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ABSTRACT

Most existing 3D CNNs for video representation learning are clip-based methods,
and thus do not consider video-level temporal evolution of spatio-temporal features.
In this paper, we propose Video-level 4D Convolutional Neural Networks, referred
as V4D, to model the evolution of long-range spatio-temporal representation with
4D convolutions, and at the same time, to preserve strong 3D spatio-temporal
representation with residual connections. Specifically, we design a new 4D residual
block able to capture inter-clip interactions, which could enhance the representation
power of the original clip-level 3D CNNs. The 4D residual blocks can be easily
integrated into the existing 3D CNNs to perform long-range modeling hierarchically.
We further introduce the training and inference methods for the proposed V4D.
Extensive experiments are conducted on three video recognition benchmarks, where
V4D achieves excellent results, surpassing recent 3D CNNs by a large margin.

1 INTRODUCTION

3D convolutional neural networks (3D CNNs) and their variants (Ji et al., 2010; Tran et al., 2015;
Carreira & Zisserman, 2017; Qiu et al., 2017; Wang et al., 2018b) provide a simple extension from
2D counterparts for video representation learning. However, due to practical issues such as memory
consumption and computational cost, these models are mainly used for clip-level feature learning
instead of learning from the whole video. The clip-based methods randomly sample a short clip
(e.g., 32 frames) from a video for representation learning, and calculate prediction scores for each
clip independently. The prediction scores of all clips are simply averaged to yield the video-level
prediction. These clip-based models often ignore the video-level structure and long-range spatio-
temporal dependency during training, as they only sample a small portion of the entire video. In fact,
in some cases, it could be difficult to identify an action correctly by only using partial observation.
Meanwhile, simply averaging the prediction scores of all clips could be sub-optimal during inference.
To overcome this issue, Temporal Segment Network (TSN) (Wang et al., 2016) was proposed. TSN
uniformly samples multiple clips from the entire video, and the average scores are used to guide
back-propagation during training. Thus TSN is a video-level representation learning framework.
However, the inter-clip interaction and video-level fusion in TSN is only performed at very late stage,
which fails to capture finer temporal structures.

In this paper, we propose a general and flexible framework for video-level representation learning,
called V4D. As shown in Figure 1, to model long-range dependency in a more efficient way, V4D is
composed of two critical designs: (1) holistic sampling strategy, and (2) 4D convolutional interaction.
We first introduce a video-level sampling strategy by uniformly sampling a sequence of short-term
units covering the whole video. Then we model long-range spatio-temporal dependency by designing
a unique 4D residual block. Specifically, we present a 4D convolutional operation to capture inter-clip
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interaction, which could enhance the representation power of the original clip-level 3D CNNs. The
4D residual blocks could be easily integrated into the existing 3D CNNs to perform long-range
modeling hierarchically, which is more efficient than TSN. We also design a specific video-level
inference algorithm for V4D. Finally, we verify the effectiveness of V4D on three video action
recognition benchmarks, Mini-Kinetics (Xie et al., 2018), Kinetics-400 (Carreira & Zisserman, 2017)
and Something-Something-V1 (Goyal et al., 2017). Our V4D achieves very competitive performance
on the three benchmarks, and obtains evident performance improvement over its 3D counterparts.

2 RELATED WORKS

Two-stream CNNs. Two-stream architecture was originally proposed by (Simonyan & Zisserman,
2014), where one stream is used for learning from RGB images, and the other one is applied to model
optical flow. The results produced by the two streams are then fused at later stages, yielding the
final prediction. Two-stream CNNs have achieved impressive results on various video recognition
tasks. However, the main limitation is that the computation of optical flow is highly expensive where
parallel optimization is difficult to implment, with significant resource explored. Recent effort has
been devoted to reducing the computational cost on modeling optical flow, such as (Dosovitskiy et al.,
2015; Sun et al., 2018; Piergiovanni & Ryoo, 2018; Zhang et al., 2016). The two-stream design is
a general framework to boost the performance of various CNN models, which is orthogonal to the
proposed V4D.

