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Abstract Saliency cuts aims to segment salient objects from a given saliency
map. The existing saliency cuts methods are fixed to the input cues. It limits
their performance when the input cues are changed. In this paper, we propose
a novel saliency cuts method named adaptive saliency cuts, which takes advan-
tage of all the input cues in a unified framework and adjusts its components
adaptively. Given a saliency map, we first generate segmentation seeds with
adaptive triple thresholding. Next, we extend GrabCut by combining different
input cues, and use it to generate a rough-labeled map of salient objects.
Finally, we refine the boundaries of the salient objects with adaptive initialized
segmentation, and produce an accurate binary mask. To the best of our
knowledge, this method is the first adaptive saliency cuts method for different
input cues. We validated the proposed method on MSRA10K and NJU2000.
The experimental results demonstrate that our method outperforms the state-
of-the-art methods.
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Fig. 1: An example of saliency cuts using different input cues. (a) Saliency map. (b) Color
cue. (c) Depth cue. (d) Saliency cuts result only using saliency map. (e) Saliency cuts result
using saliency map and color cue. (f) Saliency cuts result using saliency map, color cue and
depth cue. The quality of saliency cuts results is ordered as (d)<(e)<(f).

Keywords Saliency cuts · segmentation seeds generation · rough-labeled
map generation · object boundary refinement · adaptive GrabCut

1 Introduction

Large-scale multimedia data is generated every day in heterogeneous spaces,
such as from social network [1] and surveillance [2]. It brings great challenges
in semantically analyzing and understanding the data [3]. As the dominant
modality of all the multimedia data, visual data plays an important role in
recording and transferring information [4]. To visual data, segmenting the ob-
jects, especially the salient objects which may attract viewers’ attention, from
background is a fundamental of its semantic analysis and understanding [5].

Object segmentation has been widely studied in past decades, which aims
to distinguish objects from background on pixel level in images and videos [6].
It is used in numerous applications, such as object recognition [7], detection [8],
retrieval [9–11], action recognition [12, 13], and image annotation [14, 15].
As a special task in object segmentation [16–19], saliency cuts [20] aims to
automatically segment salient objects from a given saliency map, which is
generated by saliency detection algorithms [14,21]. The existing saliency cuts
methods can be roughly classified into two categories, according to the usage of
saliency map. One category generates segmentation results from the saliency
value or luminance of saliency map [22, 23]; while the other category extracts
segmentation seeds from saliency map and feeds seeds to semi-supervised
segmentation methods [20,24].

An obvious limitation of current saliency cuts methods is that their
performance cannot be adaptively improved when more input cues are
supplemented. Figure 1 shows an example of saliency cuts using different input
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Fig. 2: An overview of our proposed method. For different input cues, namely saliency map
only, saliency map and RGB image, and saliency map and RGB-D image, we first generate
segmentation seeds using adaptive triple thresholding. Next, we feed these segmentation
seeds to adaptive GrabCut to generate rough-labeled map. Finally, we refine the object
boundaries with adaptive initialized segmentation to produce accurate segmentation results.

cues. Three saliency cuts results with different input cues, namely saliency map
(Fig. 1 (a)), color cue (Fig. 1 (b)) and depth cue (Fig. 1 (c)), are shown in
Fig. 1 (d) - (f). Specifically, the saliency cuts result in Fig. 1 (d) uses saliency
map only; the one in Fig. 1 (e) uses saliency map and color cue; and the one
in Fig. 1 (f) uses all the three cues. It shows that the saliency cuts results
improve along with the supplement of input cues. Hence, it is important to
make full use of all the input cues to improve the performance in saliency cuts.

Based on the above observation, we propose a novel saliency cuts method
named Adaptive Saliency Cuts (ASC). Figure 2 shows an overview of the
proposed method. We first use adaptive triple thresholding algorithm [25]
to generate segmentation seeds from a given saliency map. Then, we feed
the segmentation seeds together with different cues to adaptive GrabCut
to generate a rough-labeled map of salient objects. Finally, we refine the
boundaries of the salient objects and generate an accurate binary mask. Here,
the “Adaptive” in the name of our proposed method has double meaning.
First, our method can handle different input cues in a unified framework and
take advantage of all the input cues. Second, our method can adjust all the
components adaptively, namely segmentation seeds generation, rough-labeled
map generation and object boundary refinement, to improve the performance
of saliency cuts. We validated our method on two datasets, MSRA10K [24] and
NJU2000 [26], which are the largest RGB image dataset and the largest RGB-
D image dataset for salient object detection, respectively. The experimental
results show that our method outperforms the state-of-the-art saliency cuts
methods on different input cues.

