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Abstract. Correlation filter based tracking methods have achieved
impressive performance in recent years, showing high efficiency and
robustness to challenging situations which exhibit illumination varia-
tions and motion blur. However, how to reduce model drift phenomenon
which is usually caused by object deformation, abrupt motion, heavy
occlusion and out-of-view, is still an open problem. In this paper, we
exploit the low dimensional complementary features and an adaptive
online detector with the average peak-to-correlation energy to improve
tracking accuracy and time efficiency. Specifically, we appropriately inte-
grate several complementary features in the correlation filter based dis-
criminative framework and combine with the global color histogram to
further boost the overall performance. In addition, we adopt the average
peak-to-correlation energy to determine whether to activate and update
an online CUR filter for re-detecting the target. We conduct extensive
experiments on challenging OTB-15 benchmark datasets, and experi-
mental results demonstrate that the proposed method achieves promis-
ing results in terms of efficiency, accuracy and robustness while running
at 46 FPS.
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1 Introduction

Visual object tracking is one of the most challenging tasks in the field of computer
vision and has a wide range of applications such as video surveillance, human-
computer interaction, autonomous driving and robotics. In generic visual track-
ing, given an initial state of the object in the first frame, the goal is to estimate
the trajectory of the target throughout video sequences. Despite the significant
progress in visual tracking, model drift problem and scale estimation usually
lead to tracking failure in challenging situations such as illumination variation,
deformation, fast motion, occlusion, out of view, scale variation and background
clusters.
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In recent years, correlation filter based discriminative methods have shown
excellent performance in terms of accuracy and robustness. However, Discrimi-
native Correlation Filter based methods [1,4,7,10,11,14,15,22] learn a correla-
tion filter from raw pixels, Histogram of Oriented Gradients (HOG) [3] or Color
Names (CN) [16] features on a set of training samples. Owing to the limitation
of each type of feature in some certain scenes, those methods which employ a
type of feature fail to handle scale variation accurately and deal with complex
conditions. Although several methods fuse multiple features or models to learn
the target appearance model, the online models tend to drift due to fast motion
and occlusion. Figure 1 presents some examples of tracking failure. In addition,
several complicated tracking algorithms improve performance at the price of
reducing tracking speed, which limits their real-time performance in real-world
applications.

Fig. 1. Examples of tracking failure in visual object tracking (from left to right are
Basketball, Jogging-1, Car24 and ClifBar). The red and green rectangles denote the
incorrect tracking and ground truth bounding boxes, respectively. Model drift (column
1, 2 and 4) happens due to background clusters, fast motion and occlusion; Scale
variation (column 3) occurs because of illumination change and scale variation. (Color
figure online)

To overcome the aforementioned issues, we propose a robust tracking method
by extending the Staple tracker with a low dimensional complementary features
and use an adaptive online detector with the average peak-to-correlation energy
(APCE) [17] to achieve tracking robustness and real-time performance. First, we
appropriately integrate complementary features including HOG, Color Names
and intensity with dimension reduction in the correlation filter based discrim-
inative framework and combine with color histogram-based model to further
boost the accuracy and efficiency of visual tracking. In addition, complemen-
tary features are extended to learn the scale filter for accurate scale estimation.
Finally, we employ APCE to determine whether to activate and update an online
CUR filter for re-detecting the target.

To evaluate the performance of the proposed method, we evaluate our method
on the large-scale benchmark OTB15 datasets [20] with 100 challenging video
sequences. Compared to a variety of state-of-the-art trackers, extensive exper-
iments show that our method achieves appealing performance in terms of effi-
ciency, accuracy and robustness. The contributions of this paper is briefly sum-
marized as follows:
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– We extend the Staple tracker by integrating the complementary features
to enhance the discriminative ability to illumination variation. Besides, we
employ a dimension reduction strategy to improve robustness to noise inter-
ference and tracking speed.

– We adopt the average-peak-to-correlation to determine whether to activate
and update an online CUR filter, which is conducive to dealing with tracking
failure effectively.