3D CNNs. Recently, 3D CNNs have been proposed (Tran et al., 2015; Carreira & Zisserman, 2017;
Wang et al., 2018a;b; Feichtenhofer et al., 2018). By considering a video as a stack of frames, it is
natural to develop 3D convolutions applied directly on video sequence. However, 3D CNNs often
introduce a large number of model parameters, which inevitably require a large amount of training
data to achieve good performance. As reported in (Wang et al., 2018b; Feichtenhofer et al., 2018),
recent experimental results on large-scale benchmark, likes Kinetics-400 (Carreira & Zisserman,
2017), show that 3D CNNs can surpass their 2D counterparts in many cases,and even can be on par
with or better than the two-stream 2D CNNs. It is noteworthy that most of 3D CNNs are clip-based
methods, which only explore a certain part of the holistic video.

Long-term Modeling Framework. Various long-term modeling frameworks have been developed
for capturing more complex temporal structure for video-level representation learning. In (Laptev
et al., 2008), video compositional models were proposed to jointly model local video events, where
temporal pyramid matching was introduced with a bag-of-visual-words framework to compute long-
term temporal structure. However, the rigid composition only works under defined constraints, e.g.,
prefixed duration and anchor points provided in time. A mainstream method is to process a continuous
video sequence with recurrent neural networks Ng et al. (2015); Donahue et al. (2015), where 2D
CNNs are used for frame-level feature extraction. Temporal Segment Network (TSN) (Wang et al.,
2016) has been proposed to model video-level temporal information with a sparse sampling and
aggregation strategy. TSN sparsely samples a set of frames from the whole video, and then the
sampled frames are modelled by the same CNN backbone, which outputs a confident score for each
frame. The output scores are averaged to generate final video-level prediction. TSN was originally
designed for 2D CNNs, but it can be applied to 3D CNNs, which serves as one of the baselines in
this paper. One of the main limitations of TSN is that it is difficult to model finer temporal structure
due to the average aggregation. Temporal Relational Reasoning Network (TRN) (Zhou et al., 2018)
was introduced to model temporal segment relation by encoding individual representation of each
segment with relation networks. TRN is able to model video-level temporal order but lacks the
capacity of capturing finer temporal structure. The proposed V4D can outperform these previous
video-level learning methods on both appearance-dominated video recognition (e.g., on Kinetics)
and motion-dominated video recognition (e.g., on Something-Something). It is able to model both
short-term and long-term temporal structure with a unique design of 4D residual blocks.

3 VIDEO-LEVEL 4D COVOLUTIONAL NEURAL NETWORKS

In this section, we introduce new Video-level 4D Convolution Neural Networks, namely V4D, for
video action recognition. This is the first attempt to design 4D convolutions for RGB-based video
recognition. Previous methods, such as You & Jiang (2018); Choy et al. (2019), utilize 4D CNNs to
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Figure 1: Video-level 4D Convolutional Neural Networks for video recognition.

process videos of point cloud by using 4D data as input. Instead, our V4D processes videos of RGB
frames with input of 3D data. Existing 3D CNNs often take a short-term snippet as input, without
considering the evolution of 3D spatio-temporal features for video-level representation. In Wang
et al. (2018b); Yue et al. (2018); Liu et al. (2019), self-attention mechanism was developed to model
non-local spatio-temporal features, but these methods were originally designed for clip-based 3D
CNNs. It remains unclear how to incorporate such operations on holistic video representation, and
whether such operations are useful for video-level representation learning. Our goal is to model 3D
spatio-temporal features globally, which can be implemented in a higher dimension. In this work,
we introduce new Residual 4D Blocks, which allow us to cast 3D CNNs into 4D CNNs for learning
long-range interactions of the 3D features, resulting in a “time of time” video-level representation.

3.1 A VIDEO-LEVEL SAMPLING STRATEGY

To model meaningful video-level representation for action recognition, the input to the networks
has to cover the holistic duration of a given video, and at the same time preserve short-term action
details. A straightforward approach is to implement per-frame training of the networks yet this is
not practical by considering the limit of computation resource. In this work, we uniformly divide
the whole video into U sections, and select a snippet from each section to represent a short-term
action pattern, called “action unit”. Then we have U action units to represent the holistic action in a
video. Formally, we denote the video-level input V = {A1, A2, ..., AU}, where Ai ∈ RC×T×H×W .
During training, each action unit Ai is randomly selected from each of the U sections. During testing,
the center of each Ai locates exactly at the center of the corresponding section.