Some preliminary results of our method were proposed in [25, 27], which
presented the studies of saliency cuts on RGB images and RGB-D images,
respectively. In this paper, we propose a unified framework for saliency
cuts to make full use of different input cues, i.e., only saliency map and
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the combination of saliency map and RGB/RGB-D image. Inspired by [25]
and [27], we construct the framework with several common components,
namely segmentation seeds generation, rough-labeled map generation and
object boundary refinement. Nevertheless, different to our previous works,
we discuss the influences of different input cues and improve each component
to handle the different input cues adaptively. For example, we extend the
energy function of GrabCut in rough-labeled map generation to exploit all
the input cues. Furthermore, we provide more comprehensive validation of the
proposed method on two largest salient object detection datasets: MSRA10K
and NJU2000.

Our contributions mainly include:

– We propose a novel saliency cuts method, which can adaptively handle
different input cues with a unified framework and adjust all its components
adaptively.

– We validate the proposed method on the largest salient object detection
datasets for RGB images and RGB-D images. It shows that our method is
superior to the state-of-the-art methods.

The rest of the paper is organized as follows. We briefly review the typical
methods in object segmentation and saliency cuts in Section 2. Then, we
introduce our method according to different input cues, namely saliency map
only, saliency map and RGB image, and saliency map and RGB-D image
in Section 3. The detailed validation and analysis of the experiments are
presented in Section 4. Finally, we conclude our work in Section 5.

2 Related work

2.1 Object segmentation

The existing object segmentation methods can be summarized from different
viewpoints. In this subsection, we roughly review object segmentation view-
points in three aspects.

According to the requirement of user interaction, current object seg-
mentation can be classified into two categories, namely automatic object
segmentation and interactive object segmentation [28]. The former requires no
user interaction in object segmentation, but it is usually difficult in localizing
objects; the latter includes the user in the procedure of segmentation and
analyzes the user intention from their interactions.

According to segmentation result representation, current object segmenta-
tion methods can also be classified into two categories, namely boundary based
methods [29] and region based methods [30]. The former extracts an object
by tracing its contour based on image properties; the latter models image
content on regions, which considers both region statistics and inter-regional
similarities.

Moreover, according to the dependence of training data, the existing
object segmentation methods can be classified into three categories, namely
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supervised methods, semi-supervised methods and unsupervised methods [20].
Supervised methods require prior knowledge from manually labeled training
data [31]. Semi-supervised methods require human interactions to provide seg-
mentation seeds [30]. Both supervised methods and semi-supervised methods
are time and labor consuming, which limits their applications in practice.
In contrast, unsupervised methods can generate segmentation without any
training or manually-labeling process, which are more preferred in real
applications [32].

Recently, some new advances appear in object segmentation. Co-segmentation
focuses on extracting the same object from a set of images, which can
analyze the representation of an object from its appearance in different
situations and usually obtain better performance than those methods on
a single image [33]. Specifically, object segmentation on stereo images can
be treated as a special co-segmentation, in which the number of images is
limited to two and object appearances on two views have high consistency
and more strict constraints [34]. Another progress on object segmentation is
combining multiple modalities, such as depth [35]. Multi-modal based methods
can integrate the object representations on different modalities and improve
the effectiveness and efficiency of object segmentation.

2.2 Saliency cuts

Saliency cuts methods utilize saliency map as the primary input cue, in
which original images or videos are usually ignored or used for refinement.
Otsu et al. [22] produce segmentation results using thresholds from gray-level
histograms of saliency maps. Achanta et al. [23] segment salient objects from
the saliency value and luminance of saliency map. Fu et al. [20] generate
saliency cuts results via professional labels. Cheng et al. use a fixed threshold
to binarize the saliency maps and produce results from iterative GrabCut
calculation [24]. Banica et al. [36] segment video object via salient segment
chain composition. The limitation of current saliency cuts methods is that
they are fixed to the input cues and they cannot improve their performance
adaptively when more input cues are supplemented.

3 Adaptive Saliency Cuts

Because our method deals with different input cues with a unified framework,
we first present the details of the proposed method under the simplest case,
i.e., only using saliency map, and then present the additional or changed
processing under more input cues. To distinguish the differences in input cues,
we use ASCS , ASCSC and ASCSCD to indicate our method in the cases
using only saliency map, saliency map and RGB image, and saliency map and
RGB-D image as the input, respectively.
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Fig. 3: Segmentation seeds generation via adaptive triple thresholding.