2 Related Work

Visual object tracking has been studied extensively with a variety of applications
and achieved extremely excellent performance in the field of computer vision.
We briefly review the relevant researches on correlation filter based tracking and
tracking-by-detection approaches.

Correlation Filter. Correlation filter based tracking has widely captured
researcher’s attention in recent years. Minimum Output Sum of Squared Error
(MOSSE), proposed by Bolme et al. [2], adopts raw pixels to model the target
appearance by adaptive correlation filters. Henriques et al. [10] propose Circular
Structure with Kernels tracker (CSK) that utilizes the structure of the circulant
patch to learn a kernelized least squares classifier of the target from a single
image patch with dense sampling, and then extend CSK by using the kernelized
ridge regression and apply HOG features instead of raw pixels to Kernelized
Correlation Filters (KCF) [11] to boost the performance of visual tracking. To
obtain more superior performance than the CSK tracker, Danelljan et al. [7]
introduce the sophisticated color features called Color Names into the frame-
work of the CSK tracker for color sequences. Adaptive low-dimensional variant
of color attributes is mainly used for accelerating tracking. Danelljan et al. [4]
propose DSST to learn separate discriminative correlation filters using HOG
features for translation estimation and handling the scale changes of the tar-
get during visual tracking. Scale Adaptive with Multiple Features (SAMF) [14]
learns appearance model of the target by fusing both HOG and Color Names
features together to facilitate robust tracking with the scale adaptive scheme.
Sum of Template And Pixel-wise (Staple) [1] exploits complementary learners
including the template-related learner and the histogram-related learner in the
ridge regression framework to preserve robustness to color changes and deforma-
tions. However, the above mentioned CFT trackers are less effective for dealing
with scale variation and model drift problem due to various challenging caused
by fast motion, background cluster, long-term occlusion and out-of-view.

Tracking-by-detection. Tracking-by-detection approaches are exceedingly
popular due to their high efficiency and performance. These tracking algorithms
generally adopt the binary classifier which segregates the target from background
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to perform visual tracking. To alleviate the stability-plasticity dilemma regard-
ing online update in visual tracking, Kalal et al. [12] propose a novel Tracking-
Learning-Detection (TLD) framework that explicitly decomposes the long-term
tracking task into three components: tracking, learning and detection where the
tracker provides labeled training data for training and updating detector and the
detector re-initializes the tracker when tracking failure happens. Hare et al. [9]
consider the spatial distribution of training samples, and integrate features and
kernels into an online structured output SVM learning framework to predict the
object location. Zhu et al. [22] propose the collaborative correlation tracker that
jointly employ multi-scale kernelized correlation filter to learn the target appear-
ance and introduce an efficient online CUR filter for detection which alleviates
the model drift. Ma et al. [15] use discriminative correlation filters for translation
and scale estimation, and develop an online random ferns classifier to redetect
the target in case of tracking failure. Different from the above trackers, we utilize
APCE to determine whether to activate and update the online detector.

3 Tracking Components

We aim to build a robust and real-time tracking method. Recently, the Staple [1]
tracker achieves appealing performance with high speed. Due to the competitive
performance and efficiency, we base our approach on the Staple tracker. In this
section, we firstly review the Staple tracker. Secondly, we introduce the com-
plementary feature used in our method to enhance robustness to illumination
change. Moreover, we introduce a dimension reduction strategy to remove noise
interference for target estimation and improve efficiency. Finally, to effectively
deal with tracking failure, we utilize an adaptive online detection scheme with the
average peak-to-correlation energy. Figure 2 shows an overview of our proposed
method.

3.1 The Staple Tracker

The Staple [1] tracker combines two responses—the template response is learnt
from HOG feature that is insensitive to color changes, and the histogram
response is learnt from the global color histogram that is robustness to shape
deformation. The models are learnt by solving two independent ridge regression
problems, which retains the efficiency of the correlation filter and avoids ignoring
the information captured by the color histogram response.

