
LIP: Local Importance-based Pooling

Ziteng Gao Limin Wang∗ Gangshan Wu
State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract

Spatial downsampling layers are favored in convolu-
tional neural networks (CNNs) to downscale feature maps
for larger receptive fields and less memory consumption.
However, for discriminative tasks, there is a possibility that
these layers lose the discriminative details due to improper
pooling strategies, which could hinder the learning process
and eventually result in suboptimal models. In this paper,
we present a unified framework over the existing down-
sampling layers (e.g., average pooling, max pooling, and
strided convolution) from a local importance view. In this
framework, we analyze the issues of these widely-used pool-
ing layers and figure out the criteria for designing an ef-
fective downsampling layer. According to this analysis, we
propose a conceptually simple, general, and effective pool-
ing layer based on local importance modeling, termed as
Local Importance-based Pooling (LIP). LIP can automati-
cally enhance discriminative features during the downsam-
pling procedure by learning adaptive importance weights
based on inputs. Experiment results show that LIP consis-
tently yields notable gains with different depths and differ-
ent architectures on ImageNet classification. In the chal-
lenging MS COCO dataset, detectors with our LIP-ResNets
as backbones obtain a consistent improvement (≥ 1.4%)
over the vanilla ResNets, and especially achieve the current
state-of-the-art performance in detecting small objects un-
der the single-scale testing scheme.1

1. Introduction
For discriminative tasks like image classification [8] and

object detection [27], the modern architectures of convolu-
tional neural networks (CNNs) mostly utilize spatial down-
sampling (pooling) layers to reduce the spatial size of fea-
ture maps in the hidden layers. Such pooling layers are for
larger receptive fields and less memory consumption, espe-
cially in extremely deep networks [34, 15]. The widely-
used max pooling, average pooling, and strided convolution
use a sliding window whose stride is larger than 1 and pool

∗Corresponding author.
1Code is available at https://github.com/sebgao/LIP.

activations
of patches

how to
downsample?

Figure 1: Illustration of our motivation. (Left to right) the
original image, some nearby patches, corresponding illus-
trative activations in the feature map to downsample, and
last, the output activations that we need. Here, red-tone
activations are caused by the foreground bird. Blue-tone
activations are caused by the background clutter in the top
patch or the representive blue feather in the bottom patch.
We want to preserve the red-tone activations in the top patch
window and the blue-tone activations in the bottom. The
downsampling method should recognize discriminative fea-
tures adaptively across sliding windows.

features by different strategies in each local window. But
these layers might prevent discriminative details from be-
ing well preserved, which are crucial for recognition and
detection task. This is especially undesirable for discrim-
inative features of tiny objects, as such details might be
diluted with clutter activations or even not be sampled by
improper downsampling strategies.

In this paper, we aim to address these issues raised by the
existing downsampling layers. To analyze their drawbacks,
we present a unified framework from a local importance
view. Under this new perspective, the existing pooling pro-
cedure could be seen as aggregating features with their local
importance in each sliding window. To our best knowledge,
we are the first to present a framework from the importance
view for downsampling layers, which allows us to analyze
and improve the pooling methods in a more principled way.
As a result, we show that average and max pooling are both
suboptimal due to the strong assumption or the invalid prior
knowledge. Strided convolution adopts the improper inter-
val sampling and also fails to model importance adaptively.
To overcome their limitations, we present a new pooling
method to learn importance weights automatically, coined
as Local Importance-based Pooling (LIP).

Basically, we argue that not all nearby pixels contribute

ar
X

iv
:1

90
8.

04
15

6v
2 

 [
cs

.C
V

] 
 1

8 
A

ug
 2

01
9

https://github.com/sebgao/LIP


equally and some features are more discriminative than the
others within a neighborhood in the downsampling proce-
dure, as illustrated in Figure 1. Therefore, it is expected
to explicitly model the local importance and build a met-
ric measure over pixels within local neighborhoods. From
this analysis, we propose the LIP to meet the requirement
of an ideal pooling operation. Specifically, LIP proposes to
learn the metric of importance by a subnetwork based on
the input features automatically. In this sense, LIP is able
to adaptively determine which features are more important
to be kept through downsampling. For instance, LIP en-
ables the network to preserve features of tiny targets while
discarding false activations of the background clutter when
recognizing or detecting small objects. Moreover, LIP is a
more generic pooling method than the existing methods, in
sense that it is capable of mimicking the behavior of average
pooling, max pooling and detail-preserving pooling [33].

Experiments show LIP outperforms baseline methods by
a large margin on ImageNet [8] with different architectures.
We also evaluate our LIP backbones on the challenging
COCO detection task [27], where localizing small objects
play an important role. The both one- and two-stage de-
tectors with our LIP-ResNets as backbones obtain a consis-
tent improvement over the vanilla ResNets, and in particu-
lar achieve a new state-of-the-art performance in detecting
small objects under the single-scale testing scheme.

2. Related Work
Downsampling layers as basic layers in CNNs were pro-

posed with LeNet-5 [20] as a way to reduce spatial resolu-
tion by summing out values in a sliding window. Spatial
downsampling procedures also exist in traditional methods.
For example, HOG and SIFT [7, 29] aggregated the gradi-
ent descriptors within each spatial neighborhood. Bag of
words (BoW) based models also used intensive pooling in
object recognition as to obtain more robust representations
against translation and scale variance [37, 19].