3.2 4D CONVOLUTIONS FOR LEARNING SPATIO-TEMPORAL INTERACTIONS

3D Convolutional kernels have been proposed, and are powerful to model short-term spatio-temporal
features. However, the receptive fields of 3D kernels are often limited due to the small sizes of
kernels, and pooling operations are applied to enlarge the receptive fields, resulting in a significant
cost of information loss. This inspired us to develop new operations which are able to model both
short- and long-term spatio-temporal representations simultaneously, with easy implementations and
fast training. From this prospective, we propose 4D convolutions for better modeling the long-range
spatio-temporal interactions.

Specifically, we denote the input to 4D convolutions as a tensor V of size (C,U, T,H,W ), where C
is number of channel, U is the number of action units (the 4-th dimension in this paper), T,H,W
are temporal length, height and width of an action unit. We omit the batch dimension for simplicity.
By following the annotations provided in Ji et al. (2010), a pixel at position (u, t, h, w) of the jth
channel in the output is denoted as outhwj , and a 4D convolution operation can be formulated as :

outhwj = bj +

Cin∑
c

S−1∑
s=0

P−1∑
p=0

Q−1∑
q=0

R−1∑
r=0

Wspqr
jc v(u+s)(t+p)(h+q)(w+r)

c (1)

where bj is a bias term, c is one of the Cin input channels of the feature maps from input V ,
S×P ×Q×R is the shape of 4D convolutional kernel,Wspqr

jc is the weight at the position (s, p, q, r)
of the kernel, corresponding to the c-th channel of the input feature maps and j-th channel of the
output feature maps.
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Figure 2: Implementation of 4D kernels, compared to3D kernel s. U denotes the number of action
units, with shape of T,H,W . Channel and batch dimensions are omitted for clarity. The kernels are
colored in Blue, with the center of each kernel colored in Green.

Convolutional operation is linear, and the sequential sum operations in E.q. 1 are exchangeable.
Thus we can generate E.q. 2, where the expression in the parentheses can be implemented by 3D
convolutions, allowing us to implement 4D convolutions using 3D convolutions, while most deep
learning libraries do not directly provide 4D convolutional operations.

outhwj = bj +

S−1∑
s=0

(

Cin∑
c

P−1∑
p=0

Q−1∑
q=0

R−1∑
r=0

Wspqr
jc v(u+s)(t+p)(h+q)(w+r)

c ) (2)

With the 4D convolutional kernel, the short-term 3D features of an individual action unit and long-
term temporal evolution of multiple action units can be modeled simultaneously in the 4D space.
Compared to 3D convolutions, the proposed 4D convolutions are able to model videos in a more
meaningful 4D feature space that enables it to learn more complicated interactions of long-range 3D
spatio-temporal representation. However, 4D convolutions inevitably introduce more parameters and
computation cost. For example, a 4D convolutional kernel of k × k × k × k employs k times more
parameters than a 3D kernel of k × k × k. In practice, we explore k × k × 1× 1 and k × 1× 1× 1
kernels, to reduce the parameters and avoid the risk of overfitting. The implementation of different
kernels is shown in Figure 2.

3.3 VIDEO-LEVEL 4D CNN ARCHITECTURE

In this section, we demonstrate that our 4D convolutions can be integrated into existing CNN
architecture for action recognition. To fully utilize current state-of-the-art 3D CNNs, we propose
a new Residual 4D Convolution Block, by designing a 4D convolution in the residual structure
introduced in (He et al., 2016). This allows it to aggregate both short-term 3D features and long-term
evolution of the spatio-temporal representations for video-level action recognition. Specifically,
we define a permutation function ϕ(di,dj) : M

d1×...×di×...×dj×...×dn 7→Md1×...×dj×...×di×...×dn ,
which permutes dimension di and dj of a tensor M ∈ Rd1×...×dn . The Residual 4D Convolution
Block can be formulated as:

Y3D = X3D + ϕ(U,C)(F4D(ϕ(C,U)(X3D);W4D)) (3)

where F4D(X ;W4D) is the introduced 4D convolution. X3D, Y3D ∈ RU×C×T×H×W , and U is
merged into batch dimension so that X3D, Y3D can be directly processed by standard 3D CNNs. Note
that we employ ϕ to permute the dimensions ofX3D from U×C×T×H×W to C×U×T×H×W
so that it can be processed by 4D convolutions. Then the output of 4D convolution is permuted
reversely to 3D form so that the output dimensions are consistent with X3D. Batch Normalization
(Ioffe & Szegedy, 2015) and ReLU activation (Nair & Hinton, 2010) are then applied. The detailed
structure is described in Figure 1.

Theoretically, any 3D CNN structure can be cast to 4D CNNs by integrating our 4D Convolutional
Blocks. As shown in previous works (Zolfaghari et al., 2018; Xie et al., 2018; Wang et al., 2018b;
Feichtenhofer et al., 2018), higher performance can be obtained by applying 2D convolutions at lower
layers and 3D convolutions at higher layers of the 3D networks. In our framework, we utilize the
”Slow-path” introduced in Feichtenhofer et al. (2018) as our backbone, denoted as I3D-S. Although
the original ”Slowpath” is designed for ResNet50, we can extend it to I3D-S ResNet18 for further
experiments. The detailed structure of our 3D backbone is shown in Table 1.
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layer I3D-S ResNet18 I3D-S ResNet50 output size
conv1 1×7×7, 64, stride 1, 2, 2 1×7×7, 64, stride 1, 2, 2 4×112×112

res2

[
1×3×3, 64
1×3×3, 64

]
×2

 1×1×1, 64
1×3×3, 64
1×1×1, 256

×3 4×56×56

res3

[
1×3×3, 128
1×3×3, 128

]
×2

 1×1×1, 128
1×3×3, 128
1×1×1, 512

×4 4×28×28

res4

[
3×3×3, 256
3×3×3, 256

]
×2

 3×1×1, 256
1×3×3, 256

1×1×1, 1024

×6 4×14×14

res5

[
3×3×3, 512
3×3×3, 512

]
×2

 3×1×1, 512
1×3×3, 512

1×1×1, 2048

×3 4×7×7

global average pool, fc 1×1×1
Table 1: We use I3D-Slowpath from (Feichtenhofer et al., 2018) as our backbone. The output size of
an example is shown in the right column, where the input has a size of 4×224×224. No temporal
degenerating is performed in this structure.

3.4 TRAINING AND INFERENCE

Training. As shown in Figure 1, the convolutional part of the networks is composed of 3D convolution
layers and the proposed Residual 4D Blocks. Each action unit is trained individually and in parallel
in the 3D convolution layers, which share the same parameters. The 3D features computed from
the action units are then fed to the Residual 4D Block, where the long-term temporal evolution of
the consecutive action units can be modeled. Finally, global average pooling is computed on the
sequence of all action units to form the final video-level representation.

Inference. Given U action units {A1, A2, ..., AU} of a video, we denote Utrain as the number of
action units for training and Uinfer as the number of action units for inference. Utrain and Uinfer are
usually different because computation resource is limited in training, but high accuracy is encouraged
in inference. We develop a new video-level inference method, which is described in Algorithm 1.
The 3D convolutional layers are denote as N3D, followed by the proposed 4D Blocks, N4D.

Algorithm 1: V4D Inference.
Networks :The structure of networks is divided into two sub-networks by the first 4D Block,

namely N3D and N4D.
Input :Uinfer action units from a holistic video: {A1, A2, ..., AUinfer

}.
Output :The video-level prediction.

