latter two are designed to automatically highlight
discriminative snippets while reducing the impact of less
relevant ones during training, thus contribute to a better
learned action model.

To apply the action models learned by TSN to
untrimmed videos, we design a hierarchical aggregating
strategy, called Multi-scale Temporal Window Integration
(M-TWI), to yield the final prediction results for untrimmed
videos. Most of previous action recognition methods are
constrained to classify manually trimmed video clips. How-
ever, this setting may be impractical and unrealistic, as
videos on the web are untrimmed by nature and manually
trimming these videos is labor demanding. Following the
idea of temporal segment network framework, we first di-
vide the untrimmed video into a sequence of short windows
of fixed duration. We then perform action recognition for
each window independently by max pooling over these
snippet-level recognition scores inside this window. Finally,
following the aggregation function of temporal segment net-
work framework, we employ the top-K pooling or attention
weighting to aggregate the predictions from these windows
to produce the video-level recognition results. Due to its ca-
pability of implicitly selecting intervals with discriminative

action instances while suppressing the influence of noisy
background, this newly designed aggregation module is
effective for untrimmed video recognition

To tackle the practical difficulties in learning and apply-
ing action recognition models, we discover a number of
good practices to resolve the issues caused by the limited
training samples, and perform a systematical study over
the input modalities to unleash the full potential of Con-
vNets for action recognition. Specifically, we first propose
a cross-modality initialization strategy to transfer the learned
representations from RGB modality to other modalities like
optical flow and RGB difference. Second, we develop a
principled method to perform Batch Normalization (BN) in
a fine-tuning scenario, denoted as partial BN, where only the
mean and variance of first BN layer are updated adaptively
to handle domain shift. Moreover, to fully utilize visual con-
tent from videos, we empirically study four types of input
modalities with our temporal segment network framework,
namely a single RGB image, stacked RGB difference, stacked
optical flow field, and stacked warped optical flow field.
Combining RGB and RGB difference, we build the best-ever
real-time action recognition system, which has numerous
potential applications in real-world problems.

We perform experiments on five challenging action
recognition datasets, namely HMDB51 [29], UCF101 [28],
THUMOS [26], ActivityNet [27], and Kinetics [30], to ver-
ify the effectiveness of our method for action recognition
in both trimmed and untrimmed videos. In experiments,
models learned using the temporal segment network signif-
icantly outperform the state of the art on these four chal-
lenging action recognition benchmark datasets. Addition-
ally, following the basic temporal segment network frame-
work, we further improve our action recognition method
by introducing the latest deep model architectures (e.g.,
ResNet [31] and Inception V3 [32]), and incorporating the
audio as a complementary channel. Our final action recog-
nition method secures the 1st place in untrimmed video
classification at the ActivityNet Large Scale Activity Recog-
nition Challenge 2016. We also visualize our learned two-
stream models trying to provide insights into how they
work. These visualized models also justify the effectiveness
of our temporal segment network framework qualitatively.

Overall, we analyze different aspects of the problems
in efficiently and effectively learning and applying action
recognition models and make three major contributions:
1) we propose an end-to-end framework, dubbed temporal
segment network (TSN), for learning video representation
that captures long-term temporal information; 2) we design
a hierarchical aggregation scheme to apply action recogni-
tion models to untrimmed videos; 3) we investigate a series
of good practices for learning and applying deep action
recognition models.

This journal paper extends our previous work [33] in
a number of aspects. First, we introduce new aggregation
functions into the temporal segment network framework,
which turn out to be effective to highlight important snip-
pets while suppress background noise. Second, we extend
the original action recognition pipeline to untrimmed video
classification, by designing a hierarchical aggregating strat-
egy. Third, we add more exploration studies on the differ-
ent aspects of temporal segment network framework and
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more experimental investigation on three new datasets (i.e.,
THUMOS, ActivityNet, and Kinetics). Finally, based on our
temporal segment network framework, we present an effec-
tive and efficient action recognition solution for ActivtyNet
Large Scale Activity Challenge 2016, which ranks #1 in
untrimmed video classification among 24 teams, and give a
detailed analysis on different components of our method to
highlight the important ingredients. The code of our method
and learned models are publicly available to facilitate future
research 1.

2 RELATED WORK

Action recognition has been studied extensively in recent
years and readers can refer to [34], [35], [36] for good sur-
veys. Here, we only cover the work related to our methods.

2.1 Video Representation
For action recognition in videos, the visual representation
plays a crucial role. We roughly categorize the related action
recognition approaches into two types: methods based on
hand-crafted features and those using deeply-learned features.

Hand-crafted features. In recent years, researchers have
developed many different spatio-temporal feature detec-
tors for video, such as 3D-Harris [37], 3D-Hessian [38],
Cuboids [39], Dense Trajectories [40], Improved Trajecto-
ries [2]. Usually, a local 3D-region is extracted around the
interest points or trajectories, and a histogram descriptor is
computed to capture the appearance and motion informa-
tion, such as Histogram of Gradient and Histogram of Flow
(HOG/HOF) [41], Histogram of Motion Boundary (MBH)
[40], 3D Histogram of Gradient (HOG3D) [42], Extended
SURF (ESURF) [38], and so on. Then encoding methods are
employed to aggregate these local descriptors into a global
representation, and typical encoding methods include Bag
of Visual Words (BoVW) [43], Fisher vector (FV) [44], Vector
of Locally Aggregated Descriptors (VLAD) [45], and Multi-
View Super Vector (MVSV) [46]. These local features share
the merits of locality and simplicity, but may lack semantic
and discriminative capacity.

To overcome the limitation of local descriptors, several
mid-level representations have been proposed for action
recognition [3], [23], [47], [48], [49], [50], [51]. Raptis et al.
[47] grouped similar trajectories into clusters, each of which
was regarded as an action part. Jain et al. [48] extended the
idea of discriminative patches into videos and proposed dis-
criminative spatio-temporal patches for representing videos.
Zhang et al. [49] proposed to discover a set of mid-level
patches in a strongly-supervised manner. Similar to 2-D
poselet [52], they tightly clustered action parts using human
joint labeling, dubbed acteme. Wang et al. [3] proposed
a data-driven approach to discover those effective parts
with high motion salience, known as motionlet. Zhu et al.
[50] proposed a two-layer acton representation for action
recognition. The weakly-supervised actons were learned
via a max-margin multi-channel multiple instance learn-
ing framework. Wang et al. [23] proposed a multiple level
representation called as MoFAP by concatenating motion
features, atoms, and phrases. Sadanand et al. [51] presented

1. https://github.com/yjxiong/temporal-segment-networks/

a high-level video representation called as Action Bank by
using a set action templates to describe the video content. In
summary, these mid-level representations have the merits of
representative and discriminative power, but still depends
on the low-level hand-crafted features.

Deeply-learned features. Several works have been try-
ing to learn deep features and design effective ConvNet
architectures for action recognition in videos [1], [4], [5],
[15], [16], [24], [25], [53], [54], [55]. Karpathy et al. [15] first
tested ConvNets with deep structures on a large dataset
(Sports-1M). Simonyan et al. [1] designed two-stream Con-
vNets containing spatial and temporal nets by exploiting
ImageNet dataset for pre-training and calculating optical
flow to explicitly capture motion information. Tran et al. [16]
explored 3D ConvNets [53] on the realistic and large-scale
video datasets, where they tried to learn spatio-temporal
features with the operations of 3D convolution and pooling.
Carreira et al. [56] proposed a new Two-Stream Inflated 3D
CNNs (I3D) based on 2D CNN inflation, which allows for
pre-training with ImageNet models. Sun et al. [54] proposed
a factorized spatio-temporal ConvNets and exploited differ-
ent ways to decompose 3D convolutional kernels, and Qiu
et al. [57] designed a new Pseudo-3D Residual Networks by
implementing spatio-temporal factorization with a residual
learning module. Wang et al. [5] proposed a hybrid rep-
resentation by using trajectory-pooled deep-convolutional
descriptors (TDD), which share the merits of improved
trajectories [2] and two-stream ConvNets [1]. Feichtenhofer
et al. [58] further extended the two-stream ConvNets with
convolutional fusion of two streams. Several works [4],
[25], [55] tried to use recurrent neural networks (RNN), in
particular LSTM, to model the temporal evolution of frame
features for action recognition in videos.