3.1 Only using saliency map

3.1.1 Segmentation seeds generation via adaptive triple thresholding

Inspired by [25], we generate segmentation seeds from saliency map using
adaptive triple thresholding. As compared to Otsu multilevel thresholding
method [37], adaptive triple thresholding method includes twice optimizations
to obtain better performance.

Figure 3 shows an overview of segmentation seeds generation via adaptive
triple thresholding. Given a saliency map, we first propose a histogram from
saliency map, which is in the value range of [0, 255] in our experiments. Then,
we calculate a threshold tm to divide saliency map Ms into two parts: Ms =
Ωsb ∪Ωsf . Here, Ωsb and Ωsf denote background and foreground, which contain
the pixels whose saliency values are in the value range of [1, tm] and [tm+1, H],
respectively. Assume n is the number of pixels on Ms, and nb and nf are the
numbers of pixels on Ωsb and Ωsf , respectively. tm is calculated as follows:

tm = arg max{ωbωf (µb − µf )2}, (1)

where ωb and ωf are the weights of Ωsb and Ωsf , which equal nb/n and
nf/n, respectively; µb and µf are the average saliency value of Ωsb and Ωsf ,
respectively.

We further calculate tl and th to divide background Ωsb and foreground
Ωsf into two sub-parts: Ωsb = Ωscb ∪ Ωspb and Ωsf = Ωspf ∪ Ωscf . Here, Ωscb,
Ωspb, Ω

s
pf and Ωscf denote certain background, probable background, probable

foreground and certain foreground, which contain the pixels whose saliency
values are in the value range of [1, tl], [tl + 1, tm], [tm + 1, th] and [th + 1, H],
respectively. Obviously, the intersection of each two in Ωscb, Ω

s
pb, Ω

s
pf and Ωscf

is ∅. Assume ncb, npb, npf and ncf are the numbers of pixels on Ωscb, Ω
s
pb, Ω

s
pf

and Ωscf , respectively. tl and th are calculated as follows:

{tl, th} = arg max{ωcbωpb(µcb − µpb)2 + ωcfωpf (µcf − µpf )2}, (2)

where ωcb, ωpb, ωpf and ωcf are the weights of Ωscb, Ω
s
pb, Ω

s
pf and Ωscf , which

equal ncb/n, npb/n, npf/n and ncf/n, respectively; µcb, µpb, µpf and µcf are
the average saliency value of Ωscb, Ω

s
pb, Ω

s
pf and Ωscf , respectively.
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3.1.2 Rough-labeled map generation via adaptive GrabCut

GrabCut is a pixel-level interactive object segmentation algorithm based on
mini-cut optimization [30].

After we utilize the segmentation seeds generated in Section 3.1.1 as the
predefined labels of GrabCut algorithm, the energy function E(L,K, θ, Z) is
defined as follows:

E(L,K, θ, Z) = U(li, ki, θ, zi) + V (L,Z), (3)

where L is the label set; K is the parameter set of GMM model on saliency
map; θ is the gray histogram of foreground or background on saliency map;
Z is the saliency value sets of saliency map; U(li, ki, θ, zi) is the data term;
V (L,Z) is the smooth term, which is calculated as follows:

V (L,Z) = γ
∑

(pm,pn)∈C

[ln 6= lm] exp−λD(zm, zn)2, (4)

where constant γ equals 50 [38]; C is the set of pairs of neighboring pixels;
λ = (2〈(zm−zn)2〉)−1 and 〈·〉 in λ denotes expectation over an colorful image;
D(zm, zn) denotes the Euclidean distance between pixels pm and pn, which is
defined as follows:

D(zm, zn) = ||zm − zn||, (5)

where zm and zn are the saliency value of pixel pm and pn on saliency map.
Based on the above GrabCut algorithm, we generate a rough-labeled map

Mrl after we feed the segmentation seeds Ms, which contains Ωrlcb, Ω
rl
pb,

Ωrlpf and Ωrlcf with the corresponding definition to Ωscb, Ω
s
pb, Ω

s
pf and Ωscf ,

respectively.

3.1.3 Object boundary refinement via adaptive initialized segmentation

To obtain more accurate salient objects, we refine the object boundaries
generated by Mrl via adaptive initialized segmentation [39].