Modern CNNs utilize pooling layers to downscale fea-
ture maps mainly for larger receptive field and less mem-
ory consumption. VGG [34], Inception [38, 18, 39] and
DenseNet [17] used average and max pooling as down-
sampling layers. ResNet [15] adopted convolutions whose
stride is not 1 to extract features at regular non-consecutive
locations as downsampling layers.

Some pooling methods, including global average pool-
ing [24], ROI pooling [9], and ROI align [14], aim to down-
scale feature maps of arbitrary size to a fixed size and there-
fore enable the network to cooperate with inputs of different
sizes. We do not discuss these methods as they are designed
to specific architectures. Here, we only focus on pooling
layers inside networks, that is, the ones that gradually down-
scale feature maps by a fixed ratio.

There are some analysis on pooling methods before the

widespread application of CNNs. Boureau et al. [2] ana-
lyzed average and max pooling in traditional methods, and
proved that max pooling can preserve more discriminative
features than average pooling in terms of probability. The
work [43, 41] showed that pooling can be without specific
forms and learning to pool features is beneficial. Our work
mainly follows this research line and our results further sup-
port these conclusions.

Recent work about pooling has focused on how to bet-
ter downscale feature maps in CNNs through new pooling
layers. Fractional pooling [11] and S3pool [46] tried to im-
prove the way to perform spatial transformation of pool-
ing, which is not the focus of our paper. Mixed and hy-
brid pooling [45, 21] used various combinations of max and
average pooling to perform downscaling. Lp pooling [13]
aggregated activations in the Lp norm way, which can be
viewed as a continuum between max and average pooling
controlled by the learned p. These methods can unify max
and average pooling and further improve the performance
of networks. However, they can simply learn better pool-
ing method based on average pooling and max pooling, or
the combination of them, but fails to provide more insights
about general donwsampling methods. Saeedan et al. [33]
argued that details should be preserved and redundant fea-
tures can be discarded by proposed detail-preserving pool-
ing (DPP). The detail criterion of DPP is relatively hand-
crafted by calculating the deviation from statistics of pixels
in sliding windows, which is heuristic and may be not opti-
mal.

In this paper, we analyze widely-used pooling layers
based on a local importance view, which has not been in-
vestigated in previous work. Our proposed LIP, naturally
arisen from this concept, outperforms hand-crafted pooling
layers by a large margin.

Attention-based methods are recently popular in com-
puter vision community [42, 49]. Our LIP can be also seen
as a local attention approach designed for pooling, of which
attention weights are in the softmax form. LIP mainly dif-
fers from other attention methods in two important aspects
for the better compatibility with downsampling procedure:
(1) attention weights are produced by local convolutions
in logit modules and then normalized locally; (2) LIPs do
not adopt the key-query schemes in attention modeling for
achieving better shift invariance.

3. Local Importance Modeling
In this section, we first present the framework for down-

sampling layers from local importance modeling view. We
discuss some widely-used pooling layers in this framework.
Next, we describe our proposed local importance-based
pooling (LIP), which naturally arises from this analysis. Fi-
nally, we show how to equip popular architectures with LIP
layers and then obtain LIP-ResNet and LIP-DenseNet.



Aggregate & Normalize Locally

I

Average Pooling Proposed LIP

downsampled feature map

FAP(I) = 1

F (·)

FLIP(I) = exp(G(I))

Max Pooling

FMP(I) = lim
�!1

exp(�I)

Strided Convolution

FSC(I)x,y =

(
1, x andy are even,

0, otherwise.

Figure 2: Different downsampling methods viewed in the LAN framework. Activations in the input feature map are blue
colored, darker meaning larger. Only activations and corresponding importance within current sliding window are shown.
For strided convolution, the window size is equivalent to the stride, which is 2 here.

3.1. Framework and Analysis

To analyze the existing downsampling methods and well
motivate our LIP, we present a unified framework for down-
sampling layers from the view of local importance, named
Local Aggregation and Normalization (LAN). Specifically,
given the input feature map I , the kernel indice set Ω con-
sisting of relative sampling locations (∆x,∆y) in a sliding
window, and the left-top location (x, y) corresponding to
the sliding window in the input feature map with regrad to
the output location (x′, y′), the LAN framework is formu-
lated as:

Ox′,y′ =

∑
(∆x,∆y)∈Ω F (I)x+∆x,y+∆yIx+∆x,y+∆y∑

(∆x,∆y)∈Ω F (I)x+∆x,y+∆y
, (1)

where F (I) is the importance map whose size is the same
with I and F (I) ≥ 0 over space. The division (x/x′, y/y′)
stands for the stride factor, e.g., x = 2x′, y = 2y′ for 2× 2
stride. We simply denote a stride 2×2 as 2 in this paper. As
the name of the framework implies, pooling in this view can
be seen two steps: aggregate features with the importance
F (I) and normalize them by importance within local slid-
ing windows. This framework can be extended naturally to
the multi-channel situation.

