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ABSTRACT
Object trajectory proposal aims to locate category-independent
object candidates in videos with a limited number of trajectories, i.e.,
bounding box sequences. Most existing methods, which derive
from combining object proposal with tracking, cannot handle
object trajectory proposal effectively due to the lack of comprehen-
sive objectness measurement through analyzing spatio-temporal
characteristics over a whole video. In this paper, we propose
a novel object trajectory proposal method using hierarchical
volume grouping. Specifically, we first represent a given video
with hierarchical volumes by mapping hierarchical regions with
optical flow. Then, we filter the short volumes and background
volumes, and combinatorially group the retained volumes into
object candidates. Finally, we rank the object candidates using
a multi-modal fusion scoring mechanism, which incorporates both
appearance objectness and motion objectness, and generate the
bounding boxes of the object candidates with the highest scores
as the trajectory proposals. We validated the proposed method
on a dataset consisting of 200 videos from ILSVRC2016-VID. The
experimental results show that our method is superior to the state-
of-the-art object trajectory proposal methods.
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Figure 1: An example of object trajectory proposal using
object proposal and tracking combination and our grouping
method.

1 INTRODUCTION
Object trajectory proposal aims to locate category-independent
object candidates in videos with a limited number of bounding
box sequences named trajectory [29]. These generated trajectory
proposals provide spatio-temporal characteristics of object candi-
dates, which can be extracted and analyzed in numerousmultimedia
applications, such as object detection [17], action recognition [34],
visual relation detection [28], object segmentation [35] and content-
based video retrieval [7].

A primary strategy for object trajectory proposal is to take
advantage of the advances in object proposal, which is studied
to locate category-independent object candidates in images with a
limited number of bounding boxes. Most existing object trajectory
proposal methods apply object proposal on one or several selected
video frames, and track the generated bounding boxes on other
frames to generate trajectory proposals [11, 21, 30, 39]. Nevertheless,
it is intractable to automatically select one or few video frames
that contain all the objects appearing in a given video. As shown
in the top row of Figure 1, two objects are omitted because the
object proposal is only applied on the middle frame but these
two objects do not appear in this frame. As the state-of-the-
art object proposal methods like [9, 43] and object detection
methods like [15, 26] can process images in real-time, some
works apply object proposal densely or even on all the frames
to avoid object omission. Different to specific object detection,
such as pedestrian[2, 15], this kind of trajectory proposal methods
can easily obtain excessive candidates, because the features of
category-independent objects are much more general than those
in particular categories. It will lead to high time consumption in
object tracking and candidate merging. To make matters worse,
these methods only measure objectness on video frames with
appearance characteristics, but ignore the characteristics of object
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candidates on other modalities, such as motion. Recently, Shang et
al. [29] improve this strategy by traversing all the video frames
with bounded computational cost and partially incorporating object
motion in objectness measurement. However, they still conduct
objectness measurement independently on each frame instead of
generating object candidates through analyzing spatio-temporal
characteristics over the whole video.

To overcome these drawbacks, we learn from the advances in
object proposal on images. There are two strategies mainly used
in object proposal: window scoring and grouping. The former
samples sufficient bounding boxes and selects the ones with high
objectness scores as proposals, while the latter segments images
into regions and merges them into proposals. Considering there
exist enormous possible trajectories in a video which cannot be
sufficiently sampled, we choose grouping strategy for conducting
object trajectory proposal in a whole video. Similar to grouping-
based object proposal methods, there are three key issues which
should be addressed in grouping-based object trajectory proposal
methods: First, how to define a type of basic unit that facilitates
grouping to represent various video content? Second, how to group
the basic units into object candidates even they have complex
compositions? Third, how to score the object candidates with the
spatio-temporal characteristics of the video?