The template response is learnt under the least-squares correlation filter for-
mulation. Multi-channel correlation filters are learnt from a single sample of the
target that consists of d-dimensional feature maps f . The optimal correlation
filter h is achieved by minimizing the objective

min
h
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Fig. 2. The framework of our proposed method. At each frame, an image patch at esti-
mated position and size from the previous frame is cropped as current input. First, the
template response is calculated from the correlation between low dimensional comple-
mentary features and the previous learned filter (� denotes element-wise computation).
Meanwhile, the histogram response is computed by using the integral image from the
target likelihood map. Then, the final response map is obtained by the linear combi-
nation of the template and histogram responses. Next, we use APCE calculated from
the final response to consider whether to activate the online detector and re-detect the
target. Finally, we update the template and histogram-related model parameters at
estimated target state.

where f i is the feature map of the i-th channel of f, λ is a regularization term
that prevents over-fitting, y is the desired correlation output and the star �
denotes the circular correlation. Further, the correlation operation is performed
in the Fourier domain. As the method presented in [4], the solution of the filter
is given by

Hi =
Y F i

∑d
j=1 F jF j + λ

, (2)

where F i is the discrete Fourier transform (DFT) of f i, F j is the DFT of f j and
Y denotes the complex conjugate of the DFT of y.

For Eq. (2), an optimal filter Hi can be achieved by solving a d × d linear
system of equation per pixel, which triggers a computational bottleneck for online
learning step in Discriminative Correlation Filter based tracking algorithm. To
obtain a robust approximation, instead of performing expensive computation,
the numerator Bi

t and the denominator Γ i
t of the optimal filter Hi

t are updated
separately as

Bi
t = (1 − αcf ) Bi

t−1 + αcfY F i
t

Γt = (1 − αcf ) Γt−1 + αcf

d∑

j=1

F j
t F j

t .
(3)
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Here, αcf is the learning rate parameter of the template response. Moreover, the
correlation score ycf is estimated by using the inverse DFT:

ycf = F−1

(∑d
i=1 Bi

t−1Z
i
t

Γt−1 + λ

)

. (4)

The histogram response is learnt under the color histogram based Bayes
framework. Given the object region O and its surrounding region S, both the
color histogram of the object and the background are calculated to obtain the
histogram response. According to Bayes theorem, the object likelihood at loca-
tion x is denoted as

P (x ∈ O|O,B) ≈ P (bx|x ∈ O) P (x ∈ O)
∑

Ω∈{O,B} P (bx|x ∈ Ω)P (x ∈ Ω)
. (5)

Let HΩ(·) and bx denote the color histogram which is calculated over the region
Ω. Then, Eq. (5) simplifies to

P (x ∈ O|O,B) =
HO(bx)

HO(bx) + HB(bx)
. (6)

In addition, the model parameters HO (b) and HB (b) are updated online as

HO,t(b) = (1 − αch) HO,t−1(b) + αchHO,t(b)
HB,t(b) = (1 − αch) HB,t−1(b) + αchHB,t(b).

(7)

Finally, the response of color histogram ych is calculated by employing the
integral image from P (x ∈ O|O,B). The final response map g is obtained by the
linear combination of the template response and histogram response as

g = γych + (1 − γ) ycf . (8)

3.2 Multiple Feature Fusion

Generally, the correlation filter only performs dot-product operation on multiple
features and sums over image features in Fourier domain. The popular HOG
features have been successfully applied in various practical applications [3,8,11].
Color attributes, or Color Names [16], which are linguistic color labels assigned
by human to describe colors in the real world, have shown excellent results
for object recognition [13]. HOG features mainly analyze image gradients while
Color Names focus on color representation. To address the limitation of HOG
features under illumination variation and deformation, we concatenate HOG
features with complementary features Color Names and intensity into a vector
to represent the target appearance model in our method.