One can see pooling in this framework as weighted sum
over each window where weights are locally normalized im-
portance:

F (I)x+∆x,y+∆y∑
(∆x,∆y)∈Ω F (I)x+∆x,y+∆y

, (2)

for Ix+∆x,y+∆y , which we term simply as local importance.
Therefore, local importance stands for weights of features
within a sliding window. We can analyze which features in
downsampling procedures are more important than others
nearby by F (I).

Our motivation is that since the feature pooling proce-
dure is intrinsically lossy as it squeezes large input into
small output, it is necessary to carefully consider which fea-
tures to sample and how to aggregate them in a small sliding

window as shown in Figure 1. Sampled features should be
discriminative enough for the target tasks. The LAN frame-
work provides a principled way to understand and improve
these pooling methods by studying the corresponding im-
portance function F . Next, we analyze some widely-used
downsampling layers in this framework and figure out the
requirement of an ideal pooling operation. Figure 2 shows
some of these downsampling methods viewing in the frame-
work.

Average and max pooling. As discussed in [2], given
F (I) = exp(βI), β = 0 gives average pooling and β →∞
gives max pooling. Average pooling associates features
with the same importance to all locations during aggrega-
tion in a small window, while max pooling put all atten-
tion on the largest activation within a neighborhood. We
argue that both of them are suboptimal. Average pooling
harms discriminative but small features and cause blurry
downsampled features due to the strong assumption of the
local equality of features. Max pooling as an improve-
ment over average pooling on feature selection, however,
assumes that the most discriminative feature should be of
the maximum activation. This assumption mainly has two
drawbacks. First, the prior knowledge that the maximum
activation stands for the most discriminative detail, may not
be always true. Second, the max operator over sliding win-
dows hinders gradient-based optimization since in the back-
propagation gradients are assigned only to the local maxi-
mums, as discussed in [33]. These sparse gradients would
further enhance this inconsistence, in sense that discrimina-
tive activations will never become maximums unless current
maximums are suppressed.

Strided convolutions. Strided convolutions can be seen
as dense convolutions whose stride is 1, followed by spatial
subsampling [47]. This spatial subsampling can be inter-
preted as downsampling in our framework with

F (I)x,y =

{
1, if x and y are both multiples of s,
0, otherwise,

(3)

where I is densely convolved features and s is both the



stride factor and sliding window size. From this perspec-
tive, the downsampling part of strided convolutions fails to
model the importance in downsampling procedures adap-
tively. Moreover, it focuses only on one fixed location
within each sliding window and discards the rest. This fixed
interval sampling scheme will limit shift invariance, as con-
volutional patterns are required to appear at specific and
non-consecutive locations to activate. In this sense, minor
shifts and distortions can lead to great changes in down-
sampled features and thus disturb the shift invariance of
CNNs [47]. For the case of strided 1× 1 convolutions, it is
even worse since the feature map are not fully utilized [16]
and it will incur gradient checkerboard problem [32].

Detail-preserving pooling. Recent proposed detail-
preserving pooling (DPP) [33] uses the detail criterion as
importance function F , which is measured by the devia-
tions of features from the activation statistics in sliding win-
dows. DPP solves the problem of max pooling by design-
ing more sophisticated importance function and ensuring
the continuity for better gradient optimization. However,
the assumption in DPP is heuristic and the more detailed
feature might be the less discriminative ones. For exam-
ple, the background clutter could be more detailed than a
bird of solid color in foreground. Therefore, DPP might
preserve the less discriminative details to outputs. Hand-
crafted importance functions in max pooling and DPP in-
corporate the general prior knowledge into downsampling
procedure, which might lead to the inconsistence with the
final target of discriminative tasks.

Requirements of ideal pooling. From the analysis
above, we can figure out the requirement of an ideal pool-
ing layer. First, the downsampling procedure is expected
to handle minor shifts and distortions as much as possi-
ble, and thus should avoid adopting the fixed interval sam-
pling scheme, i.e., F used by strided convolutions. Second,
the importance function F should be selective to the dis-
criminative features rather than manually designed based on
prior knowledge, i.e., F used in max pooling and DPP. This
discriminativeness measure should be adaptive to different
tasks and automatically determined by the final objective.

3.2. Local Importance-based Pooling

To meet requirements of ideal pooling arisen from local
importance view in the LAN framework, we propose local
importance-based pooling (LIP). By using a learnable net-
work G in F , the importance function now is not limited
in hand-crafted forms and able to learn the criterion for the
discriminativeness of features. Also, we restrict the win-
dow size of LIP to be not less than stride to fully utilize
the feature map and avoid the issue of fixed interval sam-
pling scheme. More specifically, the importance function in
LIP is implemented by a tiny fully convolutional network
(FCN) [28], which learns to produce the importance map

window sumwindow sum

⇥

as the divisor
÷

O

G

I

F (I)

exp

(a)

import torch
import torch.nn.functional as F

def lip2d(x, logit,
kernel size=3,
stride=2,
padding=1):

weight = torch.exp(logit)
return F.avg pool2d(x∗weight

, kernel size, stride,
padding)/F.avg pool2d(
weight, kernel size,
stride, padding)

(b)
Figure 3: LIP operator and its PyTorch implementation.
The logit module G is not shown in (b). The ‘window sum’s
in (a) mean locally summing within sliding windows.

based on inputs in an end-to-end manner. To make the im-
portance weights non-negative and easy to optimize, we add
exp(·) operation on top of G, that is:

F (I) = exp(G(I)), (4)

where G and G(I) are named the logit module and the logit
respectively as G(I) is the logarithm of the importance. In
contrast to the hand-crafted form specified by prior knowl-
edge in max pooling or DPP, the logit module G is able to
learn a better and more compatible importance criterion for
both the network and target task. More concretely, accord-
ing to Equation (1), LIP is then written as:

Ox′,y′ =

∑
(∆x,∆y)∈Ω Ix+∆x,y+∆y exp(G(I))x+∆x,y+∆y∑

(∆x,∆y)∈Ω exp(G(I))x+∆x,y+∆y
.