In this paper, we propose a novel object trajectory proposal
method based on hierarchical volume grouping. Figure 2 shows
an overview of the proposed method. Given a video, we first
represent it with hierarchical volumes by mapping hierarchical
regions with optical flow. Then, we filter the short volumes and
the background volumes, and group the retained volumes into
object candidates. Finally, we rank the object candidates by fusing
appearance objectness and motion objectness, and generate the
bounding boxes for the object candidates with the highest scores
as the trajectory proposals. A grouping-based method with a
similar framework was proposed in [12]. However, it has obvious
limitations in addressing the aforementioned key issues of grouping-
based object trajectory proposal (refer to Section 2.2) which leads
to its unsatisfactory performance (refer to Section 4.3) as compared
to that of our method. We validated the proposed method on a
dataset consisting of 200 videos from ILSVRC2016-VID [27]. It
shows that our method outperforms the state-of-the-art object
trajectory proposal methods.

Our contributions mainly include:

• We propose a grouping-based object trajectory proposal
method, which generates trajectory proposals by analyzing
the spatio-temporal characteristics over a whole given video.
• We present multiple key techniques, namely hierarchical
volume representation, volume combinatorial grouping, and
multi-modal fusion scoring, which can effectively address
the key issues in grouping-based object trajectory proposal.
• We construct a dataset with 200 videos from ILSVRC2016-
VID to validate the performance of the proposed method.
The experimental results show that our method is superior
to the state-of-the-art methods.

2 RELATEDWORK
2.1 Object proposal
The existing object proposal methods can be roughly classified into
two categories: window scoring-basedmethods and grouping-based
methods.

Window scoring-based methods measure the objectness of
sufficiently sampled bounding boxes and select the bounding boxes
with high scores as proposals on RGB images [1, 9, 40, 43] and RGB-
D images [19]. Generally speaking, window scoring-based methods
are efficient in object proposal, but they easily fail to generate the
proposals with high Intersection of Union (IoU) to the groundtruths
of objects.

Grouping-based methods segment images into regions and
merge them into proposals on RGB images [20, 23, 33] and RGB-
D images [36]. In contrast, grouping-based methods can generate
accurate proposals against the groundtruths, but they usually have
low efficiency because of the time-consuming bottom-up merging.

2.2 Object trajectory proposal
Most existing object trajectory methods derive from combining
object proposal with tracking. Some methods mainly focuses
on salient objects [30, 38] or moving objects [14, 22], while
other methods extract objects in a unified objectness strategy [8,
11, 18, 21, 29, 39]. As mentioned above, these methods cannot
handle object trajectory proposal effectively due to the lack of
comprehensive objectness measurement through analyzing spatio-
temporal characteristics over the whole video.

Dan et al. [12] first propose a grouping-based object trajec-
tory proposal method using supervoxel clustering. Though Dan’s
method is similar in overview as compared to our method, it
has some obvious limitations in addressing the key issues of
grouping-based object trajectory proposal. First, Dan’s method
uses the supervoxels generated by hierarchical clustering as the
basic units in grouping. These supervoxels on the coarsest level
may not contain the detailed object portions because of the
inaccuracy of clustering. In contrast, our method represents the
video with hierarchical volume, which contains all the levels for
the subsequent grouping. Second, Dan’s method only merges the
supervoxels with high similarities in grouping, which cannot group
the object parts with different appearances. In contrast, our method
uses combinatorial grouping, which can combine the neighboring
volumes with significant differences. Third, Dan’s method does
not provide an effective scoring strategy, which directly treats the
clustering result as the proposals. Our method presents a multi-
modal fusing scoring mechanism to measure appearance objectness
and motion objectness together.

2.3 Object tracking
Object tracking aims to estimate the existence and locations of
target objects in the subsequent frames. Numerous object tracking
methods have been proposed. For example, sparse representation
based methods utilize local sparse representations and collaborative
representations to determine the target locations [6, 41]; color
histogram based methods track target objects via pixel level
statistics [10, 25] and edge information [24, 32]; discriminative
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Figure 2: An overview of the proposed method.

model based methods utilize learned binary classifiers to segment
the target objects from background [4, 5]. Although both tracking
and trajectory proposal generate bounding box sequences as their
outputs, they are significantly different. First, object tracking
requires one or several manually labeled bounding boxes on the
first frame for initialization while trajectory proposal searches for
object candidates on all the frames automatically. Second, tracking
only searches for similar regions through adjacent frames while
trajectory proposal requires to measure objectness for trajectory
candidates and eliminates those with low objectness. Third, the
number of the trajectories extracted by trajectory proposal is much
larger than the number of those generated by tracking, whichmeans
that trajectory proposal has stricter computational cost limitation
in trajectory generation.