Figure 4 shows an overview of object boundary refinement. In order to
avoid containing background in the segmented salient objects, we first erode
Ωrlcf as follows:

Ωrl
′

cf = fe(Ω
rl
cf , η1R(Ωrlcf )), (6)

where R(Ωrlcf ) is the radius of circumcircle of Ωrlcf , which is adaptive to Ωrlcf
in the rough-labeled map Mrl; η is a parameter, which equals 0.2 in our
experiments; fe(Ω,R) is a function to erode Ω with a radius R.

Ωrlpf is also updated as follows:

Ωrl
′

pf = (Ωrlcf\Ωrl
′

cf ) ∪Ωrlpf . (7)

Meanwhile, to improve the completeness of the segmented salient objects,
we dilate the non-background region, i.e., the union of Ωrlcf , Ωrlpf and Ωrlpb, and
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Fig. 4: Object boundary refinement via adaptive initialized segmentation.

refine probable background as the union of Ωrlpb and the newly covered region
in dilation, which is defined as follows:

Ωrl
′

pb = (fd((Ω
rl
cf∪Ωrlpf∪Ωrlpb), ξR(Ωrlcf∪Ωrlpf∪Ωrlpb))\(Ωrlcf∪Ωrlpf∪Ωrlpb))∪Ωrlpb, (8)

where R(Ωrlcf ∪ Ωrlpf ∪ Ωrlpb) is the radius of circumcircle of Ωrlcf ∪ Ωrlpf ∪ Ωrlpb,
which is adaptive to Ωrlcf , Ωrlpf and Ωrlpb in the rough-labeled map Mrl; ξ is
a parameter, which equals 0.1 in our experiments; fd(Ω,R) is a function to
dilate Ω with a radius R.

Ωrl
′

cb is also updated as follows:

Ωrl
′

cb = Ωrlcb\Ωrl
′

pb . (9)

We re-feed the segmentation seeds Mrl′ to the map generation algorithm
in Section 3.1.2 to generate the accurate-labeled map Mal, which contains
Ωalcb, Ω

al
pb, Ω

al
pf and Ωalcf , and produce the accurate binary mask by setting the

values of pixels in Ωalcf and Ωalpf to 1 to denote object, and setting the values

of pixels in Ωalcb and Ωalpb to 0 to denote background, respectively.

3.2 Using saliency map and RGB image

We utilize the same method to generate segmentation seeds from saliency map
as defined in Section 3.1.1. When generating rough-labeled map, we extend
the energy function of GrabCut by combining saliency map and color cue as
follows:

E′ = αE(L,Ks, θs, Zs) + (1− α)E(L,Kc, θc, Zc), (10)

where E(L,Ks, θs, Zs) and E(L,Kc, θc, Zc) are the energy functions on
saliency map and color cue, respectively, which are same to the definition in
Eq. (3); α is a parameter for combination, which equals 0.5 in our experiments.
Based on the extended GrabCut algorithm, we generate the rough-labeled map
Mrl using both saliency map and RGB image.
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Finally, we refine the object boundaries generated by Mrl in the same way
as defined in Section 3.1.3.

3.3 Using saliency map and RGB-D image

Similarly, we first generate segmentation seeds from saliency map in the
same way as defined in Section 3.1.1. Then, we further extend GrabCut by
incorporating depth cue.

Depth cue has natural advantages in salient object segmentation, due to
the consistency of object appearance and dis-connectivity between foreground
and background [40].

We extend the energy function of GrabCut as follows:

E′′ = αE(L,Ks, θs, Zs)+βE(L,Kc, θc, Zc)+(1−α−β)E(L,Kd, θd, Zd), (11)

where E(L,Ks, θs, Zs), E(L,Kc, θc, Zc) and E(L,Kd, θd, Zd) are the energy
functions of saliency map, color cue and depth cue, respectively, which are
same to the definition in Eq. (3); α and β are parameters for combination,
which equal 1/3 and 1/3 in our experiments, respectively.

Finally, we refine the distance D(zm, zn) in Eq. (4). Referring to [35], we use
Euclidean distance Ds(zsm, z

s
n) and Dc(zcm, z

c
n) on saliency map and color cue,

and geodesic distance Dd(zdm, z
d
n) on depth cue, respectively, because geodesic

distance can better extract the spatial property of depth cue. We define the
Euclidean distance Dk(zkm, z

k
n), k ∈ {s, c} in Eq. (5), and define Dd(zdm, z

d
n) as

follows:
Dd(zdm, z

d
n) = min{ϕm,n}, (12)

where ϕm,n denotes the distance of a path between pixel pm and pn, which is
calculated as follows:

ϕm,n = max
i,j∈Pm,n

{||zdi − zdj ||}, (13)

where i and j are two neighbor pixels on path Pm,n; zdi and zdj are the depth
value of i and j on depth cue. Based on the depth-aware GrabCut extension,
we generate the rough-labeled map Mrl using both saliency map and RGB-D
image.