(5)
With LIP, discriminative features can be automatically em-
phasized during downsampling procedure by learning a
larger value of G(I) at the corresponding locations. In the
current implementation of LIP, the logit is calculated in a
channel wise manner. Figure 3 shows the diagram and Py-
Torch implementation of LIP.

Deformable modeling of LIP. At the macro level, learn-
able importance function F of LIP enables the network to
model deformation of objects by learning a good effective
spatial allocation of features into downsampling with adap-
tive importance weights. Different from deformable convo-
lutions [6, 50] to sample features by bilinear interpolation
with adaptive offsets, LIP explicitly performs spatially dy-
namic feature selection based on inputs and thus has de-
formable receptive fields. Empirical evidence of the de-
formable capacity of LIP is shown and discussed in Sec-
tion 4.2.

3.3. Exemplars: LIP-ResNet and LIP-DenseNet

ResNet [15] and DenseNet [17] are typical architectures
among modern CNNs. ResNet mainly uses strided convo-



lutions as downsampling layers except one max pooling in
the bottom. DenseNet utilizes average pooling in transition
blocks, and in the bottom a strided convolution layer and
max pooling like ResNet to downscale feature maps.

Architectures with LIP. We adopt the revised
ResNet [12] as our plain ResNet baseline, where resid-
ual branches employ 3 × 3 kernel for strided convolutions,
shown in Figure 4a. To build LIP variants, we replace max
pooling in the bottom and strided convolutions in downsam-
pling blocks with LIP. As discussed in Section 3.1, strided
convolutions in ResNet could be replaced by a dense con-
volution and a following LIP. However, this substitution is
computational intensive and memory inefficient. We in-
stead first downscale features and then perform convolu-
tion. In this sense, we use a LIP and a following convolu-
tion to replace strided convolutions in residual and shortcut
branches, as shown in Figure 4b. To keep receptive fields
the same and avoid the interval sampling problem, we set
the window size of LIP to 3× 3 and the following convolu-
tion to 1×1. We leave the global average pooling in the top
of ResNet unchanged. Total 7 layers (1 for max pooling,
3× 2 for strided convolution) are replaced with LIP layers.
We name this modified ResNet architecture as LIP-ResNet.
For DenseNet, we replace 2 × 2 average pooling layers in
transition blocks and 3×3 max pooling in the bottom by LIP
layers of same configurations of window size. The global
average pooling also remains unchanged like LIP-ResNet.
Total 4 layers (1 max pooling and 3 average pooling) are
replaced by LIP layers, and the resulted network is termed
as LIP-DenseNet.

Design of logit modules. In the current implementa-
tion, we design two forms of logit modules for LIP lay-
ers, called the projection and the bottleneck form, respec-
tively. Structures of logit modules are shown in Figure 4d
and 4e. In projection form, the logit module in LIP is simply
composed of a 1 × 1 convolution layer. The logit module
of bottleneck form is like residual branches in bottleneck
blocks [15], which aims to capture spatial information in an
efficient way. This form is denoted as Bottleneck-x, where
x is number of channels in the the input and output of 3× 3
convolution. To further reduce computational complexity
of bottleneck logit modules in LIP-ResNet, the first 1 × 1
convolution and 3 × 3 convolution are shared between the
residual and shortcut branches in a building block. The in-
put of logit modules here is changed to the feature map fed
into the building block, i.e., the top cyan circle in Figure 4b,
instead of the feature map to downsample. Bottleneck-x
logit module in LIP substitution for replacing max pooling
in ResNet and DenseNet is simply a 3× 3 convolution.

For more effective modeling and stable training, we ap-
ply affine instance normalization [40] as spatial normaliza-
tion and sigmoid function with a fixed amplification coeffi-
cient on the top of each logit module. Affine instance nor-

Method Top-1 Top-5 #Params FLOPs

Strided convolution 76.40 93.15 25.6M 4.12G
Average pooling 76.96 93.35 22.8M 3.82G
DPP (our baseline structure) 76.87 93.30 22.8M 3.83G
DPP (original structure in [33]) 77.22 93.64 25.6M 6.59G

LIP w Projection 77.49 93.86 24.7M 4.78G
LIP w Bottleneck-64 77.92 93.97 23.2M 4.65G
LIP w Bottleneck-128 78.19 93.96 23.9M 5.33G
LIP w Bottleneck-256 78.15 94.02 25.8M 7.61G

Table 1: ResNet-50 with different downsampling methods.

malization make activations on each channel of each fea-
ture map follow normal distribution and then rescale it by
learnable affine parameters. The spatial normalization and
rescale operation aim to help learn extreme cases such as
max pooling. The sigmoid function is used here to maintain
numerical stability and the fixed amplification coefficient
provides large enough range for logits, which is set to 12
throughout our experiments.