3 OUR METHOD
3.1 Hierarchical volume representation
Hierarchical volume is the basic unit of combinatorial grouping in
our method. A volume is a spatio-temporal component within a
given video, which is composed of a sequence of ordered regions.
In effective hierarchical volume representation, each volume covers
the regions with the same content on consecutive frames with
coherent boundaries and accurate duration on different levels.
Such hierarchical volume representation retains both the principal
components and partial details of objects, and helps to generate
object candidates.

Hierarchical region representation of video frame. To
obtain the hierarchical volume representation of a video, we first
represent each video frame with hierarchical regions referring
to [23]. Specifically, we detect the contours in a given video frame
and weight them in the value range of [0, 1] using ultra-metric
contour map [3], in which color, brightness and texture gradient
are combined to provide indexed contours for hierarchical regions.
Based on these contours, we obtain the finest region representation
of the video frame. Then, we merge these regions iteratively
by removing the contours whose strengths are lower than an
incremental threshold from a set of trained thresholds. The regions

surrounded with the rest of closed contours in each iteration are
constructed as the hierarchical regions.

To each frame f t , assume the number of leaf regions (i.e., the
regions on the finest level), is N t

L and the number of the regions
on all the levels is N t

R . We construct a binary matrix Ct in size of
N t
R ×N

t
L to denote the coverage relationships between hierarchical

regions and leaf regions. Here, Ct
i, j equals 1 if the ith hierarchical

region covers the jth leaf region; otherwise, it equals 0.
Volume generation by region mapping. We map the hierar-

chical regions on adjacent video frames to generate hierarchical
volumes. Rather than directly searching the most similar region
for each region in the subsequent frame, which is very time
consuming, we utilize optical flow to establish the mapping
relationships between regions on adjacent frames, because optical
flow estimation is only required to conduct once for a whole frame
and it can be used for the mapping of all the regions in the frame.

We first estimate bidirectional dense optical flow using Deep-
flow [37], which effectively handles large displacements in videos
via dense correspondences matching. To two adjacent video frames
f t and f t+1, we construct two matrices Ot→t+1 in size of N t

L ×

N t+1
L and Ot+1→t in size of N t+1

L × N t
L to denote the mapping

relationships between the leaf regions in f t and f t+1. Specifically,
Ot→t+1
i, j denotes the number of the pixels in the ith leaf region in

f t whose corresponding pixels mapped with the optical flow from
f t to f t+1 belong to the jth leaf region in f t+1:

Ot→t+1
i, j = |P t→t+1

i ∩ P t+1j |, (1)

where P t→t+1
i is the set of the pixels in f t+1 which are mapped

with optical flow from the pixels in the ith leaf region in f t ; P t+1j
denotes the set of the pixels belonging to the jth leaf region in f t+1;
| · | denotes the cardinality of a set, i.e., the number of pixels within
a set. The elements in Ot+1→t are defined in a similar manner.

Based on the region coverage matrix and the leaf region mapping
matrix, we map the hierarchical regions between the adjacent
frames. To f t and f t+1, we construct two matrices Mt→t+1 in
size of N t

R × N
t+1
R and Mt+1→t in size of N t+1

R × N t
R to denote the

mapping relationships between the hierarchical regions in f t and



f t+1:

Mt→t+1 = CtOt→t+1 (Ct+1)T, (2)
Mt+1→t = Ct+1Ot+1→t (Ct )T. (3)

where each element Mt→t+1
i, j in Mt→t+1 denotes the number of the

pixels in the ith region in f t whose corresponding pixels mapped
with the optical flow from f t to f t+1 belong to the jth region in
f t+1. The elements in Mt+1→t are defined in a similar manner.

We normalize the elements in Mt→t+1 to construct a matrix
Ψt→t+1 as follows:

Ψt→t+1
i, j = Mt→t+1

i, j /|Qt
i |, (4)

whereQt
i denotes the set of the pixels belong to the ith hierarchical

region in f t ; | · | denotes the cardinality of a set. We can construct
a matrix Ψt+1→t from Mt+1→t in a similar manner.