Our work is related to those deep learning methods.
In fact, any existing ConvNet architecture can work with
TSN framework, and thus be combined with the proposed
sparse sampling strategy and aggregation functions to en-
hance the modeling capacity with long-range information.
Meanwhile, our temporal segment network is an end-to-end
architecture, where the model parameters could be jointly
optimized with the standard back propagation algorithm.

2.2 Temporal Structure Modeling

Many research works have been devoted to modeling the
temporal structure of video for action recognition [19], [20],
[21], [22], [59], [60]. Gaidon et al. [20] annotated each atomic
action for each video and proposed Actom Sequence Model
(ASM) for action detection. Niebles et al. [19] proposed to
use latent variables to model the temporal decomposition
of complex actions, and resorted to the Latent SVM [61] to
learn the model parameters in an iterative approach. Wang
et al. [21] and Pirsiavash et al. [59] extended the temporal
decomposition of complex action into a hierarchical manner
using Latent Hierarchical Model (LHM) and Segmental
Grammar Model (SGM), respectively. Wang et al. [60] de-
signed a sequential skeleton model (SSM) to capture the
relations among dynamic-poselets, and performed spatio-
temporal action detection. Fernando et al. [22] modeled
the temporal evolution of BoVW representations for action
recognition.
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Several recent works focused on modeling long-range
temporal structure with ConvNets [4], [24], [25], [58]. In
general, these methods directly operated on a continuous
video frame sequence with recurrent neural networks [4],
[25], [55] or 3D ConvNets [24], [58]. Although these methods
aim to deal with longer video duration, they usually process
sequences of fixed lengths ranging from 5 to 120 frames
due to the limit of computational cost and GPU memory.
It is still non-trivial for these methods to learn from the
entire video due to their limited temporal coverage. Our
method differs from these end-to-end deep ConvNets by
its novel adoption of a sparse temporal sampling strategy,
which enables efficient learning using the entire videos
without the limitation of sequence length. Therefore, our
temporal segment network is a video-level and end-to-end
framework for temporal structure modeling on the entire
video.

3 TEMPORAL SEGMENT NETWORKS

In this section, we give a detailed description of our tem-
poral segment network framework. Specifically, we first
discuss the motivation of segment based sampling. Then,
we introduce the architecture of temporal segment net-
work framework. After this, we present several aggregat-
ing functions of temporal segment network and provide
analysis on these functions. Finally, we investigate several
practical issues for the instantiation of temporal segment
network framework.

3.1 Segment Based Sampling

As discussed in Sec. 1, long-range temporal modeling is
important for action understanding in videos. The existing
deep architectures such as two-stream ConvNets [1] and
3D convolutional networks [16] are designed to operate on
a single frame or a stack of frames (e.g., 16 frames) with
limited temporal durations. Therefore, these structures lack
capacity of incorporating long-range temporal information
of videos into the learning of action models.

In order to model long-range temporal structures, sev-
eral approaches have been proposed to stack more con-
secutive frames at a fixed sampling rate [4], [24], [58].
Although this dense and local sampling could help to relieve
the problem of the original short-term CovNets [1], [16], it
still suffers in both computational and modeling aspects. From
the computational perspective, it would greatly increase the
cost of ConvNet training, as this dense sampling usually
requires a large number of frames to capture long-range
structures. For example, it totally samples 100 frames in the
work of [24] and 120 frames for the method of [4]. From
the modeling perspective, its temporal coverage is still local
and limited by its fixed sampling interval, failing to capture
the visual content over the entire video. For instance, the
sampled 100 frames [24] only occupy a small portion of a
10-second video (around 300 frames).

We observe that although the frames are densely recorded in
the videos, the content changes relatively slowly. This motivates
us to explore a new paradigm for temporal structure model-
ing, called segment based sampling. This strategy is essentially
a kind of sparse and global sampling method. Concerning

the property of spareness, only a small number of sparsely
sampled snippets would be used to model the temporal
structures in a human action. Normally, the number of
sampled frames for one training iteration is fixed to a pre-
defined value independent of the durations of the videos.
This guarantees that the computational cost will be constant,
regardless of the temporal range we are dealing with. On
the global property, our segment based sampling ensures
these sampled snippets would distribute uniformly along
the temporal dimension. Therefore, no matter how long
the action videos will last for, our sampled snippets would
always roughly cover the visual content of whole video,
enabling us to model the long-range temporal structure
throughout the entire video. Based on this paradigm for
temporal structure modeling, we propose temporal segment
network, a video-level training framework as shown in
Figure 1, which would be explained in the next subsection.

3.2 Framework and Formulation
We aim to design an effective and efficient video-level
framework, coined Temporal Segment Network (TSN), by us-
ing a new strategy of segment based sampling. Instead of
working on a single frame or a short frame stack, temporal
segment networks operate on a sequence of short snippets
sampled from the entire video. To make these sampled
snippets represent the contents of the whole video while
still keeping reasonable computational cost, our segment
based sampling first divides the video into several seg-
ments of equal duration, and then one snippet is randomly
sampled from its corresponding segment. Each snippet in
this sequence produces its own snippet-level prediction of
the action classes, and a consensus function is designed
to aggregate these snippet-level predictions into the video-
level scores. This video-level score is more reliable and
informative than the original snippet-level prediction, since
it captures the long-range information over the entire video.
During the training process, the optimization objectives are
defined on the video-level predictions and optimized by
iteratively updating the model parameters.

Formally, given a video V , we divide it into K seg-
ments {S1, S2, · · · , SK} of equal durations. One snippet Tk
is randomly sampled from its corresponding segment Sk.
Then, the temporal segment network models a sequence of
snippets (T1, T2, · · · , TK) as follows:

TSN(T1, T2, · · · , TK) =

H(G(F(T1;W),F(T2;W), · · · ,F(TK ;W))).
(1)

Here, the temporal duration of each snippet Tk depends on
the input modalities and it could be 1 frame for RGB or 5
frames for Optical Flow and RGB Difference. F(Tk;W) is
the function representing a ConvNet with parameters W
which operates on the short snippet Tk and produces class
scores over all the classes. The segmental consensus function
G combines the outputs from multiple short snippets to
obtain a consensus of class hypothesis among them. Based
on this consensus, the prediction function H predicts the
probability of each action class for the whole video. Here
we choose the widely used Softmax function for H. In
our temporal segment network framework, the form of
consensus function G is of great importance, as it should
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Fig. 1. Temporal segment network: One input video is divided into K segments (here we show the K = 3 case) and a short snippet is randomly
selected from each segment. The snippets are represented by modalities such as RGB frames, optical flow (upper grayscale images), and RGB
differences (lower grayscale images). The class scores of different snippets from the same modality are fused by a segmental consensus function
to yield a video-level prediction. ConvNets on all snippets share the same parameters.

be equipped with high modeling capacity while still could
be differentiable or at least has subgradients. The high mod-
eling capacity refers to the ability to effectively aggregate
snippet-level prediction into video-level scores and the dif-
ferentiability allows our temporal segment network frame-
work to be easily optimized using backpropagation. We will
provide the details on these consensus functions in the next
subsection.