Furthermore, we extend multiple features into the scale search procedure to
achieve more accurate scale estimation. To handle scale variation, we follow the
scale search strategy that the scale filter is learnt by constructing scale feature
pyramid proposed by Danelljan et al. [4] at estimated target location.
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3.3 Dimension Reduction

The FFT operations consume the expensive computation for the template
response and scales linearly with the feature dimension. To reduce the compu-
tation cost of FFT, we introduce a dimension reduction strategy [5] that retains
useful information to boost the speed of our approach.

Instead of updating the target appearance vt, we use the learned appearance
vt(l) to construct a d̄ × d project matrix Qt. The project matrix Qt is used to
reconstruct the compressed target template vt as v̂t(l) = Qtvt(l), where l is the
tuple index that covers all elements in the target appearance vt. The project
matrix Qt is estimated by minimizing the reconstruction error of the target
template vt

ε =
∑

l

‖vt(l) − QT
t Qtvt(l)‖2. (9)

Here, the Eq. 9 is minimized under constraint QtQ
T
t = I. This is solved by

performing an eigenvalue decomposition of the matrix Jt =
∑

l vt(l)vt(l)T . The
rows of the project matrix Qt is selected as the d-eigenvectors of Jt corresponding
to the largest eigenvalues. Therefore, the filters are derived as:

B̂i
t = Y V̂ i

t

Γ̂t = (1 − αcf )Γ̂t−1 + αcf

d̂∑

j=1

F̂ j
t F̂ j

t .
(10)

Here, the compressed training sample F̂t = F{Qtft} and target appearance
V̂t = F{Qtvt}. The template response is obtained by employing the compressed
test sample Ẑt = F{Qt−1zt}

ycf = F−1

(∑d̂
i=1 B̂i

t−1Ẑ
i
t

Γ̂t−1 + λ

)

. (11)

3.4 Online Detection

It is obvious that introducing a re-detection component is favorable for improving
the robust long-term tracking algorithm in case of tracing failure. However, if
the re-detection procedure is carried out at each frame in videos, the tracking
algorithm will inevitably suffer the high computational complexity. The CCT
[22] tracker utilizes the overlapping rate between the estimated target state and
the candidate bounding box detected by the CUR filter to detect the tracking
failure and alleviates model drift problem to some extent, but it hardly solves
the problem of tracking failure due to the inaccuracy of translation estimation.
We propose an effective method to tackle this problem.

Conventionally, correlation filters are designed to produce strong peaks for
the target and the confidence degree of the response map is measured by
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APCE [17]. To enable the tracker to detect tracking failure and activate re-
detection module, we estimate the target state in the t-th frame by

APCE =
|gmax − gmin|

mean

(
∑

w (g(w) − gmin)
) , (12)

where gmax and gmin is the maximum and minimum value on the correlation
map, and w denotes the tuple index that covers all elements of the response
map. We determine whether to activate re-detection module with the criteria
APCE. In addition, the learning rates αcf and αch are adjusted to καcf and
καch respectively if APCE is smaller than a predefined threshold, where κ is the
penalty coefficient.

We adopt an online CUR filter which is firstly used in the collaborative
correlation tracker for re-detect the target. Different from previous CCT, whether
we update the online CUR filter depends entirely on APCE. Specially, the CUR
decomposition algorithm [18,21] of a matrix A ∈ Rm×n aims to find a matrix
C ∈ Rc×r with a subset of c columns of A, a matrix R ∈ Rr×n with a subset of
r rows of A, and a low-rank matrix U ∈ Rc×n such that ‖A − CUR‖ξ achieves
minimum, where ‖ · ‖ξ is 2-norm or Frobenius norm. If APCE is above the
threshold τ during tracking, we add the target appearance representation At

into the historical object template pool A. We achieve the CUR filter Dt in
current frame as follows

Dt =
1
c

∑

i=1,...,c

C(i), (13)

where C is a subset generated by the historical object template pool A with
random sampling and the size c of C is approximately obtained by c = 2k

ε (1 +
o(1)), where k is the target rank and ε is the error probability. If APCE is
below τ , we estimate the similarity between the CUR filter Dt and each possible
candidate image regions in the image with convolution theorem to detect the
top-k confident image regions. The target state is finally identified to locate at
the maximum value among these response maps. Finally, the online CUR filter
for detection is updated only when APCE exceeds the threshold τ .