To each hierarchical region in f t , we search its mapping region
in f t+1 by checking the elements in the ith row in Ψt→t+1 and the
ith column in Ψt+1→t . If both Ψt→t+1

i, j and Ψt+1→t
j,i are larger than

a predefined threshold, which equals 0.5 in our experiments, we
consider the ith region in f t is mapped to the jth region in f t+1

successfully and merge them into a volume. If a region in f t is
mapped to more than one regions in f t+1, we select the one with
the highest mapping score, i.e., the sum of Ψt→t+1

i, j and Ψt+1→t
j,i .

We repeat the above procedure from the first frame to the last one,
and generate hierarchical volumes by merging the mapped regions.

Note here, we map the hierarchical regions and retain the
volumes on all the levels for the subsequent grouping, i.e., one
volume generated by our method may contain another volume
or its portions. In contrast, supervoxels in [12] are generated
by hierarchical clustering of single level superpixels, which only
consist of the coarsest regions and have no overlap between each
other.

There are two advantages of our hierarchical volume represen-
tation as compared to hierarchical supervoxel in [12]. On the one
hand, it is difficult to find appropriate relationships when directly
mapping the regions in the adjacent frames on superpixel level.
In fact, we cannot generate the volumes with long lengths (the
length of a volume denotes the number of the regions belonging
to the volume) by mapping the leaf regions in the experiments
unless we relax the mapping threshold to a small value. It leads
to the generated supervoxels with low cohesion and prevents
the effectiveness of the supervoxel representation in [12]. On
the other hand, both the generation of hierarchical volume and
supervoxel are only based on low-level features, which inevitably
brings in inaccuracy. If only using the supervoxels composed of the
coarsest regions [12], the detailed object portions lost in clustering
cannot be obtained in grouping. It will further cause the inaccuracy
of generating trajectory proposals. As comparison, our method
generates the volumes in different levels and retains most of them,
which will provide more comprehensive candidates in grouping.

Broken volume connection. Our hierarchical volume repre-
sentation maps the regions based on optical flow, but optical flow
only represents the low-level similarity between pixels in adjacent
frames. It is easy to generate broken volumes because optical flow
is sensitive to partial occlusion and illumination variation. These
broken volumes increase the complexity of grouping them into

the object candidates. Hence, we connect the volumes, which may
represent the same content, based on their high-level appearance
similarities.

Assume vi and vj are two volumes, and vi ends before vj starts.
We track the bounding box of the region, which belongs to vi in
its end frame, using kernelized correlation filter tracker [16]. If the
tracked bounding box in the start frame of vj has large enough
IoU to the bounding box of the region belonging to vj in the same
frame, we consider that vi and vj can be connected.

In our implementation, we filter the volumes with extremely
short lengths for efficiency, which are less than 10 frames in our
experiments, and sort all the retained volumes into two queues qs
andqe based on their start frames and end frames. To each volumev
in qe , we check whether exist volumes starting in a short temporal
interval after v ends, which equals 4 frames in our experiments.
If so, we greedily connect v to these volumes by tracking, i.e., we
only connect a volume to the first volume which can be connected
to it. The IoU threshold for connection in our experiments is set to
0.6. Because the number of volumes that start in a short temporal
interval after each volume can be treated as a constant and only
once traversal is required for qe , the time complexity of volume
connect is O (NV logNV ), here NV is the number of volumes after
filtering.

3.2 Volume combinatorial grouping
Adaptive short volume filtering. Considering most objects are
visible for relatively long durations in videos, the volumes with
short lengths are usually useless for generating object candidates.
Preliminary filtering of such short volumes can decrease the number
of volumes and effectively reduce the computational complexity of
volume grouping.