Combining standard categorical cross-entropy loss, the
final loss function regarding the segmental consensus G =
G(F(T1;W),F(T2;W), · · · ,F(TK ;W)) is formed as

L(y,G) = −
C∑
i=1

yi

gi − log
C∑

j=1

exp gj

 , (2)

where C is the number of action classes, yi the groundtruth
label concerning class i, and gj the jth dimension of G.
During the training phase of our temporal segment net-
work framework, the gradients of the loss value L with
respect to model parameters W can be derived as

∂L(y,G)

∂W
=
∂L
∂G

K∑
k=1

∂G

∂F(Tk)
∂F(Tk)
∂W

, (3)

where K is number of segments in temporal segment net-
work. When we use a gradient-based optimization method,
such as stochastic gradient descent (SGD), to learn the
model parameters, Eq. 3 shows that the parameter updates
are utilizing the segmental consensus G derived from all
snippet-level predictions. In this sense, temporal segment
network can learn model parameters from the entire video
rather than a short snippet. Furthermore, by fixing K for
all videos, we assemble a sparse temporal sampling to
select a small number of snippets. It drastically reduces the
computational cost for evaluating ConvNets on the frames,
compared with previous works using densely sampled
frames [4], [24], [25].

3.3 Aggregation Function and Analysis

As analyzed above, the consensus (aggregation) function
is an important component in our temporal segment net-
work framework. In this subsection, we give a detailed
description about the design of aggregation functions and
derive their gradients with respect to snippet-level pre-
diction scores. We also analyze the properties of different
kinds of aggregation functions and provide some modeling
insight. Specifically, we propose five types of aggregation
functions: max pooling, average pooling, top-K pooling,
weighted average, and attention weighting.

Max pooling. In this aggregation function, we apply max
pooling to the prediction score of each category among the
sampled snippets, i.e., gi = maxk∈{1,2,··· ,K} f

k
i , where fki is

the ith element of Fk = F(Tk;W). The gradient of gi with
respect to fki can be easily computed as:

∂gi
∂fki

=

{
1, if k = argmaxl f

l
i ,

0, otherwise. (4)

The basic idea of max pooling is to seek a single and
most discriminative snippet for each action class and utilize
this strongest activation as the video-level response of this
category. Intuitively, it devotes its emphasis to a single
snippet, while completely ignoring the responses of other
snippets. Thus, this aggregating function encourages tem-
poral segment network to learn from a most discriminative
snippet for each action class, but lacks the capacity of
jointly modeling multiple snippets for a video-level action
understanding.

Average pooling. One alternative to max pooling aggre-
gation function is the average pooling, where we perform
average operation over these snippet-level prediction scores
for each class, i.e., gi = 1

K

∑K
k=1 f

k
i . The gradient of average

aggregation function gi withe respect to fki is derived as
follows:

∂gi
∂fki

=
1

K
. (5)
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The basic intuition behind average pooling is to leverage
the responses of all snippets for action recognition, and use
their mean activation as the video-level prediction. In this
sense, average pooling is able to jointly model multiple
snippets and capture the visual information from the whole
video. On the other hand, in particular for noisy videos
with complex background, some snippets may be action-
irrelevant and averaging over these background snippets
may hurt the final recognition performance.

Top-K pooling. To strike a balance between max pool-
ing and average pooling, we propose a new aggregation
function, named Top-K pooling. In this aggregation function,
we first select K most discriminative snippets for each
action category and then perform average pooling over
these selected snippets, i.e., gi = 1

K
∑K

k=1 αkf
k
i , where αk

is the indicator of selection, and is set as 1 if selected
and otherwise 0. Max pooling and average pooling can be
considered as special cases of top-K pooling, where K is
set to 1 or K , respectively. Similarly, the gradient of gi with
respect to fki can be computed as follows:

∂gi
∂fki

=

{
1
K , if αk = 1,
0, otherwise. (6)

Intuitively, this aggregation function is able to determine
a subset of discriminative snippets adaptively for different
videos. As a result, it shares merits of both max pooling
and average pooling, having capacity of jointly modeling
multiple relevant snippets while avoiding the influence of
background snippets.

Linear weighting. In this aggregation function, we aim
to perform an element-wise weighted linear combination on
the prediction score for each action category. Specifically, we
define the aggregation function as gi =

∑K
k=1 ωkf

k
i , where

wk is the weight for the kth snippet. In this aggregation
function, we introduce a model parameter ω and compute
the gradients of gi with respect to fki and wk as follows:

∂gi
∂fki

= ωk,
∂gi
∂ωk

= fki . (7)

In practice, we use this equation to update the network
weights W and the combination weights ω alternatively.
The basic assumption underlying this aggregation function
is that action can be decomposed into several phases and
these different phases may play different roles in recogniz-
ing action classes. This aggregation function is expected to
learn importance weights of different phases of an action
class. Compared with previous pooling based aggregation
functions, this linear weighting acts as a soft version of
snippet selection.

Attention weighting. It is obvious that the above linear
weighting scheme is data independent, thus lacking the
capacity of considering the difference between videos. To
overcome this limitation, we propose an adaptive weighting
method, called attention weighting. In this aggregation func-
tion, we aim to learn a function to automatically assign an
importance weight to each snippet according to the video
content. Formally, the aggregation function is defined as
gi =

∑K
k=1A(Tk)fki , where A(Tk) is the attention weight

for snippet Tk and calculated according to video content

adaptively. Within this formulation, we could calculate the
gradient of gi with respect to fki and A(Tk) as follows:

∂gi
∂fki

= A(Tk),
∂gi

∂A(Tk)
= fki . (8)

In this attention weighting scheme, the design of at-
tention weighting function A(Tk) is crucial for final per-
formance. In the current implementation, we first extract
visual feature R = R(Tk) from each snippet with the same
ConvNet and then produce the attention weights as:

ek = ωattR(Tk),

A(Tk) =
exp(ek)∑K
l=1 exp(el)

,
(9)

where ωatt is the parameter of attention weighting function
and will be learned jointly with network weights W. Here
R(Tk) is the visual feature for the kth snippet. Currently it is
the activation of last hidden layer. Within this formation, we
can calculate the gradient of A(Tk) with respect to attention
model parameter ωatt as:

∂A(Tk)
∂ωatt

=
K∑
l=1

∂A(Tk)
∂el

R(Tl), (10)

where the gradient of ∂A(Tk)
∂el

is computed as:

∂A(Tk)
∂el

=

{
A(Tk)(1−A(Tl)), if l = k,
−A(Tk)A(Tl), otherwise. (11)

Having this gradient formula, we can learn the attention
model parameters ωatt using back-propagation together
with the ConvNet parameters W. In addition, due to the
introduction of attention model A(Tk), the basic back-
propagation formula in Eq. 3 should be rectified as follows:

∂L(y,G)

∂W
=
∂L
∂G

K∑
k=1

(
∂G

∂F(Tk)
∂F(Tk)
∂W

+
∂G

∂A(Tk)
∂A(Tk)
∂W

)
.

(12)
Overall, the advantages of introducing attention model
A(Tk) come from two aspects: (1) The attention model
enhances the modeling capacity of our temporal segment
network framework by automatically estimating the impor-
tance weight of each snippet based on the video content. (2)
Due to the fact that the attention model is based on ConvNet
representations R, it leverages extra backpropagation infor-
mation to guide the learning process of ConvNet parameter
W and may accelerate the convergence of training.