4. Experiments

To validate the effectiveness of our LIP, we carry out ex-
periments on the ImageNet 1K classification task [8] and
the MS COCO detection task [27].

4.1. ImageNet Classification Experiment Setup

ImageNet 1K classification task [8] requires the methods
to cope with high-resolution images to capture discrimina-
tive details. We use (LIP-)ResNet and (LIP-)DenseNet for
our experiments on the ImageNet classification task. For
(LIP-)ResNet training, we use 8 GPUs and a mini-batch of
256 inputs, 32 images per GPU. For (LIP-)DenseNet train-
ing, we use 4 GPUs and a mini-batch of 256, 64 images
per GPU. Our training procedure is generally following the
recipe [10] with two minor modifications. One is that we
use SGD optimizer to update parameters with the vanilla
momentum rather than Nesterov one. The other is that
weight decay of 10−4 is applied to all learnable parame-
ters including those of Batch Normalization. All LIP layers
are initialized to behave like average pooling by initializing
parameters of the last convolution in logit modules to 0. All
results are reported on the validation set with single-crop
testing.

4.2. Results on ImageNet and Analysis

Study on LIPs and different logit modules. To com-
pare with other pooling methods, we replace all LIP layers
in LIP-ResNet by other pooling layers, i.e., average pooling
or DPP, and keep the same configuration of window size
and stride for fair comparison. The building blocks of these
baselines are shown in Figure 4c. Note that these baselines



1x1 Conv

1x1 Conv

Add & ReLU

3x3, stride 2
Conv

1x1, stride 2
Conv

(a)

1x1 Conv

1x1 Conv

Add & ReLU

1x1 Conv

3x3, stride 2,
LIP

1x1 Conv

3x3, stride 2,
LIP

(b)

Add & ReLU

1x1 Conv

3x3, stride 2,
Avgpool/DPP

1x1 Conv

1x1 Conv

1x1 Conv

3x3, stride 2,
Avgpool/DPP

(c)

Projection Logit Module

1x1 Conv

Amplified Sigmoid
Affined IN

(d)

Bottleneck Logit Module

1x1 Conv,
3x3 Conv,
1x1 Conv

Amplified Sigmoid
Affined IN

(e)

Figure 4: Structures of ResNet building blocks for downsampling and logit modules. There are ResNet building blocks with
strided convolutions (a), LIP (b), average pooling or DPP (c). (d) and (e) show the projection and bottleneck logit module.
The first two ‘Conv’s in (e) mean convolutions and following affine Instance Normalization and ReLU function.

Layer
Combination of layers in the top

A B C D

Affined IN X X
Amplified sigmoid X X
Top-1 78.19 N/A 77.81 77.89
Top-5 93.96 N/A 93.86 93.86

Table 2: Different top layers on logit modules. Combination
D is trained with average pooling within first 2000 iterations
and then with LIP to avoid numerical overflow due to exp(·)
operation along with noisy gradient during early iterations.
Combination B falls in training although we tried various
ways to avoid numerical problems.

eliminate other factors including receptive fields and non-
linearities to to be more consistent with LIP-ResNet. In this
study, we resort to the ResNet-50 to perform comparison
between different pooling layers.

The results are reported in Table 1. First, the ResNet-
50 baseline with average pooling reduces both parameters
and FLOPs, but still improves performance over the vanilla
ResNet by around 0.5% in top-1 accuracy. This result may
be ascribed to the fixed interval sampling issue in strided
convolutions, and a similar result was found in [16]. Sec-
ond, for our downsampling method, LIP with the simplest
projection logit modules gains a noticeable improvement
over these baselines (> 0.5% in top-1). This shows that
the importance simply learned from the projection logit
module is beneficial for downsampling procedure. Third,
with a more powerful logit module Bottleneck-64, LIP-
ResNet further improves accuracy over the projection one
with fewer parameters and less computational cost. This
demonstrates that spatial information is helpful for design-
ing a better logit module. The performance would satu-
rate when we stretch the bottleneck logit module wider, and
the Bottleneck-128 is a good trade-off between computa-
tional complexity and recognition performance, improving
by 1.79% in top-1 and 0.81% in top-5 over the plain net-

Layer
Combination of LIP substitutions

A B C D E

Max Pooling X
Res3 X X
Res4 X X X
Res5 X X X X
Top-1 78.19 77.87 77.78 76.92 76.40
Top-5 93.96 93.94 93.81 93.37 93.15
#Params 23.9M 23.8M 23.7M 23.9M 25.6M
FLOPs 5.33G 4.87G 4.26G 4.11G 4.12G

Table 3: Different LIP substitution locations. Combination
A stands for the ResNet-50 with full 7 LIPs (LIP-ResNet w
Bottleneck-128) and E stands for the vanilla ResNet.

work. We adopt LIP with the Bottleneck-128 logit module
as our default choice in the remaining experiments. Finally,
we test the effectiveness of instance normalization and am-
plified sigmoid function. Results are shown in Table 2. The
combination of them improves accuracy by enabling LIP to
approximate extreme cases such as max pooling stably.