V4D Inference :
1 {A1, A2, ..., AUinfer

} are fed into N3D, generating intermediate feature maps for each unit
{F1, F2, ..., FUinfer

},Fi ∈ RC×T×H×W ;
2 For the Uinfer intermediate features, we equally divide them into Utrain sections. Then we select

one unit from each section Fseci and combine these Utrain units into a video-level intermediate
representation F video = (Fsec1 , Fsec2 , ..., FsecUtrain

). These video-level representations form a
new set {F video

1 , F video
2 , ..., F video

Ucombined
}, where Ucombined = (Uinfer/Utrain)

Utrain ,
F video
i ∈ RUtrain×C×T×H×W ;

3 Each F video
i in set {F video

1 , F video
2 , ..., F video

Ucombined
} are processed by N4D to form a set of

prediction scores, {P1, P2, ..., PUcombined
};

4 {P1, P2, ..., PUcombined
} are averaged to give the final video-level prediction.

3.5 DISCUSSION

We further demonstrate that the proposed V4D can be considered as a 4D generalization of a number
of recent widely-applied methods, which may partially explain why our V4D works practically well
on learning meaningful video-level representation.

Temporal Segment Network. Our V4D is closely related to Temporal Segment Network (TSN).
TSN was originally designed for 2D CNN, but it can be directly applied to 3D CNN to model
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video-level representation. TSN also employs a video-level sampling strategy with each action unit
named “segment”. During training, each segment is calculated individually and the prediction scores
after the fully-connected layer are then averaged. Since the fully-connected layer is a linear classifier,
it is mathematically identical to calculating the average before the fully-connected layer (similar to
our global average pooling) or after the fully-connected layer (similar to TSN). Thus our V4D can be
considered as 3D CNN + TSN when all parameters in the 4D Blocks are set to 0.

Dilated Temporal Convolution. One special form of 4D convolution kernel, k×1×1×1, is closely
related to Temporal Dilated Convolution (Lea et al., 2016). The input tensor V can be considered as
a (C,U × T,H,W ) tensor when all action units are concatenated along the temporal dimension. In
this case, the k × 1× 1× 1 4D convolution can be considered as a dilated 3D convolution kernel of
k × 1× 1 with a dilation of T frames. Note that the k × 1× 1× 1 kernel is just the simplest form
of our 4D convolutions, while our V4D architecture can utilize more complex kernels and thus can
be more meaningful for learning stronger video representation. Furthermore, our 4D Blocks utilize
residual connections, ensuring that both long-term and short-term representation can be learned
jointly. Simply applying the dilated convolution might discard the short-term fine-grained features.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on three standard benchmarks: Mini-Kinetics (Xie et al., 2018), Kinetics-400
(Carreira & Zisserman, 2017), and Something-Something-v1 (Goyal et al., 2017). Mini-kinetics
dataset covers 200 action classes, and is a subset of Kinetics-400. Since some videos are no longer
available for Kinetics dataset, our version of Kinetics-400 contains 240,436 and 19,796 videos in
the training subset and validation subset, respectively. Our version of Mini-kinetics contains 78,422
videos for training, and 4,994 videos for validation. Each video has around 300 frames. Something-
Something-v1 contains 108,499 videos totally, with 86,017 for training, 11,522 for validation, and
10,960 for testing. Each video has 36 to 72 frames.

4.2 ABLATION STUDY ON MINI-KINETICS

We use pre-trained weights from ImageNet to initialize the model. For training, we adapt the holistic
sampling strategy mentioned in section 3.1. We uniformly divide the whole video into U sections,
and randomly select a clip of 32 frames from each section. For each clip, by following the sampling
strategy in Feichtenhofer et al. (2018), we uniformly sample 4 frames with a fixed stride of 8 to form
an action unit. We will study the impact of U in the following experiments. We first resize each
frame to 320× 256, and then randomly cropping is applied as Wang et al. (2018b). Then the cropped
region is further resized to 224 × 224. We utilize a SGD optimizer with an initial learning rate of
0.01, weight decay is set to 10−5 with a momentum of 0.9. The learning rate drops by 10 at epoch
35, 60, 80, and the model is trained for 100 epochs in total.