3.4 TSN in Practice

Temporal segment network (TSN) provides a general frame-
work to perform video-level learning. In order to train TSN
models to achieve optimal performance, a few practical
issues have to be taken into account. To this end, we study
a series of practical matters from the aspects of TSN archi-
tectures, TSN inputs, and TSN training.

TSN Architectures. Our TSN is a general and flexible
framework for video-level learning. To demonstrate the
generality of our approach, we instantiate TSN with mul-
tiple network architectures. Specifically, for ablation stud-
ies on standard action recognition benchmarks, we choose
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Fig. 2. Examples of four types of input modality: RGB images, RGB
difference, optical flow fields (x,y directions), and warped optical flow
fields (x,y directions)

the Inception architecture with Batch Normalization (BN-
Inception) [62] due to its good balance between accuracy
and efficiency. Compared with other ConvNet architectures
deployed in videos [1], [16], this architecture is equipped
with better modeling capacity, allowing to demonstrate
the improvement of TSN against a strong baseline. In the
ActivtyNet Challenge 2016, we investigate more powerful
architectures including the Inception V3 [32] and ResNet-
152 [31], to fully unleash the potential of TSN framework in
video classification. In addition, we also instantiate the TSN
with the architecture of I3D [56] on the Kinetics dataset,
which unifies the short-term modeling (3D convolution and
pooling) and long-term training.

TSN Inputs. Unlike static images, the additional tempo-
ral dimension of videos delivers another important cue for
action understanding, namely motion. In [1], using dense
optical flow fields as the source of motion representation is
proven to be effective. In this work, we extend this approach
in two aspects, namely accuracy and speed. As shown in
Figure 2, in addition to the original input modalities of
RGB and optical flow [1], we also investigate two other
modalities: warped optical flow and RGB differences.

1) Warped Optical Flow. Inspired by the work of improved
dense trajectories [2], we investigate using warped optical
flow fields as the source for motion modeling. Warped
optical flow fields are known to be robust to camera motion
and help concentrate on human motion. We expect this to
help to improve the accuracy in motion perception and thus
boost the action recognition performance.

2) RGB Differences. Despite the superior recognition accu-
racy, one issue that impedes the application of two-stream
based approaches is the tremendous time cost of optical
flow extraction. To address this problem, we build a motion
representation without optical flow. Inspired by the success
of frame volumes [16] and motion vector [17] in motion
modeling, we revisit the simplest cues for apparent motion
perception: the stacked differences of RGB pixel intensities
between consecutive frames. Recalling the seminal work
on dense optical flow in [63], the partial derivatives of
pixel intensities with respect to time play critical roles in
computing optical flow. It is reasonable to hypothesize that
the power of optical flow in representing motion could
be learned from the simple cues of RGB differences. This
motivates us to investigate using RGB differences as the
input of the temporal stream, which greatly saves the time
of optical flow extraction.

TSN Training. As discussed before, existing human

annotated datasets for action recognition are limited in
terms of sizes. In practice, training deep ConvNets on these
datasets are prone to over-fitting. To mitigate this issue,
we design several strategies to improve the training in the
temporal segment network framework.

1) Cross Modality Initialization. Pre-training the network
parameters on large-scale image recognition datasets, such
as ImageNet [18], has turned out to be an effective remedy
when the target dataset does not have enough training
samples [1]. As spatial networks take RGB images as in-
puts, it is natural to exploit models trained on the Im-
ageNet as initialization. For other input modalities such
as optical flow and RGB difference, we come up with a
cross modality initialization strategy. Specifically, we first
discretize optical flow fields into the interval of 0 to 255
by linear transformation. Then, we average the weights of
pretrained RGB models across the RGB channels in the first
layer and replicate the mean by the channel number of
temporal network input. Finally, the weights of remaining
layers of the temporal network are directly copied from the
pretrained RGB networks.

2) Regularization. Batch Normalization [62] is able to deal
with the problem of covariate shift by estimating the activa-
tion mean and variance within each batch to normalize these
activation values. This operation speeds up the convergence
of training, but also increases the risk of over-fitting in the
transfer learning process, due to the biased estimation of
mean and variance from a limited number of training sam-
ples in target dataset. Therefore, after initialization with pre-
trained models, we choose to freeze the mean and variance
parameters of all Batch Normalization layers except the first
one. As the distribution of optical flow is different from the
RGB images, the activation value of first convolution layer
will have a distinct distribution and we need to re-estimate
the mean and variance accordingly. We call this strategy
partial BN. Meanwhile, we add an extra dropout layer with
high dropout ratio (set as 0.8 in experiment) after the global
pooling layer to further reduce the effect of over-fitting.

3) Data Augmentation. In the original two-stream Con-
vNets [1], random cropping and horizontal flipping are
employed to augment training samples. We exploit two new
data augmentation techniques: corner cropping and scale-
jittering. In the corner cropping technique, the extracted
regions are only selected from the corners or the center of an
image to avoid implicitly focusing more on the center area.
In the multi-scale cropping technique, we adapt the scale
jittering technique [8] used in ImageNet classification to
action recognition. We present an efficient implementation
of scale jittering. We fix the input size as 256× 340, and the
width and height of cropped regions are randomly selected
from {256, 224, 192, 168}. Finally, these cropped regions will
be resized to 224 × 224 for network training. In fact, this
implementation not only contains scale jittering, but also
involves aspect ratio jittering.

4 ACTION RECOGNITION WITH TSN MODELS

With the principled framework of temporal segment net-
works, there still remains the question of how to use the
models learned with this framework to recognize actions in
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realistic videos. In this section, we describe how to apply ac-
tion models under two different conditions: trimmed videos
and untrimmed videos, and devise a series of techniques in
order to improve the robustness of action recognition.

4.1 Action Recognition in Trimmed Video
In trimmed videos, action instances are manually cropped
from the long video sequences and thereby action recogni-
tion could be simply cast as a classification problem. Due to
the fact that all snippet-level ConvNets share the model pa-
rameters in temporal segment networks, the learned models
can perform frame-wise evaluation as normal ConvNets [1].
This also allows us to carry out fair comparison with models
learned without the temporal segment network framework.
Specifically, we follow the testing scheme of the original
two-stream ConvNets [1], where we sample 25 snippets
of different modalities. Meanwhile, we crop 4 corners and
1 center, and their horizontal flipping from the sampled
snippets to evaluate the ConvNets. We use average pooling
to aggregate the predictions of different crops and snippets.
For the fusion of predictions from multiple modalities, we
take a weighted average of them, where the fusion weights
are determined empirically. It is described in Sec. 3.2 that the
segmental consensus function is applied before the Softmax
normalization. To test the models in compliance with their
training, we fuse the prediction scores of 25 frames and
different streams before Softmax normalization.

4.2 Action Recognition in Untrimmed Videos
The major obstacle for action recognition in untrimmed
videos is the large portion of irrelevant content in the input
videos. Since our action models are trained on trimmed
action clips, reusing the technique used for trimmed video,
i.e., simply averaging scores from every location in a video,
has a high risk of factoring in the unpredictable responses of
the models on background contents. This makes it necessary
to design a specialized method for applying the trained
action recognition models to untrimmed videos. For this
purpose, we start by summarizing the following challenges
posed by untrimmed videos.

• Location issue: an action clip can appear at any
temporal location of the video.

• Duration issue: the action clip can be either long-
lasting or ephemeral.