Considering the variation of video lengths, we use an adaptive
threshold in short volume filtering. On the one hand, we consider
that the volumes contributive to object candidate generation should
be visible for more than a certain duration, for example, one second
(20 frames) in our experiments. On the other hand, to avoid too
strict filtering for short videos, we require that the length of the
filtered volumes should be no larger than a certain ratio of the
length of the whole video, such as 20% in our experiments. Hence,
the final threshold κ for short volume filtering is calculated as:

κ = min(20, 0.2 · | |V | |), (5)

where | |V | | denotes the length of the whole video.
Background volume elimination. The volumes containing

background content usually have long lengths because the stability
in background appearance helps to region mapping in hierarchical
volume generation. These background volumes cannot be removed
in short volume filtering, but they hamper trajectory proposal
because they are easy to be grouped with other volumes in
combinatorial grouping and generate many object candidates
covering no objects.

To eliminate the background volumes, we calculate the boundary
connectivity of each volume based on that of the regions belonging
to this volume. Assume vi is a volume composed of a region
sequence {r tki }k=1, · · · , | |vi | | . Here, vi starts in frame f t1 and ends
in frame f t | |vi | | , and | |vi | | denotes the length of vi . To each region



r
tk
i , we calculate its boundary connectivity B (r

tk
i ) by measuring

the extent of its connection to frame boundary [42] as follows:

B (r
tk
i ) =

|C (r
tk
i ) |√
|r
tk
i |

, (6)

where C (r
tk
i ) denotes the set of pixels which are on both the

boundaries of r tki and frame f tk ; | · | denotes the cardinality of
a set, i.e., the number of pixels within a set or a region.

Based on the boundary connectivity of all the regions belonging
to vi , we calculate the boundary connectivity of vi as follows:

B (vi ) =
|{r

tk
i |B (r

tk
i ) > θ ,k = 1, · · · , | |vi | |}|

| |vi | |
, (7)

where θ is a boundary connectivity threshold, which equals 1 in
our experiments referring to [42].

To avoid eliminating the volumes covering the objects that
appear in frame boundaries, we use a high threshold in background
volume elimination. In our experiments, only the volumes whose
boundary connectivity is larger than 0.9 will be eliminated as
background.

Candidate generation by volume grouping. Based on the
retained volumes, we generate the object candidates by grouping
these volumes. Most exiting methods conduct grouping based on
volume similarity, such as [12]. However, such grouping strategies
usually fail in generating object candidates effectively, because the
parts of an object usually have significant differences in appearance
and/or motion. Inspired by [23], we adopt a combinatorial grouping
strategy in volume grouping, which only measures the neighbor-
hood relationships between volumes while taking no account of
volume similarity.

Considering the neighborhood relationship between two vol-
umes is more complex than that between two regions, e.g., two
volumes may be overlapping, adjacent and disjointed in different
frames, we relax the combination condition in volume grouping
from adjacent in [23] to overlapping or adjacent, in order to generate
sufficient object candidates. Specifically, we first construct a binary
matrix At in size of N t

L × N t
L to represent the neighborhood

relationship between the leaf regions in frame f t , in which At
i, j

equals 1 if the ith leaf region and the jth leaf region in f t are
adjacent and 0 otherwise. Then, we represent the neighborhood
relationships between the hierarchical regions in f t by a matrix
Λt in size of N t

R × N
t
R :

Λt = CtAt (Ct )T, (8)

where Ct is the coverage relationship matrix defined in Section 3.1.
Here, Λt

i, j is larger than 0 if the ith region and the jth region in f t

are overlapping or adjacent, and Λt
i, j equals 0 if they are disjointed.

Assuming that two volumesvi andvj appear in a video with the
common duration from f t1 to f tK , we measure the neighborhood
relationship between these two volumes as follows:

Θ(vi ,vj ) =

∑tK
t=t1 η(r

t
i , r

t
j )

min( | |vi | |, | |vj | |)
, (9)

where r ti and r tj are the regions belonging to vi and vj in f t ,
respectively;η(, ) equals 1 if two regions are overlapping or adjacent

in f t and 0 otherwise, which can refer to Λt in Eq. (8); | | · | | denotes
the length of a volume. If Θ(vi ,vj ) is larger than a threshold, which
equals 0.3 in our experiments, vi and vj are allowed to group.

Based on the constraint in Eq. (9), we group the volumes
into the candidates containing from one to four volumes. Similar
to [23], we constrain the number of object candidates using Pareto
front optimization [13] to avoid the combinatorial explosion. In
our experiments, volume grouping will terminate if all volume
combinations are exhausted or the number of object candidates
reaches 10,000.