To make a fair comparison, we use spatial fully convolutional testing by following Wang et al.
(2018b); Yue et al. (2018); Feichtenhofer et al. (2018). We sample 10 action units evenly from a
full-length video, and crop 256× 256 regions to spatially cover the whole frame for each action unit.
Then we apply the proposed V4D inference. Note that, for the original TSN, 25 clips and 10-crop
testing are used during inference. To make a fair comparison between I3D and our V4D, we instead
apply this 10 clips and 3-crop inference strategy for TSN.

Results. To verify the effectiveness of V4D, we compare it with the clip-based method I3D-S,
and video-based method TSN+3D CNN. To compensate the extra parameters introduced by 4D
blocks, we add a 3× 3× 3 residual block at res4 for I3D-S for a fair comparison, denoted as I3D-S
ResNet18++. As shown in Table 2a, by using 4 times less frames than I3D-S during inference and
with less parameters than I3D-S ResNet18++, V4D still obtain a 2.0% higher top-1 accuracy than
I3D-S. Comparing with the state-of-the-art video-level method TSN+3D CNN, V4D significantly
outperforms it by 2.6% top-1 accuracy, with the same protocols used in training and inference.

4D Convolution Kernels. As mentioned, our 4D convolution kernels can use 3 typical forms:
k × 1× 1× 1, k × k × 1× 1 and k × k × k × k. In this experiment, we set k = 3 for simplicity,
and apply a single 4D block at the end of res4 in I3D-S ResNet18. As shown in Table 2c, V4D with
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model Ttrain ×Utrain Tinfer ×Uinfer× #crop top-1 top5 parameters
I3D-S ResNet18 4 × 1 4 × 10 × 3 72.2 91.2 32.3M
I3D-S ResNet18 16 × 1 16 × 10 × 3 73.4 91.1 32.3M

I3D-S ResNet18++ 16 × 1 16 × 10 × 3 73.6 91.5 34.1M
TSN+I3D-S ResNet18 4 × 4 4 × 10 × 3 73.0 91.3 32.3M

V4D ResNet18 4 × 4 4 × 10 × 3 75.6 92.7 33.1M

(a) Effectiveness of V4D. T represents temporal length of each action unit. U represents the
number of action units.

model input size flops
I3D-S ResNet18 16 × 256 × 256 55.1G

TSN+I3D-S ResNet18 4 × 4 × 256 × 256 55.1G
V4D ResNet18 4 × 4 × 256 × 256 58.8G

(b) Forward flops of previous works and V4D. One
4D block at res3 and one at res4 for V4D.

model form of 4D kernel top-1 top5
I3D-S ResNet18 - 72.2 91.2

TSN+I3D-S ResNet18 - 73.0 91.3
V4D ResNet18 3 × 1 × 1 × 1 73.8 92.0
V4D ResNet18 3 × 3 × 1 × 1 74.5 92.4
V4D ResNet18 3 × 3 × 3 × 3 74.7 92.5

(c) Different Forms of 4D Convolution Kernel.

model 4D kernel top-1 top5
I3D-S ResNet18 - 72.2 91.2

TSN+I3D-S ResNet18 - 73.0 91.3
V4D ResNet18 1 at res3 74.2 92.3
V4D ResNet18 1 at res4 74.5 92.4
V4D ResNet18 1 at res5 73.6 91.4
V4D ResNet18 1 at res3, 1 at res4 75.6 92.7

(d) Position and Number of 4D Blocks.

model Utrain top-1 top5
I3D-S ResNet18 1 72.2 91.2

TSN+I3D-S ResNet18 4 73.0 91.3
V4D ResNet18 3 74.3 92.2
V4D ResNet18 4 74.5 92.4
V4D ResNet18 5 74.5 92.3
V4D ResNet18 6 74.6 92.5

(e) Effect of Utrain.
Table 2: Ablations on Mini-Kinetics, with top-1 and top-5 classification accuracy (%).

3× 3× 3× 3 kernel can achieve the highest performance. However, by considering the trade-off
between model parameters and performance, we use the kernel of 3 × 3 × 1 × 1 in the following
experiments.