• Background issue: the irrelevant content in a video
can have high variations and can possibly occupy a
large portion of the whole duration of a video.

To deal with these challenges, we develop a detection
based method to apply action models to untrimmed videos.
First, to cover any location that the action instance can
reside, we sample snippets from the input videos in a fixed
sampling rate (e.g., 1FPS). A trained TSN model is then eval-
uated on these sampled snippets. Then, in order to cover the
highly varying durations of action clips, a series of temporal
sliding windows with different sizes are then applied on the
frame scores. The maximum scores of the classes within a
window are used to represent it. To alleviate the interference
of background contents, windows with the same length
are then aggregated with a top-K pooling scheme. The

aggregation results from different window sizes then vote
for the final prediction of the whole video.

Formally, for a video in length of M seconds, we will
obtain M snippets {T1, . . . , TM}. Applying the TSN model,
we will obtain class scores F(Tm) for the snippet Tm.
We then build temporal sliding windows with the size of
l ∈ {1, 2, 4, 8, 16}. The windows will slide through the
whole duration of videos, with a stride of 0.8 × l. For
a window position starting at the sth second, a series of
snippets will be covered as {Ts+1, . . . , Ts+l}, with their
class scores {F(Ts+1), . . . ,F(Ts+l)}. The class scores for
this window Fs,l can be calculated by:

F s,l
i = max

p∈{1,2...,l}
{fs+p

i }. (13)

In this way, for size l we will obtain N l windows, where
N l = b M

0.8lc. Then we apply the aforementioned top-K
pooling scheme to obtain the consensus Gl of from these
N l windows of size l. Here the parameter K is determined
as K = max(15, dN l/4e). This gives us 5 sets of class scores
for window size l ∈ {1, 2, 4, 8, 16}. The final score is then
calculated as P = 1

5

∑
l∈{1,2,4,8,16}G

l, which is the average
of the five window sizes. We term this video classification
technique as Multi-scale Temporal Window Integration, abbre-
viated as M-TWI.

5 EXPERIMENTS

In this section, we first introduce the evaluation datasets and
implementation details of our approach. Then we discuss
the practical issues for action recognition with deep learning
and our proposed good practices to mitigate them. After
dealing with these issues, we provide detailed analysis of
the proposed temporal segment network framework, to
demonstrate the importance of modeling long-term tem-
poral structures. Finally, we compare the performance of
our method with the state of the art on the four action
recognition benchmarks. We also present the results of our
approach in the ActivityNet challenge 2016 and describe the
winner solution to this challenge. Additionally, we visualize
our learned ConvNet models to help qualitatively justify the
performance improvement.

5.1 Datasets

The datasets adopted to evaluate the performance of tem-
poral segment network framework are from two types of
videos, i.e., trimmed videos and untrimmed videos. Now
we describe the details of these datasets.

Trimmed Video Datasets. We conduct experiments
on three standard action recognition datasets of trimmed
videos, namely HMDB51 [29], UCF101 [28], and Kinet-
ics400 [30]. The UCF101 dataset contains 101 action classes
and 13, 320 video clips. We follow the evaluation scheme
of the THUMOS13 challenge [64] and adopt the three train-
ing/testing splits for evaluation. The HMDB51 dataset is
a large collection of realistic videos from various sources,
such as movies and web videos. The dataset is composed
of 6, 766 video clips from 51 action categories. Our exper-
iments follow the original evaluation scheme using three
training/testing splits and report average accuracy over
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these splits. The Kinetics400 dataset is the largest well-
labeled action recognition dataset. Its current version con-
tains 400 action classes and each category has at least 400
videos. In total, there are around 240, 000 training videos,
20, 000 validation videos, and 40, 000 testing videos. The
evaluation metric on the Kinetics dataset is the top-1 and
top-5 accuracy.

Untrimmed Video Datasets. We conduct experiments of
untrimmed video action recognition on two publicly avail-
able large-scale datasets. The first is the THUMOS14 [65]. It
has 101 classes of human actions. This dataset is composed
of training set, validation set, testing set, and background
set. We use the training set (UCF101) and validation set
(1, 010 videos) for TSN training and evaluate the learned
models on its testing set, which has 1, 575 videos. The
second dataset for untrimmed videos is the ActivityNet [27]
dataset. We use its release version 1.2, termed as ActivityNet
v1.2. The ActivityNet v1.2 dataset has 100 classes of human
activities. It consists of 4, 819 videos for training, 2, 383
videos for validation, and 2, 480 videos for testing. We
follow the standard splits to train and evaluate the our
TSN framework. On both datasets for untrimmed videos,
the evaluation metric is mean average precision (mAP) for
action recognition.

5.2 Implementation Details
We use the mini-batch stochastic gradient descent algorithm
to learn the network parameters, where the batch size is
set to 128 and momentum set to 0.9. We initialize network
weights with pre-trained models from ImageNet [18]. We set
a smaller learning rate in our experiments. On the dataset of
UCF101, for spatial networks, the learning rate is initialized
as 0.001 and decreases to its 1

10 every 1, 500 iterations.
The whole training procedure stops at 3, 500 iterations. For
temporal networks, we initialize the learning rate as 0.005,
which reduces to its 1

10 after 12, 000 and 18, 000 iterations.
The maximum iteration is set as 20, 000. To speed up train-
ing, we employ a data-parallel strategy with multiple GPUs,
implemented with our modified version of Caffe [66] and
OpenMPI 2. The whole training time on UCF101 is around
0.6 hours for spatial TSNs and 8 hours for temporal TSNs
with 8 TITANX GPUs. For other datasets such as HMDB51,
THUMOS14, ActivityNet, the learning process is the same
with that of UCF101, except that the iteration numbers are
adjusted according to the dataset sizes. Concerning data
augmentation, we use the techniques of location jittering,
horizontal flipping, corner cropping, and scale jittering, as
specified in Section 3.4. For the extraction of optical flow
and warped optical flow, we choose the TVL1 optical flow
algorithm [67] implemented by OpenCV with CUDA. If
not specifically noted, the experiments in the section are
conducted with BN-Inception [62] as the underlying CNN
architecture.

5.3 Effectiveness of the Proposed Practices
In this section, we focus on investigating the effect of the
good practices described in Sec. 3.4, including the train-
ing strategies and the input modalities. In this exploration

2. https://github.com/yjxiong/caffe

TABLE 1
Exploration of different training strategies for two-stream ConvNets on
the UCF101 dataset (split 1). Here, “from scratch” refers to the case

we initialize the CNN parameters with Gaussian distribution. “pre-train
spatial” means only pre-training spatial stream CNN while training

temporal stream CNN from scratch. Experiments here are conducted
without TSN.

Training setting Spatial Temporal Two-Stream
Baseline [1] 72.7% 81.0% 87.0%
From Scratch 48.7% 81.7% 82.9%
Pre-train Spatial 84.1% 81.7% 90.0%
+ Cross modality pre-training 84.1% 86.6% 91.5%
+ Partial BN with dropout 84.5% 87.2% 92.0%

without corner cropping 84.2% 86.8% 91.8%

study, we use the two-stream ConvNets with very deep
architecture adapted from [62].