3.3 Multi-modal fusion scoring
We measure the objectness of the object candidates, and select the
ones with high scores to generate the final trajectory proposal. In
objectness measurement, we analyze both appearance objectness
and motion objectness of each candidate. The former has been
widely used in image proposal [9, 43], and the latter has been
validated its effectiveness in trajectory proposal [29].

As for appearance objectness, we adopt the scoring model pro-
vided in [23], which is a regressor trained on multi-modal features
including shape, edges, size and location. To each candidate ck ,
which appears from frame f t1 to f tK , we measure the appearance
objectness of the grouped regions belonging to ck on each frame,
and calculate the appearance objectness score of ck as follows:

sA (ck ) =

∑tK
t=t1 s

A (дtk )

| |ck | |
, (10)

where sA (·) denotes appearance objectness score; дtk denotes the
grouped regions belonging to ck in frame f t ; | | · | | denotes the length
of a candidate, i.e., the number of the frames that the candidate
appears in.

As for motion objectness, we measure the motion contrast of an
object candidate to background. We calculate the average motion
strength of all the regions belonging to background volumes (refer
to Section 3.2) on each frame as the motion strength of background.
If no background volume is detected in some frame, we use the
average motion strength of the whole frame to instead. To each
candidate ck , which appears from frame f t1 to f tK , we calculate
the distance between the average motion strength of the grouped
regions belonging to ck and that of background, and calculate the
motion objectness score of ck as follows:

sM (ck ) =

∑tK
t=t1 |m

t
k −m

t
B |

| |ck | |
, (11)

where sM (.) denotes motion objectness score; mt
k denotes the

average motion strength of the grouped regions belonging to ck in
frame f t ;mt

B denotes the average motion strength of background
in frame f t .

We normalize the appearance objectness score and the motion
objectness score of each candidate ck to the value range of [0, 1],
and fuse them with linear combination as the total objectness score
of ck :

s (ck ) = λ · sA (ck ) + (1 − λ) · sM (ck ), (12)
where λ is a weight parameter, which equals to 0.7 in our exper-
iments to handle the inaccuracy of motion contrast in motion
objectness measurement.



We rank all the candidates according to their objectness scores,
generate the bounding boxes of the top selected candidates as
the trajectory proposals, and preferentially return the proposals
composed with less volumes.

4 EXPERIMENTS
4.1 Dataset and experiment settings
We validated the performance of the proposed method on a
dataset consisting of 200 videos, which are randomly selected
from ILSVRC2016-VID [27]. These videos have various content and
contain 3.26 objects on average. The average object number of our
dataset is larger than the one of the whole ILSVRC2016-VID dataset,
which is only 2.06. The manually labeled object trajectories in
ILSVRC2016-VID were used as the groundtruths in our experiments.
To the best of our knowledge, it is the largest dataset for object
trajectory proposal.

We used the evaluation criteria proposed in [29], namely mean
Trajectory IoU (mT-IoU) and recall, on the top 500 trajectory
proposals for each video. These criteria are defined as follows:

mT -IoU = 1
NV

NV∑
k=1

1
N k
G

N k
G∑

j=1
max
i
{T -IoU i, j }, (13)

recall =
1
NV

NV∑
k=1

1
N k
G

N k
G∑

j=1
δ
(
max
i
{T -IoU i, j } − τ

)
, (14)

where T -IoUi, j denotes the trajectory IoU between a trajectory
proposal Ti and a trajectory groundtruth Gj ; NV is the number of
videos; N k

G is the number of groundtruths in the kth video; δ is a
function that outputs 1 if the input is positive, and 0 otherwise; τ is
a threshold, which equals to 0.5 in our experiments.

All the experiments were conducted on a computer with i7
3.5GHz CPU and 32GB memory. For all the methods in comparison,
we used their default settings suggested by the authors.

4.2 Component analysis
There are several key techniques incorporated in our method:
region mapping, volume representation, volume filtering and
candidate scoring. We validated their influences to the performance
of our method.