On 4D Blocks. We evaluate the impact of position and number of 4D Blocks for our V4D. We
investigate the performance of V4D by using one 3× 3× 1× 1 4D block at res3, res4 or res5. As
shown in Table 2d, a higher accuracy can be obtained by applying the 4D block at res3 or res4,
indicating that the merged long-short term features of the 4D block need to be further refined by 3D
convolutions to generate more meaningful representation. Furthermore, inserting one 4D block at
res3 and one at res4 can achieve a higher accuracy.

Number of Action Units U . We further evaluate our V4D by using different numbers of action
units for training, with different values of hyperparameter U . In this experiment, one 3× 3× 1× 1
Residual 4D block is added at the end of res4 of ResNet18. As shown in Table 2e, U does not have a
significant impact to the performance, which suggests that: (1) V4D is a video-level feature learning
model, and is robust against the number of short-term units; (2) an action generally does not contain
many stages, and thus increasing U is not helpful. In addition, increasing the number of action units
means that the 4-th dimension is increased, requiring a larger 4D kernel to cover the long-range
evolution of spatio-temporal representation.

With state-of-the-art. We compare the results on Mini-Kinetics. 4D Residual Blocks are added into
every other 3D residual blocks in res3 and res4. With much fewer frames utilized during training
and inference, our V4D ResNet50 achieves a higher accuracy than all reported results, which is even
higher than 3D ResNet101 having 5 compact Generalized Non-local Blocks. Note that our V4D
ResNet18 can achieve a higher accuracy than 3D ResNet50, which further verify the effectiveness of
our V4D structure.

Model Backbone Ttrain × Utrain Tinfer × Uinfer× #crop top-1 top5
S3D (Xie et al., 2018) S3D Inception 64 × 1 N/A 78.9 -
I3D (Yue et al., 2018) 3D ResNet50 32 × 1 32 × 10 × 3 75.5 92.2
I3D (Yue et al., 2018) 3D ResNet101 32 × 1 32 × 10 × 3 77.4 93.2
I3D+NL (Yue et al., 2018) 3D ResNet50 32 × 1 32 × 10 × 3 77.5 94.0
I3D+CGNL (Yue et al., 2018) 3D ResNet50 32 × 1 32 × 10 × 3 78.8 94.4
I3D+NL (Yue et al., 2018) 3D ResNet101 32 × 1 32 × 10 × 3 79.2 93.2
I3D+CGNL (Yue et al., 2018) 3D ResNet101 32 × 1 32 × 10 × 3 79.9 93.4
V4D(Ours) V4D ResNet18 4 × 4 4 × 10 × 3 75.6 92.7
V4D(Ours) V4D ResNet50 4 × 4 4 × 10 × 3 80.7 95.3

Table 3: Results on Mini-Kinetics. T - temporal length of action unit. U - number of action units.
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4.3 RESULTS ON KINETICS

We further conduct experiments on large-scale video recognition benchmark, Kinetics-400, to evaluate
the capability of our V4D. To make a fair comparison, we utilize ResNet50 as backbone for V4D.
The training and inference sampling strategy is identical to previous section, except that each action
unit now contains 8 frames instead of 4. We set U = 4 so that there are 8 × 4 frames in total for
training. Due to the limit of computation resource, we train the model in multiple stages. We first
train the 3D ResNet50 backbone with 8-frame inputs. Then we load the 3D ResNet50 weights to
V4D ResNet50, with all 4D Blocks fixed to zero. The V4D ResNet50 is then fine-tuned with 8× 4
input frames. Finally, we optimize all 4D Blocks, and train the V4D with 8× 4 frames. As shown in
Table 4, our V4D achieves competitive results on Kinetics-400 benchmark.

Model Backbone top-1 top-5
ARTNet with TSN (Wang et al., 2018a) ARTNet ResNet18 70.7 89.3
ECO (Zolfaghari et al., 2018) BN-Inception+3D ResNet18 70.0 89.4
S3D-G (Xie et al., 2018) S3D Inception 74.7 93.4
Nonlocal Network (Wang et al., 2018a) 3D ResNet50 76.5 92.6
SlowFast (Feichtenhofer et al., 2018) SlowFast ResNet50 77.0 92.6
I3D(Carreira & Zisserman, 2017) I3D Inception 72.1 90.3
Two-stream I3D(Carreira & Zisserman, 2017) I3D Inception 75.7 92.0
I3D-S(Feichtenhofer et al., 2018) Slow pathway ResNet50 74.9 91.5
V4D(Ours) V4D ResNet50 77.4 93.1

Table 4: Comparison with state-of-the-art on Kinetics.