Different learning strategy. Compared with the original
two-stream ConvNets [1], we propose two new training
strategies in Section 3.4, namely cross modality pre-training
and partial BN with dropout. Specifically, we compare four
settings on the split1 of UCF101: (1) training from scratch;
(2) only pre-train spatial stream as in [1]; (3) with cross
modality pre-training; (4) combination of cross modality
pre-training and partial BN with dropout. The results are
summarized in Table 1. First, we see that the performance of
training from scratch is much worse than that of the original
two-stream ConvNets (baseline), which implies carefully
designed learning strategy is necessary to reduce the risk of
over-fitting, especially for spatial networks. Then, we resort
to the pre-training of the spatial stream and cross modal-
ity pre-training of the temporal stream to help initialize
two-stream ConvNets and it achieves better performance
than the baseline. We further utilize the partial BN with
dropout to regularize the training procedure, which boosts
the recognition performance to 92.0%. We also perform a
comparative experiment to verify the effectiveness of corner
cropping by cropping regions in a 3 × 3 grid. We report
the performance in the last row of Table 1 and its result
is slightly worse than corner cropping. Therefore, in the
remaining experiments, we employ all these good practices
for model training.

Different input modalities. We propose two new types
of modalities in Section 3.4: RGB difference and warped
optical flow fields. We try combining different modalities
and report the results in Table 2. These experiments are
carried out with all the good practices verified in Table 1.
We perform multiple experiments with or without TSN (7
segments) to investigate the performance of different input
modalities. We first observe that RGB and optical flow,
which is the basic combination in the two-stream ConvNets
also works well with TSN, yielding recognition accuracy
of 94.9%. Then we observe that the warped optical flow
slightly increases the performance (94.9% to 95.0%), but
severely slows down the testing speed to only 5 FPS. So
we only use RGB and optical flow to report the final perfor-
mance. Another interesting finding is that the simple motion
representation of RGB differences, when used together with

3. This result is got by personal communication with the first author
of [17].
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TABLE 2
Exploration of different combination of modalities with TSN on the

UCF101 dataset (over three splits). In this table, “RGB” refers to the
RGB video frame stream. “Flow” refers to modality of optical flow input.
“Warp” refers to the modality of warped optical flow. “RGB Diff.” refers
to the modality using differences of RGB video frames. The speed for
testing is evaluated on a TitanX GPU. In the lower half of the table, we

compare “RGB+RGB Diff.” with other real-time action recognition
methods (FPS > 30).

Modalities TSN Accuracy Speed (FPS)
RGB+Flow No 92.4% 14
RGB+Flow Yes 94.9% 14
RGB+Flow+Warp Yes 95.0% 5
EMV [17] - 81.6% 3 480
RGB Diff. No 84.2% 660
RGB Diff. Yes 87.7% 660
Two-Stream 3DCNN [68] - 90.2% 246
RGB+EMV [17] - 86.4% 390
RGB+RGB Diff. No 86.8% 340
RGB+RGB Diff. Yes 91.0% 340

TABLE 3
Comparison of segment based sampling of TSN with the regular

sampling on the UCF101 dataset (over three splits). For fair
comparison, in addition to sampling strategy, the remaining

implementation details are kept the same. The number of sampled
snippets is set as 3.

Sampling strategy Spatial Temporal Two-Stream
Regular sampling (stride 1) 84.3% 85.6% 92.1%
Regular sampling (stride 5) 84.9% 86.7% 93.2%
Regular sampling (stride 10) 85.3% 86.6% 93.5%
Regular sampling (stride 15) 85.3% 86.5% 93.6%
Regular sampling (stride 20) 85.3% 86.6% 93.7%

Segment based sampling (TSN) 86.5% 89.8% 94.2%

RGB data under TSN framework, can provide competitive
recognition performance (91.0%) while running at a very
fast speed of 340FPS. It also outperforms other state-of-the-
art real-time action recognition methods as shown in Table 2.
This suggests that “RGB + RGB Diff.” can serve well for
building real-time action recognition systems with moderate
accuracy requirement.

5.4 Study on Temporal Segment Networks

In this subsection, we focus on studying the effectiveness
of temporal segment network framework. As described
in Sec 3, the TSN framework is based on segment based
sampling, which provides an efficient and effective scheme
for video-level learning. We first compare segment based
sampling with the regular sampling method [4], [24], [58]
on the dataset of UCF101, to demonstrate the effectiveness
of segment based sampling. In addition, the TSN frame-
work has two other critical components: the sparse snippet
sampling scheme and the segment consensus (aggregation)
functions. To analyze the TSN framework in-depth, we first
explore the effect of segment number and then analyze dif-
ferent consensus (aggregation) functions. These experiments
are performed on the datasets of UCF101 and ActivityNet,
to reflect the scenarios of both trimmed and untrimmed
video action recognition. Finally, to further demonstrate
the importance of TSN in long-range modeling, we also

compare the performance of TSN with other very deep
network architectures on the UCF101 dataset.

Study on segment based sampling. Our proposed
segment based sampling is a global and sparse sampling
method. Compared with those regular sampling meth-
ods [4], [24], [58], it aims to model long-term temporal
structure in a more efficient and effective way. Here we
perform an experimental comparison with the regular sam-
pling method. Specifically, for regular sampling, we select
T snippets (each snippet has a single frame for RGB and 5
stacked frames for Flow) at a fixed sampling stride τ . For
fair comparison, the remaining implementation details are
kept the same, such as sampled snippet number, training
strategy, and snippet-level score fusion.

The experimental results are summarized in Table 3. In
this experiment, we keep the number of sampled snippets
as 3 and vary the sampling stride τ from 1 to 20. We see that
increasing sampling stride would improve the performance
of regular sampling (from 92.1% to 93.7%), as a larger sam-
pling stride contributes to longer-term modeling. However,
the performance of regular sampling is still lower than that
of segment based sampling (93.7% vs. 94.2%). We analyze
that our proposed segment based sampling is adaptive to
the video duration and capable of describing the visual
content of entire video.

Evaluation on segment number. The most crucial pa-
rameter governing the sparse snippet sampling scheme in
TSN is the number of segmentsK . WhenK equals to 1, TSN
degenerates to the plain two-stream ConvNets. Increasing
K is expected to improve the recognition performance of
the learned models. In experiments, we vary the number
of K from 1 to 9 and evaluate the recognition performance
using the same test approaches.

The results are summarized in Table 4. We observe that
increasing the number of segments will generally lead to
better performance. For example, the performance of TSN
with 7 segments is better than that of TSN with 3 seg-
ments (94.9% vs. 94.2%). This improvement implies that
using more temporal segments will help to capture richer
information to better model temporal structure of the whole
video . However, when the segment number K increases
from 5 to 9, it brings a very small improvement. Thus,
to strike a balance between recognition performance and
computational burden, we set K = 7 in the following
experiments.

Evaluation on aggregation function. In Eq. (1), a seg-
mental consensus function is defined by its aggregation
function G, which could be crucial to the final recognition
performance. Here we evaluate five candidates, including
the relatively basic: (1) max pooling, (2) average pooling, (3)
weighted average, and the more complex: (4) top-K pooling
and (5) attention weighting, for the form of G.

The experimental results are summarized in Table 5. On
UCF101, which consists of trimmed human action videos,
the average aggregation function achieves the best perfor-
mance, and the weight average and attention weighting
obtain quite similar performance. On ActivityNet, the top-
K and attention weighting aggregation functions achieve
comparable performance, which slightly outperforms (0.4%)
the basic ones such as average pooling. This fact suggests
that on datasets with more complex and diverse temporal
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TABLE 4
Exploration of different segment numbers K in temporal segment networks on the UCF101 dataset (over three splits) and the ActivityNet dataset

(train on the training set and test on the validation set). We use the average consensus function in these experiments.