LIP layers at various locations. Table 3 shows the
results by placing different numbers of LIPs at different lo-
cations. We can find more LIPs generally contributes to
better result but LIPs at different locations may not improve
performance equally. LIP as the max pooling substitution
only improves the top-1 accuracy significantly. We sus-
pect that a single convolution as the logit module at this
layer fails to encode enough semantic information to pro-
vide powerful logits into LIP. Another possible reason is
that high-resolution details may help fine-grained classifi-
cation but not benefit coarse-grained one. We can also find
that the LIP at Res4 is the most effective one. This might be
due to the fact that the feature at this layer contains more se-
mantics and the feature map size is still relatively large for
downscaling. For practical applications, we recommend the
usage of Combination C in Table 3 due to less parameters
and only 3% extra FLOPs compared to the vanilla ResNet.



Architecture Top-1 Top-5 #Params FLOPs

ResNet-50 76.40 93.15 25.6M 4.12G
LIP-ResNet-50 78.19 93.96 23.9M 5.33G
ResNet-101 77.98 93.98 44.5M 7.85G
LIP-ResNet-101 79.33 94.60 42.9M 9.06G
ResNet-152∗ 78.49 94.22 60.2M 11.58G

DenseNet-BC-121 75.62 92.56 8.0M 2.88G
LIP-DenseNet-BC-121 76.64 93.16 8.7M 4.13G

Table 4: ResNets and DenseNets with and without LIP. For
ResNet-152, we adopt the result trained by a similar recipe2.

But our default choice for the remaining experiments is the
full LIP model, i.e., Combination A.

Different network depth and architectures. We also
evaluate LIP-ResNet and LIP-DenseNet with the deeper
network, and the result is summarized in Table 4. We
find that LIP-ResNet-50 performs comparably to the vanilla
ResNet-101 with only about half parameters and less
FLOPs. LIP-ResNet-101 surpasses the vanilla ResNet-
152 in both top-1 and top-5 accuracy by a notable margin
(0.84% and 0.38%). For DenseNet and LIP-DenseNet, the
result is also favorable, demonstrating the effectiveness of
our method across different network architectures.

Visualizations. As discussed in Section 3.2, LIP en-
ables the network to have capacity of deformable modeling.
To show this, we perform some visualizations of LIP layers.
We first compute class activation mappings (CAMs) [48] of
ResNet-50 models with LIP, average pooling, and strided
convolution. Next, we backpropagate activation of specific
locations in CAMs to get gradient maps, which are called
effective receptive fields [31] of specific locations in the
original image context. Results are shown in Figure 5. The
CAMs are similar but the gradient maps differ much among
three downsampling approaches. The effective receptive
field of the model with LIP layers is more compact and
mainly focuses on the foreground even when the backpropa-
gated location moves out of the foreground (i.e., Figure 5d).
Average pooling and strided convolution ones, however, are
interfered more by the background clutter when backprop-
agating the activation out of the foreground. This compar-
ison shows the deformable modeling capacity of LIP lay-
ers. Compared with the average pooling and strided con-
volution, the clutter and background without discriminative
features contribute much less to final recognition results in
LIP-ResNet.

4.3. MS COCO Detection Experiment Setup

After verifying the effectiveness of LIP on image clas-
sification, we now focus on the more challenging detection
task. There exists the problem of invisibility of tiny objects

2https://github.com/tensorpack/tensorpack/tree/
master/examples/ResNet

Backbone AP AP50 AP75 APs APm APl

Faster R-CNN w FPN results
ResNet-50 37.7 59.3 41.1 21.9 41.5 48.7
LIP-ResNet-50 39.2 61.2 42.5 24.0 43.1 50.3
ResNet-101 39.4 60.7 43.0 22.1 43.6 52.1
LIP-ResNet-101 41.7 63.6 45.6 25.2 45.8 54.0
ResNeXt-101 40.7 62.1 44.5 23.0 44.5 53.6

RetinaNet results
ResNet-50 36.6 56.6 38.9 19.6 40.3 48.9
LIP-ResNet-50 38.0 58.8 40.5 22.6 41.5 49.9
ResNet-101 38.1 58.1 40.6 20.2 41.8 50.8

Table 5: Faster R-CNN with FPN and RetinaNet with differ-
ent backbones results on COCO 2017 val set. ResNeXt-
101 stands for ResNeXt-64x4d-101 backbone in [44].

in most CNN architectures for detection [23]. This issue is
mainly caused by losing discriminative information of small
objects during improper downsampling procedure, which is
suitable to justify the design of our LIP.

MS COCO detection [27] is a challenging task where the
object scale variation is very large and detecting small ob-
jects plays a crucial role in final detection performance [35,
36]. We adopt mmdetection codebase [4] for our experi-
ments. Our training strictly follows the default configura-
tion of mmdetection, which includes setting shorter size of
the image to 800, using standard horizontal flipping aug-
mentation and ROI Align [14]. In this experiment, we train
two detection frameworks: Faster R-CNN with FPN [25]
and RetinaNet [26], on the COCO 2017 train set with
the pre-trained backbone networks in Section 4.2. We adopt
the typical 2× training time scheme for all COCO experi-
ments. The baseline results are reported by evaluating the
released detectors in mmdetection model zoo 3. Detection
performance is reported with single-scale testing.