Region mapping. We use bidirectional optical flow in region
mapping to construct the mapping relationship between the
regions in adjacent frames (refer to Section 3.1), which has high
computational cost. To evaluate the necessity of bidirectional optical
flow, we generate a baseline only using forward optical flow (FOF),
which requires half computational cost in optical flow estimation
as compared to our method.

Figure 3 shows the performance of our method using different
optical flow in region mapping. We can see that the performance
declines on both mT-IoU and recall when replacing bidirectional
optical flow with forward optical flow. The reason is that optical
flow estimation only focuses on pixel-level similarity measurement
even using global consistency constraint, which is sensitive to
variable video content. Once using bidirectional optical flow, we
can diminish the influence of optical flow inaccuracy and map the
regions more effectively.
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Figure 3: Evaluation of our method using different optical
flow in region mapping on mT-IoU and recall.
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Figure 4: Evaluation of our method using different volume
representation on mT-IoU and recall.

Volume representation. We represent video content with
hierarchical volumes on all the levels, i.e., one volume may contain
another volume or its portions (refer to Section 3.1). Such a volume
representation can represent both the principal components and
the details of objects. To illustrate the superiority of our hierarchical
volume representation, we generate two baselines: using the finest
level volumes (FLV), which are generated by the finest level regions
on each video frame, and using the coarsest level volumes (CLV),
which merges the regions on each video frame until the number
of regions is no more than 30% of the one of the finest regions and
maps these regions to generate the volumes.

Figure 4 shows the performance of our method using different
volume representations. We can see that both FLV and CLV have
dramatic drops on mT-IoU and recall. For example, the mT-IoU
and recall values obtained by CLV on 500 proposals are only
half of the ones obtained by our method. It shows that only the
coarsest level volumes, which represent the principal components
of objects, cannot effectively support trajectory proposal because
all the object details are lost. Moreover, FLV has worse performance
than CLV, which is caused by two reasons: 1) The leaf regions are
difficult to be mapped into long-duration finest level volumes due
to the inaccuracy of optical flow, which increases the complexity of
volume grouping. 2) Our method only groups at most four volumes
into a candidate to avoid combinatorial explosion, which leads
to the candidate grouped by the finest level volumes are usually
seriously incomplete against objects. It validates the effectiveness
of hierarchical volume for video content representation.
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Figure 5: Evaluation of our method using different volume
filtering strategies on mT-IoU and recall.

Volume filtering. We consider the short volumes and the
background volumes are useless in object representation, and
filter them to reduce the complexity of volume grouping (refer
to Section 3.2). To illustrate the necessity of volume filtering,
we generate three baselines: without short volume filtering or
background volume filtering (NoF), only filtering short volumes
(SF), and only filtering background volumes (BF).

Figure 5 shows the performance of our method using different
volume filtering strategies. We can see that the performance of NoF
is worse than that using other volume filtering strategies. Note here,
in broken volume connection (refer to Section 3.1), we have filtered
the volumes whose lengths are less than 10 frames for efficiency.
It means that NoF actually uses the volume filtering strategy by
removing the extremely short volumes (less than 10 frames) rather
than filters nothing. Once increasing the filtering threshold on
volume length from 10 frames to 20 frames, the performance of
SF is improved significantly as compared to NoF. It shows the
effectiveness of short volume filtering.Moreover, we can see that the
performance will be improved when filtering background volumes,
no matter on NoF (i.e., BF) and on SF (i.e., Ours). It shows that
background volume elimination is beneficial to trajectory proposal.

Candidate scoring mechanism.We use a multi-modal fusion
scoring mechanism in ranking object candidates, which fuses both
appearance objectness and motion objectness (refer to Section 3.3).
To validate the effectiveness of our multi-modal fusion scoring
mechanism, we generate two baselines: scoring with appearance
objectness (AO), and scoring with motion objectness (MO).

Figure 6 shows the performance of our method using different
scoring strategies. We can see that the performance of both
AO and MO is significantly worse than that of our method on
mT-IoU and recall, which illustrates the effectiveness of fusing
appearance objectness and motion objectness in scoring. Moreover,
the performance of MO is only slightly worse than that of AO.
Because objects usually have different motions against background,
motion objectness contributes to trajectory proposal especially
when object appearance is complex.