4.4 RESULTS ON SOMETHING-SOMETHING-V1

Something-Something dataset focuses on modeling temporal information and motion. The back-
ground is much cleaner than Kinetics but the motions of action categories are more complicated.
Each video contains one single and continuous action with clear start and end on temporal dimension.

Model Backbone top-1
MultiScale TRN (Zhou et al., 2018) BN-Inception 34.4
ECO (Zolfaghari et al., 2018) BN-Inception+3D ResNet18 46.4
S3D-G (Xie et al., 2018) S3D Inception 45.8
Nonlocal Network+GCN (Wang & Gupta, 2018) 3D ResNet50 46.1
TrajectoryNet (Zhao et al., 2018) S3D ResNet18 47.8
V4D(Ours) V4D ResNet50 50.4

Table 5: Comparison with state-of-the-art on Something-Something-v1.

Results. As shown in Table 4.4, our V4D achieves competitive results on the Something-Something-
v1. We use V4D ResNet50 pre-trained on Kinetics for experiments. Temporal Order. As shown in
Xie et al. (2018), the performance can drop considerably by reversing the temporal order of short-term
3D features, suggesting that 3D CNNs can learn strong temporal order information. We further
conduct experiments by reversing the frames within each action unit or reversing the sequence of
action units, where the top-1 accuracy drops considerably by 50.4%→17.2% and 50.4%→20.1%
respectively, indicating that our V4D can capture both long-term and short-term temporal order.

5 CONCLUSIONS

We have introduced new Video-level 4D Convolutional Neural Networks, namely V4D, to learn
strong temporal evolution of long-range spatio-temporal representation, as well as retaining 3D
features with residual connections. In addition, we further introduce the training and inference
methods for our V4D. Experiments were conducted on three video recognition benchmarks, where
our V4D achieved the state-of-the-art results.

REFERENCES

João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the kinetics
dataset. In CVPR, 2017.

8



Published as a conference paper at ICLR 2020

Christopher Bongsoo Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. CoRR, abs/1904.08755, 2019.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In CVPR, 2015.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner Hazirbas, Vladimir Golkov,
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A APPENDIX

A.1 EXTENDED EXPERIMENTS ON LARGE-SCALE UNTRIMMED VIDEO RECOGNITION

In order to check the generalization ability of our proposed V4D, we also conduct experiments for
untrimmed video classification. To be specific, we choose ActivityNet v1.3 Heilbron et al. (2015),
which is a large-scale untrimmed video dataset, containing videos of 5 to 10 minutes and typically
large time lapses of the videos are not related with any activity of interest. We adopt V4D ResNet50
to compare with previous works. During inference, Multi-scale Temporal Window Integration is
applied following (Wang et al., 2016). The evaluation metric is mean average precision (mAP) for
action recognition. Note that only RGB modality is used as input.

Model Backbone mAP
TSN Wang et al. (2016) BN-Inception 79.7
TSN Wang et al. (2016) Inception V3 83.3
TSN-Top3 Wang et al. (2016) Inception V3 84.5
V4D(Ours) V4D ResNet50 88.9

Table 6: Comparison with state-of-the-art on ActivityNet v1.3.

A.2 VISUALIZATION

We implement 3D CAM based on Zhou et al. (2016), which was originally implemented for 2D cases.
Generally, class activation maps (CAM) imply which areas are most important for classification.
Here we show some random visualization results from validation set of Mini-Kinetics, where TSN +
I3D-S ResNet18 generates wrong prediction while V4D ResNet18 generates correct prediction. The
original RGB frames are shown in the first row. The second row shows the CAMs of TSN + I3D-S
ResNet18. The third row shows the CAMs of V4D ResNet18.
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Figure 3:

Figure 4:
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