Finally, we refine the object boundaries generated by Mrl in the same way
as defined in Section 3.1.3.

4 Experiments

4.1 Dataset and experiment settings

We validated our method on two datasets: MSRA10K [24] and NJU2000 [26].
MSRA10K is the largest RGB image dataset for salient object detection,
which contains 10,000 images and corresponding manually labelled masks in
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ground truth. NJU2000 is the largest RGB-D image dataset for salient object
detection, which contains 2,000 RGB-D images with manually segmented
salient object in ground truth.

We utilize three common criteria for saliency cuts evaluation, namely
Precision, Recall and Fβ [41]. Precision and Recall are defined as follows:

Precision =
1

Nimg

Nimg∑
i=1

|Mi ∩Gi|
|Mi|

, (14)

Recall =
1

Nimg

Nimg∑
i=1

|Mi ∩Gi|
|Gi|

, (15)

where Nimg is the number of images in a dataset, Mi is the binary mask of
saliency cuts result of the ith image and Gi is the ground truth of the ith
image.

Fβ is defined with Precision and Recall as follows:

Fβ =
(1 + β2)Precision×Recall
β2Precision+Recall

, (16)

where β2 = 0.3 to emphasize precision following general practice in saliency
cuts evaluation.

All the experiments were conducted on a computer with 2.9GHz Intel
Core i5 CPU and 8GB memory. We applied the default settings of author
suggestions for all the saliency cuts methods used in our experiments.

4.2 Component analysis

We first validated the effectiveness of three components of our method, namely
adaptive triple thresholding segmentation seeds generation, salient object
segmentation via input-adaptive GrabCut extension, and adaptive boundary
refinement, on NJU2000. The input saliency maps are generated using RC [24].

We compare our method with three baselines. Fixed denotes the baseline
with segmentation seeds generation using fixed thresholds which uniformly
divide saliency value range ( i.e., (tl, tm, th) equals (64, 128, 192)), original
GrabCut and no boundary refinement. ASC-A denotes the baseline using
adaptive triple thresholding segmentation seeds generation to replace using
fixed thresholds in Fixed baseline. ASC-AD denotes the baseline using salient
object segmentation via input-adaptive GrabCut extension to replace using
original GrabCut in ASC-A baseline. ASC denotes our method. Especially,
when analyzing ASC using only saliency map as the input cue, ASC-A is the
same as ASC-AD, because we make no extension on GrabCut algorithm in
Section 3.1.

Figure 5 shows the precision, recall and Fβ of three baselines and our
method under different input cues. We can see that the recall and Fβ grow
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Fig. 5: Component analysis under different input cues. (a) Only using saliency map. (b)
Using saliency map and RGB image. (c) Using saliency map and RGB-D image.
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Fig. 6: Comparison of Otsu [22] , FT [23] and ASCS using only saliency maps as the input
cue. (a) MSRA10K. (b) NJU2000.

from baseline Fixed to ASC while precision keeps relatively consistent under
different input cues. It indicates that each component in our method help to
generate better saliency cuts results via improving the completeness of salient
object segmentation while making little trade-off in accuracy.

4.3 Comparison with state-of-the-arts

We also compared ASC with the state-of-the-art saliency cuts methods using
the same input value. The input saliency maps are generated using RC [24].

1) Comparison using only saliency map as the input cue. We
compared ASCS with two state-of-the-art saliency cuts methods using only
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(e)

Fig. 9: Examples of saliency cuts results of different methods using only saliency map as the
input cue. (a) Saliency map. (b) Ground truth. (c) Otsu. (d) FT. (e) ASCS .
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Fig. 10: Examples of saliency cuts results of different methods using saliency map and RGB
image as the input cue. (a) Color cue. (b) Saliency map. (c) Ground truth. (d) AL. (e)
ASRE. (f) ASCSC .

saliency map as the input cue, namely Otsu [22] and FT [23], on two datasets:
MSRA10K and NJU2000. Figure 6 shows the comparison results and Fig. 9
illustrates some examples of saliency cuts results of different methods using
only saliency map as the input cue.