4.4. Results on MS COCO and Analysis

The results of different backbones with Faster R-CNN
and FPN are shown in Table 5. LIP-ResNet-50 and LIP-
ResNet-101 backbones with Faster R-CNN yield 1.5% and
2.3% gain in AP over baselines, showing the effectiveness
of our LIP at capturing discriminative features for detec-
tion branch. Their improvement gap may be ascribed to the
fact that the deeper backbone provides more semantic fea-
tures to produce better logits for LIP downsampling. For
small object detection, the deeper vanilla ResNet only re-
sults in 0.2% gain in APs, while LIP-ResNet-101 is bet-
ter than LIP-ResNet-50 by 1.2% in APs. The improvement
of LIP-ResNets in APs over the vanilla ResNets (2.1% and
3.1%) is also notable. These results show that the LIP lay-
ers are able to better preserve discriminative features of tiny

3Evaluated when this paper was submitted and some baseline results
are slightly higher than the officially reported ones in [4].

https://github.com/tensorpack/tensorpack/tree/master/examples/ResNet
https://github.com/tensorpack/tensorpack/tree/master/examples/ResNet


(a) (b)

(c) (d)

Figure 5: Visualizations of ResNets with different downsampling techniques. For each subfigure, there are an original
image and results of ResNet-50 with LIP, average pooling and strided convolution from left to right. (a) denotes the class
activation mappings (CAMs) [48] for koala. (b)∼(d) denote the effective receptive fields [31] in the image context, namely,
backpropagated gradients from specific locations in CAMs (red in original images). Contrast of visualizations is lowered for
human vision.

Detection Framework Backbone AP AP50 AP75 APs APm APl

Faster R-CNN w FPN [25] ResNet-101 w FPN 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN [14] ResNet-101 w FPN 38.2 60.3 41.7 20.1 41.1 50.2
SOD-MTGAN [1] ResNet-101 w FPN 41.4 63.2 45.4 24.7 44.2 52.6
Grid R-CNN [30] ResNet-101 w FPN 41.5 60.9 44.5 23.3 44.9 53.1
DCR [5] ResNet-101-Deformable w FPN 41.7 64.0 45.9 23.7 44.7 53.4
TridentNet [22] ResNet-101 42.7 63.6 46.5 23.9 46.6 56.6
Cascade R-CNN [3] ResNet-101 w FPN 42.8 62.1 46.3 23.7 45.5 55.2

Faster R-CNN w FPN & LIP LIP-ResNet-101 w FPN 42.0 64.3 45.8 24.7 45.2 52.3
Faster R-CNN w FPN & LIP LIP-ResNet-101-MD w FPN 43.9 65.7 48.1 25.4 46.7 56.3

Table 6: Results on COCO test-dev set. ‘Deformable’ denotes deformable convolutions in [6]. ‘MD’ denotes adding
more deformable convolutions. The 1st and 2nd of each criterion are boldface and underlined respectively.

objects. The results with the single-stage RetinaNet also
validate the effectiveness of the LIP layer.

To compare with the state-of-the-art detectors, we train
the deformable backbone (following the placement of more
deformable convolutions in [50], but without modulation
and feature mimicking) with LIP in Faster R-CNN and FPN
framework. The results are shown in Table 6. The de-
tectors with LIP-ResNet-101 are comparable to the state-
of-the-art methods by simply using a standard detection
pipeline without any specific design. The LIP-ResNet-101-
MD backbone can further boosts AP to 43.9% and APs to
25.4%, yielding a new state-of-the-art performance in de-
tecting small objects under the single-scale testing scheme.

5. Conclusion and Future Work
In this paper, we stress spatial importance modeling in

pooling procedures. We have presented the Local Aggre-
gation and Normalization (LAN) framework based on local
importance to analyze the widely-used pooling layers. Un-
der the framework, we figure out these layers might keep
out discriminative features due to using improper down-
sampling importance maps. Based on this analysis, we
have proposed the Local Importance-based Pooling (LIP),
a conceptually simple, general, and effective donwsampling

method, with a goal of learning adaptive and discriminative
importance maps to aggregate features for downsampling.
Networks with LIPs are able to better preserve the discrim-
inative details, especially those of tiny objects. Experi-
ments on the ImageNet classification task indicate that LIP
can capture rich details for holistic image recognition. On
the COCO detection task, LIPs enable both one- and two-
stage detection frameworks to yield better performance, es-
pecially that on small objects. Moreover, detectors with
LIP-ResNet backbones reach a new state-of-the-art perfor-
mance in detecting small objects by simply using a standard
detection framework.

In the future, we plan to study more aspects of imple-
mentation of LIP, such as logit module design, adaptive
pooling size exploration and so on. Meanwhile, we will
verify the effectiveness of LIP to more tasks, e.g., pose es-
timation and image segmentation.

Acknowledgments
This work is supported by the National Science Founda-

tion of China (No. 61921006, No. 61321491), and Collabo-
rative Innovation Center of Novel Software Technology and
Industrialization. The first author would like to thank Nan
Wei and Qinshan Zeng for their comments and support.