Dataset UCF101 ActivityNet v1.2 Val.
K Spatial Temporal Two-Stream (1:1) Spatial Temporal Two-Stream (1:0.5)
1 85.0% 88.3% 92.4% 82.0% 61.4% 84.7%
3 86.5% 89.8% 94.2% 83.6% 70.6% 86.9%
5 86.7% 90.1% 94.7% 84.6% 72.9% 87.6%
7 86.4% 90.1% 94.9% 84.0% 72.8% 87.8%
9 86.2% 89.7% 94.9% 83.7% 72.6% 87.9%

TABLE 5
Exploration of different segmental consensus functions for temporal segment networks on the UCF101 dataset (over three splits) and the

ActivtyNet dataset (train on the training set and test on the validation set). We set segment number K as 7 in these experiments.

Dataset UCF101 ActivityNet v1.2 Val.
Consensus Function Spatial Temporal Two-Stream (1:1) Spatial Temporal Two-Stream (1:0.5)
Max Pooling 84.9% 83.5% 92.4% 81.8% 62.0% 85.4%
Average Pooling 86.4% 90.1% 94.9% 84.0% 72.8% 87.8%
Weighted Average 86.4% 89.7% 94.8% 83.1% 70.5% 86.4%

Top-K Pooling 85.5% 88.8% 94.2% 84.7% 73.6% 88.1%
Attention Weighting 86.1% 89.1% 94.6% 84.1% 71.8% 88.2%

structure, the advanced aggregation functions will lead to
better recognition accuracies. In this sense, we default to
average pooling for short videos (HMDB51 and UCF101)
and top-K pooling for complex videos (ActivityNet) in later
experiments.

Comparison of CNN architectures. We have conducted
previous experiments mostly with the BN-Inception archi-
tecture. Here we compare the performance of different net-
work architectures on the UCF101 dataset and the results are
summarized in Table 6. We use K = 1 in these experiments,
which is equivalent to the original two-stream ConvNets.
Specifically, we compare the performance of four very deep
architectures: BN-Inception [62], GoogLeNet [9], VGGNet-
16 [8], and ResNet-152 [31]. The results of different architec-
tures are directly cited from the corresponding references
Among the compared architectures, the very deep two-
stream ConvNets adapted from BN-Inception [62] achieves
the best accuracy of 92.4%, which is still better than the
ResNet-152 by 0.6%. This performance improvement may
be ascribed to the good practices proposed by our approach.
Furthermore, when trained with TSN (K = 7), the accuracy
is boosted to 94.9%. This clearly justifies the effectiveness of
modeling long-range temporal structures with TSN.

5.5 Comparison with the State of the Art
After analyzing the effect of the components in temporal
segment networks and coming to a reasonable setting,
we now compare our action recognition approach against
the state-of-the-art methods on both trimmed videos and
untrimmed videos. We conduct experiments on four action
recognition datasets. The first two, HMDB51 and UCF101,
are composed of trimmed videos. The last two, THUMOS14
and ActivityNet v1.2, consist of untrimmed videos. We
expect the experimental results on these datasets would
provide a thorough comparison with the existing state-of-
the-art methods. In experiments, we use the RGB and optical
flow modalities to make fair comparison with previous
methods.

TABLE 6
Comparison of different ConvNet architectures on the UCF101 dataset
(over three splits). “BN-Inception+TSN” refers to the setting where the

temporal segment networkframework is applied on top of the best
performing BN-Inception [62] architecture. It is worth noting that our

reported BN-Inception result is not directly comparable to those
previous works as its training is based on our proposed good training

practices.

Training setting Spatial Temporal Two-Stream
VGG-M [69] (from [1]) 73.0% 83.7% 86.9%
GoogLeNet [9] (from [70]) 75.3% 85.8% 89.3%
VGGNet-16 [8] (from [70]) 78.4% 87.0% 91.4%
ResNet-152 [31] (from [71]) 83.4% 87.2% 91.8%
BN-Inception [62] 85.0% 88.3% 92.4%

BN-Inception+TSN 86.4% 90.1% 94.9%

TABLE 7
Evaluation on the validation set of ActivityNet challenge 2016 data

(ActivityNet v1.3 Val.). “BN-Inception w/o TSN” indicates that we train
the models without TSN. “TSN+X”, indicates that we train TSN with
underlying the CNN architecture “X”. “TSN-Top3” refers to the case

where the top-K aggregation function is used with K set to 3. Here we
use the fusion weights of 1:0.5 for RGB and optical flow, respectively.

Settings mAP on ActivityNet v1.3 Val.
Spatial Temporal Two Stream

BN-Inception w/o TSN 76.6% 52.7% 78.9%
TSN + BN-Inception 79.7% 63.6% 84.7%
TSN + Inception V3 83.3% 64.4% 87.7%
TSN-Top3 + Inception V3 84.5% 64.0% 88.0%
TSN-Ensemble 85.9% 68.3% 89.7%

Trimmed Video Datasets. We experiment on two chal-
lenging trimmed video datasets: HMDB51 and UCF101. The
results are summarized in the left columns of Table 9, where
we compare our method with both traditional approaches
such as improved dense trajectories (iDTs) [2], MoFAP rep-
resentations [23], and deep learning representations, such
as 3D convolutional networks (C3D) [16], trajectory-pooled
deep-convolutional descriptors (TDD) [5], factorized spatio-
temporal convolutional networks (FSTCN) [54], long term
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TABLE 8
Winning entries in the untrimmed video classification task of ActivityNet

challenge 2016 (ActivityNet v1.3 Test). We present the recognition
accuracies in the form of mAP values and top-1 accuracies. The entries

were ranked by mAP values in the challenge.

Team mAP Top1 Accuracy
CES (ours) 93.23% 88.14%
QCIS 92.41% 87.79%
MSRA 91.94% 86.69%
UTS 87.16% 84.90%
Tokyo Univ. 86.46% 80.43%

convolution networks (LTC) [24], and key volume mining
framework (KVMF) [78]. We present the results of TSN with
3 and 7 segments with the average aggregation function.
We fuse the prediction scores of RGB and optical flow
modalities with equal weights (1:1). Our best results out-
perform other methods by 5.5% on the HMDB51 dataset,
and 1.8% on the UCF101 dataset. The superior performance
of our method demonstrates the effectiveness of temporal
segment network on trimmed videos and the importance of
effective long-term temporal modeling. We also report the
performance on the recent Kinetics dataset and build the
TSN with I3D architecture, which combines the merits of
short-term and long-term modeling. We see that against the
very competitive I3D method, our TSN training is still able
to improve the performance from 74.9% to 75.7%.

Untrimmed Video Datasets. We also compare our
approach with other methods on two untrimmed video
datasets: THUMOS14 and ActivityNet v1.2. The results
are summarized in the right columns of Table 9. We
compare TSN with the existing methods for untrimmed
video action recognition, including improved dense tra-
jectories (iDTs) [2], two-stream ConvNet [1], enhanced
motion vectors [17], 3D convolutional networks [16], ob-
ject+motion [73], and Depth2Action [74]. We also present
the results of TSN with segment numbers of 3 and 7 and the
aggregation function in TSN is top-K pooling. Our approach
clearly outperforms these compared methods. For example,
our TSN (7 seg) is better than the previous best performance
by 8.5% on the THUMOS14 dataset and 11.5% on the Activ-
ityNet dataset. This confirms that models learned with TSN
also perform well in untrimmed videos, given a reasonable
testing scheme, as described in Sec. 4.2.