2) Comparison using saliency map and RGB image as the input
cue. We compared ASCSC with two state-of-the-art saliency cuts methods
using saliency map and RGB image as the input cue, namely AL [20] and
ASRE [24], on MSRA10K. Figure 7 shows the comparison results and Fig. 10
illustrates some examples of saliency cuts results of different methods using
saliency map and RGB image as the input cue.

3) Comparison using saliency map and RGB-D image as the
input cue. Because there is no specific saliency cuts method for RGB-D
images, we simply extended AL and ASRE to AL* and ASRE* as the baselines
by utilizing depth cue as the fourth dimension of RGB image. We compared
ASCSCD with the above two baselines using saliency map and RGB-D image
as the input cue on NJU2000. Figure 8 shows the comparison results and
Fig. 11 illustrates some examples of saliency cuts results of different methods
using saliency map and RGB-D image as the input cue.

From Fig. 6 to 8, we can see that the methods achieving the highest
precision usually have poor performance on recall. It means that they
prefer omitting the uncertain parts in order to guarantee the accuracy
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 11: Examples of saliency cuts results of different methods using saliency map and RGB-
D image as the input cue. (a) Color cue. (b) Depth cue. (c) Saliency map. (d) Ground truth.
(e) AL*. (f) ASRE*. (g)ASCSCD.

of segmentation results. However, it leads to serious incompleteness of
segmentation results. In contrast, our method has obvious promotion on recall
with slight descent on precision. In this way, our method outperforms current
methods on Fβ value, because it obtains a better balance between precision
and recall. From Fig. 9 to 11, we can see that our method produces the best
segmentation results on various salient objects, such as flower, sign, animal
and person.

4.4 Robustness analysis

We also compared our method with the state-of-the-art saliency cuts methods
using five saliency map methods as the input cue, namely RC [24], RBD [42],
MR [43], SD [44] and ACSD [26], to validate the robustness of ASC under
different circumstance on NJU2000.

Table 1 shows the comparison results of different saliency cuts methods
using five saliency map methods as the input cue. We can see that our method
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Table 1: Comparison of ASC and six saliency cuts methods using five saliency map methods
on NJU2000.

RC [24] RBD [42] MR [43] SD [44] ACSD [26]

Otsu [22]
Precision 0.62 0.65 0.67 0.74 0.74

Recall 0.69 0.64 0.62 0.32 0.74
Fβ 0.63 0.65 0.66 0.57 0.74

FT [23]
Precision 0.66 0.70 0.71 0.82 0.80

Recall 0.36 0.39 0.40 0.31 0.40
Fβ 0.55 0.59 0.60 0.59 0.65

ASCS

Precision 0.63 0.65 0.67 0.77 0.74
Recall 0.70 0.65 0.61 0.33 0.76
Fβ 0.64 0.65 0.66 0.59 0.75

AL [20]
Precision 0.70 0.69 0.70 0.71 0.68

Recall 0.73 0.70 0.65 0.39 0.66
Fβ 0.71 0.69 0.69 0.60 0.68

ASRE [24]
Precision 0.73 0.70 0.71 0.78 0.81

Recall 0.61 0.63 0.59 0.43 0.69
Fβ 0.70 0.68 0.68 0.66 0.78

ASCSC

Precision 0.71 0.68 0.69 0.78 0.77
Recall 0.73 0.71 0.70 0.46 0.84
Fβ 0.72 0.69 0.69 0.68 0.79

AL*
Precision 0.69 0.69 0.69 0.68 0.66

Recall 0.76 0.71 0.67 0.42 0.72
Fβ 0.70 0.69 0.68 0.60 0.67

ASRE*
Precision 0.71 0.69 0.70 0.77 0.76

Recall 0.64 0.66 0.65 0.47 0.73
Fβ 0.70 0.68 0.69 0.67 0.75

ASCSCD

Precision 0.70 0.68 0.69 0.78 0.71
Recall 0.86 0.77 0.77 0.51 0.90
Fβ 0.73 0.70 0.71 0.70 0.75

outperforms other methods on Fβ value with the input of all five saliency map
methods, which indicates the effectiveness and robustness of our method.

5 Conclusion

In this paper, we propose an adaptive saliency cuts method which makes full
use of different input cues with a unified framework, including the components
of segmentation seeds generation via adaptive triple thresholding , rough-
labeled map generation via adaptive GrabCut and object boundary refinement
via adaptive initialized segmentation. The proposed method was validated
on two largest datasets for salient object detection, namely MSRA10K and
NJU2000. The experimental results show that our method is superior to the
state-of-the-art saliency cuts methods under different input cues.
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