References
[1] Yancheng Bai, Yongqiang Zhang, Mingli Ding, and Bernard

Ghanem. SOD-MTGAN: small object detection via multi-
task generative adversarial network. In ECCV, 2018. 8

[2] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical
analysis of feature pooling in visual recognition. In ICML,
2010. 2, 3

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: delv-
ing into high quality object detection. In CVPR, 2018. 8

[4] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. Mmdetection: Open mm-
lab detection toolbox and benchmark. In arXiv, 2019. 7

[5] Bowen Cheng, Yunchao Wei, Honghui Shi, Rogério Schmidt
Feris, Jinjun Xiong, and Thomas S. Huang. Revisiting
RCNN: on awakening the classification power of faster
RCNN. In ECCV, 2018. 8

[6] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In ICCV, 2017. 4, 8

[7] Navneet Dalal and Bill Triggs. Histograms of oriented gra-
dients for human detection. In CVPR, 2005. 2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1, 2, 5

[9] Ross B. Girshick. Fast R-CNN. In ICCV, 2015. 2
[10] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training imagenet in 1 hour. In arXiv, 2017. 5

[11] Benjamin Graham. Fractional max-pooling. In arXiv, 2014.
2

[12] Sam Gross and Michael Wilber. Training and investigating
residual nets. https://github.com/facebook/fb
.resnet.torch. 5

[13] Çaglar Gülçehre, KyungHyun Cho, Razvan Pascanu, and
Yoshua Bengio. Learned-norm pooling for deep feedforward
and recurrent neural networks. In ECML PKDD, pages 530–
546, 2014. 2

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask R-CNN. In ICCV, 2017. 2, 7, 8

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1, 2, 4, 5

[16] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In CVPR, 2019. 4, 6

[17] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely
connected convolutional networks. In CVPR, 2017. 2, 4

[18] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 2

[19] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Be-
yond bags of features: Spatial pyramid matching for recog-
nizing natural scene categories. In CVPR, 2006. 2

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,
et al. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
2

[21] Chen-Yu Lee, Patrick W. Gallagher, and Zhuowen Tu. Gen-
eralizing pooling functions in convolutional neural networks:
Mixed, gated, and tree. In AISTATS, 2016. 2

[22] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang
Zhang. Scale-aware trident networks for object detection.
In arXiv, 2019. 8

[23] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong
Deng, and Jian Sun. Detnet: A backbone network for object
detection. In ECCV, 2018. 7

[24] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. In ICLR, 2014. 2

[25] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 7, 8

[26] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection. In
ICCV, 2017. 7

[27] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In ECCV, 2014. 1, 2, 5, 7

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 4

[29] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60(2):91–110, 2004. 2

[30] Xin Lu, Buyu Li, Yuxin Yue, Quanquan Li, and Junjie Yan.
Grid R-CNN. In arXiv, 2018. 8

[31] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S.
Zemel. Understanding the effective receptive field in deep
convolutional neural networks. In NIPS, 2016. 7, 8

[32] Sebastian Palacio, Joachim Folz, Jörn Hees, Federico Raue,
Damian Borth, and Andreas Dengel. What do deep networks
like to see? In CVPR, 2018. 4

[33] Faraz Saeedan, Nicolas Weber, Michael Goesele, and Stefan
Roth. Detail-preserving pooling in deep networks. In CVPR,
2018. 2, 3, 4, 5

[34] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 1, 2

[35] Bharat Singh and Larry S. Davis. An analysis of scale invari-
ance in object detection SNIP. In CVPR, 2018. 7

[36] Bharat Singh, Mahyar Najibi, and Larry S. Davis. SNIPER:
efficient multi-scale training. In NeurIPS, 2018. 7

[37] Josef Sivic and Andrew Zisserman. Video google: A text
retrieval approach to object matching in videos. In ICCV,
2003. 2

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch


Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 2

[39] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR, 2016.
2

[40] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Instance normalization: The missing ingredient for fast styl-
ization. In arXiv, 2016. 5

[41] Lan Wang, Chenqiang Gao, Jiang Liu, and Deyu Meng. A
novel learning-based frame pooling method for event detec-
tion. Signal Processing, 140:45–52, 2017. 2

[42] Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, and
Kaiming He. Non-local neural networks. In CVPR, 2018.
2

[43] Guo-Sen Xie, Xu-Yao Zhang, Xiangbo Shu, Shuicheng Yan,
and Cheng-Lin Liu. Task-driven feature pooling for image
classification. In ICCV, 2015. 2

[44] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations for
deep neural networks. In CVPR, 2017. 7

[45] Dingjun Yu, Hanli Wang, Peiqiu Chen, and Zhihua Wei.
Mixed pooling for convolutional neural networks. In RSKT,
2014. 2

[46] Shuangfei Zhai, Hui Wu, Abhishek Kumar, Yu Cheng,
Yongxi Lu, Zhongfei Zhang, and Rogério Schmidt Feris.
S3pool: Pooling with stochastic spatial sampling. In CVPR,
2017. 2

[47] Richard Zhang. Making convolutional networks shift-
invariant again. In ICML, 2019. 3, 4

[48] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, 2016. 7, 8

[49] Xizhou Zhu, Dazhi Cheng, Zheng Zhang, Stephen Lin, and
Jifeng Dai. An empirical study of spatial attention mecha-
nisms in deep networks. In arXiv, 2019. 2

[50] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
arXiv, 2018. 4, 8