4.3 Comparison with the state-of-the-arts
To validate the performance of our method, we compared it with
three state-of-the-art video object proposal methods, namely free
object discovery (FOD) [11], object trajectory proposal (OTP) [29],
and spatio-temporal object detection proposal (SODP) [12]. In the
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Figure 6: Evaluation of ourmethodusing different candidate
scoring mechanisms on mT-IoU and recall.
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Figure 7: Evaluation of different trajectory proposal meth-
ods on mT-IoU and recall.

same way as [29], we generate two baselines EB* and MCG*, which
generate object proposals on the middle frame of each video and
track the proposals with KCF tracker [16] bidirectionally to generate
trajectory proposals.

Figure 7 shows the performance of ourmethod and five compared
methods. We have: 1) Our method is superior to all the compared
methods on both mT-IoU and recall, which illustrates the effec-
tiveness of our method. 2) Though SODP has a similar framework
to our method, its performance is dramatically worse than that
of our method and other methods. It shows the effectiveness of
the key techniques in our methods, namely hierarchical volume
representation, volume combinatorial grouping, and multi-modal
fusion scoring. 3) The performance of EB* and MCG* is worse
than other methods except SODP, though EB and MCG are
the best object proposal methods on images. It is because they
cannot propose the object trajectories which do not appear on
the middle frames of videos (or any other selected frames as
the start of trajectory generation). It illustrates the drawbacks of
object trajectory proposal by combining image object proposal and
tracking. 4) Though FOD and OTP aim to address the start frame
problem by traversing all the video frames, their performance is
still worse than ours. It is because they cannot effectively measure
objectness based on spatio-temporal characteristics, and propose
objects independently on each frame.

Figure 8 illustrates several examples of our results. In each video
example, the trajectory proposal with the highest mT-IoU to each
trajectory groundtruth from the top 500 proposals is shown. It
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Figure 8: Qualitative examples of object trajectory proposal using our method. In each video example, the bounding boxes
with the same color indicate a trajectory proposal, and the trajectory proposal with the highest mT-IoU to each trajectory
groundtruth from the top 500 proposals is shown.

Table 1: Comparison with the state-of-the-art methods and
the baselines on time cost per frame.

Method Language Time (s)
FOD C++ & Python 3.4
OTP C++ & Python 3.4
SODP C++ & Matlab & Python 6.7
EB* C++ & Matlab 5.5

MCG* C++ & Matlab 3.5
Ours C++ & Matlab 7.5

shows that our method can handle the videos with multiple objects
in various content.

We also validated the efficiency of our method. Table 1 shows
the time cost per frame of our method and the compared methods.
It shows that our method is comparable to other grouping-based
object trajectory proposal methods, such as SODP. The most time
consuming component in our method is bidirectional optical flow
estimation. It can be accelerated by GPU [31] to make our method
more efficient.

4.4 Discussion
In the experiments, we found some limitations of our method. As
shown in the top row of Figure 9, one goat is omitted because it is
occluded by two other goats with similar appearances, which leads
to serious inaccuracy in volume representation. Another failure
example shown in the bottom row of Figure 9. There are many
motorcycles and cars with small sizes are omitted. It is because these
small objects are composed of multiple small volumes, which are
easily filtered in volume grouping. Moreover, as shown in Table 1,
the time costs of our method and other existing trajectory proposal
methods are still high, which prevents their application in real-time
conditions.

5 CONCLUSION
In this paper, we proposed an object trajectory proposal method
based on hierarchical volume grouping. Three techniques, namely
hierarchical volume representation, volume combinatorial grouping
and multi-modal fusion scoring, were presented to address the key

t

Figure 9: Our failure examples influenced by object occlu-
sion and small objects.

issues in grouping-based object trajectory proposal. Benefiting
from measuring objectness through analyzing spatio-temporal
characteristics over a whole video, our method can effectively
generate the trajectory proposals on the videos with multiple
objects in various content. We constructed a dataset consisting
of 200 videos from ILSVRC2016-VID dataset. The experimental
results on the dataset show that our method outperforms the state-
of-the-art object trajectory proposal methods.
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