5.6 ActivityNet Challenge 2016
The power of the temporal segment network framework
is further verified in the ActivityNet large scale activity
recognition challenge 2016. In this challenge we use the
videos from the ActivityNet [27] version 1.3 for training
and testing. In Particular, we train TSN models using the
trimmed activity instances from the ActivityNet v1.3. To test
the models, we follow the approach described in Sec. 4.2.
Understanding that the underlying CNN architecture plays
an important role in boosting the performance, we also
instantiate TSN with the ultra-deep Inception V3 [32] and
ResNet [31] architectures.

To evaluate the performance of TSN, we experiment with
two settings. First we train the models on the “training” sub-
set of ActivityNet v1.3 and test the recognition accuracy in

terms of mean average precision (mAP) on the “validation”
subset. In the second setting, we train the models with both
“training” and “validation” subsets and test the recognition
accuracy on the “testing” subset. The mAP values on the
“testing” subset are reported by the publicly available test
server of the challenge 4. The results on validation set are
summarized in Table 7. We observe that TSN significantly
boosts the performance over plain two-stream ConvNets
(from 78.9% to 84.7%). The performance gain is further am-
plified by using deep CNN architectures such as Inception
V3. Also, the advanced aggregation function such as Top-K
pooling leads to even better performance. After all, we find
that models trained with different aggregation functions
(i.e., average pooling, Top-K pooling, attention weighting)
and CNN architectures (i.e., Inception V3, ResNet-152) are
complementary when combining into an ensemble, leading
to an mAP value of 89.7%.

Challenge solution and result. The results on the testing
set are summarized in Table 8. Out entry “CES” ranks
first among all 24 challenge participants with an mAP of
93.23% on the testing set. The submission is an ensemble
of TSN models trained on training and validation data with
Inception V3 and ResNet-152 architectures, and the audio
models [80] trained on audio signals of the videos. For
references we also list the results from other participants
of this challenge in Table 8. It is worth noting that thanks to
the high efficiency of TSN, our models in the challenge can
be trained within 10 hours on a single node with 8 TitanX
GPUs.

5.7 Model Visualization
Besides recognition accuracies, we would like to attain fur-
ther insight into the learned ConvNet models. In this sense,
we adopt the DeepDraw [79] toolbox. This tool conducts
iterative gradient ascent on input images with only white
noises. Thus the output after a number of iterations can
be considered as class visualization based solely on class
knowledge inside the ConvNet model. The original version
of the tool only deals with RGB data. To conduct visualiza-
tion on optical flow based models, we adapt the tool to work
with our temporal ConvNets. As a result, we for the first
time visualize interesting class information in two-stream
ConvNet models. We randomly pick five classes from the
UCF101 dataset, Taichi, Punch, Diving, Long Jump, and Bik-
ing, and five classes from the ActivityNet dataset, Poole
Vault, Zumba, Skate Board, Rock Climb, and Cheer Leading.
The results are shown in Fig. 3. For both RGB and optical
flow, we visualize the ConvNet models learned with fol-
lowing two settings: (1) training without temporal segment
networkand (2) training with temporal segment network.

It is easy to notice that the models, trained with only
short-term information such as a single frame, tend to focus
more on the scenery patterns and objects in the videos.
For example, in the class “Diving”, the single-frame spatial
stream ConvNet pays much attention on diving platforms
while the person performing diving is less clear than these
platforms. With the training of temporal segment network,
the spatial ConvNet is able to generate an image that human
is the major visual information and different poses can

4. http://activity-net.org/challenges/2016/evaluation.html
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TABLE 9
Comparison of our method based on temporal segment network (TSN) with other state-of-the-art approaches on the datasets of HMDB51,

UCF101, THUMOS14, ActivityNet v1.2, and Kinetics400. First, we instantiate TSN with the two-stream 2D CovnNets (BN-Inception) on the five
datasets. In addition, we also use two-stream I3D as the backbone architecture for TSN training on the Kinetics400 dataset.

HMDB51 UCF101 THUMOS14 ActivityNet v1.2 Test Kinetics400 Val. (top1 / top5)
iDT+FV [2] 57.2% iDT+FV [72] 85.9% iDT+FV [72] 63.1% iDT+FV [72] 66.5% RGB-I3D [56] 72.9% / 90.8%
DT+MVSV [46] 55.9% DT+MVSV [46] 83.5% object+motion [73] 71.6% Depth2Action [74] 78.1% RGB-I3D + TSN 73.5% / 91.6%
iDT+HSV [75] 61.1% iDT+HSV [75] 87.9% FLOW-I3D [56] 65.3% / 86.7%
MoFAP [23] 61.7% MoFAP [23] 88.3% FLOW-I3D+TSN 65.4% / 86.7%

Two Stream ConvNet [1] 59.4% Two Stream ConvNet [1] 88.0% Two Stream ConvNet [1] 66.1% Two Stream ConvNet [1] 71.9% Two Stream ConvNet [1] 61.0% / 81.3%
VideoDarwin [22] 63.7% C3D (3 nets) [16] 85.2% EMV+RGB [17] 61.5% C3D [16] 74.1% Two Stream ARTNet [76] 71.3% / 89.5%
MPR [77] 65.5% Two stream +LSTM [4] 88.6% Two Stream I3D [56] 74.9% / 91.8%
FSTCN [54] 59.1% FSTCN [54] 88.1%
TDD+FV [5] 63.2% TDD+FV [5] 90.3%
LTC [24] 64.8% LTC [24] 91.7%
KVMF [78] 63.3% KVMF [78] 93.1%

TSN (3 seg) 70.7% TSN (3 seg) 94.2% TSN (3 seg) 78.8% TSN (3 seg) 89.0% TSN (2D ConvNet) 73.9% / 91.1%
TSN (7 seg) 71.0% TSN (7 seg) 94.9% TSN (7 seg) 80.1% TSN (7 seg) 89.6% TSN (I3D) 75.7% / 92.5%

No TSN TSN

RGB CNN 
No TSN

Optical Flow CNN

Diving

Long 
Jump

Taichi

Punch

Biking

TSN No TSN

RGB CNN 
No TSN

Optical Flow CNN
TSNTSN

Pole 
Vault

Zumba

Skate
Board

Rock 
Climb

Cheer 
Leading

Fig. 3. Visualization of ConvNet models for action recognition using DeepDraw [79]. It is worth noting that video frames are just representatives
of the corresponding classes, but not used for these visualizations. All these images are generated from purely random pixels. We compare two
settings: (1) without temporal segment network (No TSN); (2) with temporal segment network (TSN). For spatial ConvNets, we plot two generated
visualization as color images. For temporal ConvNets, we plot the flow maps of x (left) and y (right) directions in gray scales. Left: classes in
UCF101. Right: classes in ActivityNet v1.2.

be identified. Its temporal stream counterpart, working on
optical flow without temporal segment network, tends to
focus on the noisy motion pattern. With long-term temporal
modeling of temporal segment network, the learned models
focus more on humans in the videos, and seem to model the
long-range structure of the action class. Similar observation
would be identified in other action classes such as “Long
Jump” and “Cheer Leading”. This suggests that models
learned with the proposed method may perform better,
which is well reflected in our quantitative experiments.

6 CONCLUSIONS

In this paper, we have presented the Temporal Segment
Network (TSN), a video-level framework that aims to model
long-range temporal structure. As demonstrated on four
action recognition benchmarks and ActivtyNet challenge
2016, this work has brought the state of the art to a new
level, while maintaining a reasonable computational cost.
This is largely ascribed to the segmental architecture with
sparse sampling, as well as a series of good practices that
we explored in this work. The former provides an effective
and efficient way to capture long-range temporal structure,
while the latter makes it possible to train very deep net-
works on a limited training set without severe over-fitting.
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