4 Experiments and Analysis

4.1 Datasets and Experimental Setup

We evaluate our approach on the recently published benchmark which is widely
used: the OTB15 datasets [20]. The datasets consist of 100 videos including
many challenging situations: illumination variation, scale variation, motion blur,
occlusion, etc. To fully evaluate our method, we follow the evaluation protocol as
suggested in [19] as well as several standard evaluation metrics, namely distance
precision (DP), overlap precision (OP) and tracking speed in frames per second
(FPS). DP is defined as the percent of frames in a video where the Euclidean
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distance between the estimated center location and the ground-truth of the tar-
get is below than a threshold. We present the result at the threshold of 20 pixels
[19]. OP is computed as the percent of frames where the intersection-over-union
overlap between the predicted bounding box and the ground-truth suppress a
threshold. We report the result at the threshold of 0.5. We also provide the FPS
for each tracker. In addition, the precision and success plots [19] of the results are
given over all 100 videos. The precision and success plots show the mean distance
and overlap precision over a range of thresholds, respectively. In the legend, the
trackers are ranked using the average DP score at 20 pixels in precision plots
and the area under the curve (AUC) in success plots.

Our approach is implemented in MATLAB 2015a on a desktop PC with an
Intel R© CoreTM i7-3770 3.4 GHz CPU and 8 GB RAM. The regulation param-
eter is set to 0.001. The learning rates αcf and αch are set to 0.01 and 0.04,
respectively. We set the merge factor γ to 0.3. For online detection, we set the
parameter τ to 10 to determine when to activate the detector, the penalty coef-
ficient κ to 0.1 and the size c of template pool to 20.

4.2 Experimental Results

We compare our algorithm with 9 different state-of-the-art methods to present
the excellent performance. The methods used for comparison contain Staple [1],
DSST [4], SRDCF [6], CN [7], Struck [9], KCF [11], SAMF [14], LCT [15] and
CCT [22]. The code or binaries for all trackers are provided by authors or the
OTB datasets [20].

Table 1. Quantitative comparison of our approach with the state-of-the-art trackers
on 100 challenging sequences. The results of the trackers are presented in median OP
at the threshold of 0.5 and DP at threshold of 20 pixels. We also reported the average
frames per second (FPS) as well. The best two results are highlighted by bold and
underline. Our method performs favorably with the existing trackers.

CN [7]KCF [11]Struck [9]SAMF [14]CCT [22]LCT [15]DSST [4]SRDCF [6]Staple [1] Ours

OP 0.475 0.552 0.534 0.636 0.667 0.700 0.672 0.728 0.699 0.774

DP 0.595 0.697 0.655 0.740 0.739 0.762 0.696 0.788 0.784 0.836

FPS193.81 251.79 24.37 19.30 40.12 19.43 38.6 6.99 57.63 46.05

Table 1 presents a comparison with the state-of-the-art methods above on 100
challenging sequences using OP and DP. We report the speed of the methods in
average frames per second (FPS) as well. The best two results are highlighted by
bold and underline in each metric. Compared to the baseline method Staple, our
method improves the median OP from 69.9% to 77.4% and DP from 78.4% to
83.6%. Among the trackers in the literature, SRDCF has shown to achieve the
best performance with the median OP of 72.8% and DP of 78.8%. In addition
to the performance advantage with 4.6% in median OP and 4.8% in median DP,
our tracker is nearly 7 times faster than SRDCF. In terms of three evaluation
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metrics, our method achieves the best compared to CCT and LCT with re-
detection module. Although CN and KCF obtain higher frame rate than 46.05,
the proposed method is able to reach better performance with respect to them.

Fig. 3. The distance precision and overlap success plots using one-pass evaluation
(OPE), temporal robustness evaluation (TRE) and spatial robustness evaluation (SRE)
over all the 100 videos. The values indicate the mean DP score at the threshold of 20
pixels in the legend of precision plots and the legend contains the area under the curve.

Figure 3 shows the precision and success plots illustrating the median dis-
tance and overlap precision over all the 100 sequences. Our approach performs
favorably against the mentioned trackers in OPE, TRE and SRE [8] evaluation
schemes. The trackers are ranked using the median distance precision at the
threshold of 20 pixels for precision plot and the area under the curve (AUC)
for success plot. In precision plots, our method outperforms SRDCF by 4.8%
and the baseline algorithm Staple by 5.2%. In success plots, our approach pro-
vides an improvement of 3% and 4.9% in AUC scores compared to SRDCF and
Staple respectively. Additionally, we evaluate the robustness of our approach on
two different types of initialization criteria temporal robustness (TRE) and spa-
tial robustness (SRE). In both robustness evaluations, our algorithm achieves a
consistent gain in performance compared to SRDCF and the baseline algorithm
Staple.

4.3 Qualitative Evaluation

Here we provide a qualitative comparison of our approach with existing state-of-
the-art trackers (Struck [9], KCF [11], SAMF [14], DSST [4] and Staple [1]) on
eight challenging sequences in Fig. 4. The Struck uses the kernelized structured
output SVM classifier and does not deal with well out-of-view, occlusion (Tiger2
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and Jogging-2), scale variation (Dog1 and Doll), rotation (Rubick) and back-
ground clutters (Shaking). The KCF tracker based on correlation filter learned
from HOG features does not perform well in scale variation (Dog1 and Doll)
since it is not able to estimate scale changes. The KCF tracker fails to deal
with background clusters (Shaking) because of the property of HOG feature and
occlusion (Jogging-2 and Tiger2) due to the lack of the re-detection module in
case of tracking failure. Although the SAMF tracker integrates HOG and CN
features in the correlation filter framework, it is less effective in handling model
drift problem caused by multiple factors (BlurOwl, Shaking and Diving). The
Staple tracker performs well in scale variation (Dog1 and Doll) and out-of-view
(Tiger2) due to complementary learners. However, it fails to effectively track the
target for background clusters (Shaking). In addition, The Staple tracker leads
to model drift (Jogging-2) since it does not deal with the partially or fully occlu-
sion. Overall, our proposed approach performs remarkably in most challenging
situations. The main reasons are as follows. First, complementary features are
extracted to learn the template response which is combined with the color his-
togram response to improve performance. The feature fusion strategy exhibits
powerful ability for handling fast motion and motion blur (BlurOwl and Tiger2),
deformation (Diving) and background clusters (Shaking). Besides, our approach
does well in scale variation (Dog1 and Doll) since we extend multiple powerful
features to handle scale change. Finally, the online detector effectively activates
re-detection module in case of tracking failure for out-of-view (Tiger2) and occlu-
sion (Jogging-2).

Fig. 4. A qualitative comparison of our algorithm with the five state-of-the-art trackers
on eight challenging sequences (from left to right and top to down are BlurOwl, Tiger2,
Dog1, Doll, Rubik, Shaking, Jogging-2 and Diving, respectively).
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5 Conclusion

In this paper, we propose a robust and real-time visual tracking object method.
We extend the Staple tracker by integrating the complementary features to
enhance the discriminative power to illumination change. We also extend mul-
tiple features to the procedure of learning scale filter to achieve accurate scale
estimation and improve robustness and efficiency by reducing feature in dimen-
sion. In addition, we employ APCE to determine whether to activate and update
the CUR filter to improve robustness to tracking failure. Extensive experiments
demonstrate that our method achieves superior performance in terms of accu-
racy, robustness and speed.
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