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Abstract

In this work, we propose Knowledge Integration Networks
(referred as KINet) for video action recognition. KINet is ca-
pable of aggregating meaningful context features which are
of great importance to identifying an action, such as human
information and scene context. We design a three-branch ar-
chitecture consisting of a main branch for action recogni-
tion, and two auxiliary branches for human parsing and scene
recognition which allow the model to encode the knowledge
of human and scene for action recognition. We explore two
pre-trained models as teacher networks to distill the knowl-
edge of human and scene for training the auxiliary tasks of
KINet. Furthermore, we propose a two-level knowledge en-
coding mechanism which contains a Cross Branch Integra-
tion (CBI) module for encoding the auxiliary knowledge into
medium-level convolutional features, and an Action Knowl-
edge Graph (AKG) for effectively fusing high-level context
information. This results in an end-to-end trainable frame-
work where the three tasks can be trained collaboratively, al-
lowing the model to compute strong context knowledge ef-
ficiently. The proposed KINet achieves the state-of-the-art
performance on a large-scale action recognition benchmark
Kinetics-400, with a top-1 accuracy of 77.8%. We further
demonstrate that our KINet has strong capability by transfer-
ring the Kinetics-trained model to UCF-101, where it obtains
97.8% top-1 accuracy.

1 Introduction

Deep learning technologies have recently advanced various
tasks on video understanding, particularly for human action
recognition where the performance has been improved con-
siderably (Wang et al. 2016a}; [Carreira and Zisserman 2017}
(Wang et al. 2018b). Intuitively, human action is a highly-
semantic concept that contains various semantic cues. For
example, as shown in Figure[] in the first column, one can
identify a skiing action by learning from a snow field scene
with the related human dresses. In the second column, peo-
ple can still know the action as basketball playing by ob-
serving basketball court and players, even it may be difficult
to identify the ball due to low resolution or motion blur. In
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Figure 1: Human action is a high-level concept, which can
be identified using various semantic cues, such as human
and scene knowledge.

the last column, we can easily recognize a pushup action
from human pose presented. Therefore, context knowledge
is critical to understand human actions in videos, and learn-
ing meaningful such context knowledge is of great impor-
tance to improving the performance.

Past work commonly considered action recognition as a

classification problem, and attempted to learn action-related
semantic cues directly from training videos (Feichtenhofer

et al. 2018} [Wang et al. 2018a} |Carreira and Zisserman

2017). They assumed that action-related features can be im-
plicitly learned with powerful CNN models by simply using
video-level action labels. However, it has been proven that
learning action and actor segmentation jointly can boost the
performance of both tasks. Experiments were conducted on
A2D dataset (Xu et al. 2015)), where the ground truth of ac-
tor masks and per-pixel action labels were provided. Yet in
practice, it is highly expensive to provide pixel-wise action
labels for a large-scale video dataset, and such per-pixel an-
notations are not available in most action recognition bench-
marks, such as Kinetics (Carreira and Zisserman 2017) and




UCF-101 (Soomro, Zamir, and Shah 2012)).

Deep learning methods have achieved expressive perfor-
mance on various vision tasks, such as human parsing (Gong
et al. 2017)), pose estimation (Wang et al. 2019), seman-
tic segmentation (Zhao et al. 2017)), and scene recognition
(Zhou et al. 2017; Wang et al. 2017). It is interesting to
utilize these existing technologies to enhance the model ca-
pability by learning context knowledge from action videos.
This inspired us to design a knowledge distillation (Hinton,
Vinyals, and Dean 2015) mechanism to learn the context
knowledge of human and scene explicitly, by training action
recognition jointly with human parsing and scene recogni-
tion. This allows the three tasks to work collaboratively, pro-
viding a more principled approach that learns rich context
information for action recognition without additional man-
ual annotations.

Contributions. In this work, we propose Knowledge Inte-
gration Networks, referred as KINet, for video action recog-
nition. KINet is capable of aggregating meaningful context
features by design new three-branch networks with knowl-
edge distillation. The main contribution of the paper is sum-
marized as follows.

e We propose KINet - a three-branch architecture for action
recognition. KINet has a main branch for action recogni-
tion, and two auxiliary branches for human parsing and
scene recognition which encourage the model to learn the
knowledge of human and scene via knowledge distilla-
tion. This results in an end-to-end trainable framework
where the three tasks can be trained collaboratively and
efficiently, allowing the model to learn the context knowl-
edge explicitly.

o We design a two-level knowledge encoding mechanism.
The auxiliary human and scene knowledge can be en-
coded into convolutional features directly by introducing
a new Cross Branch Integration (CBI) module. An Action
Knowledge Graph (AKG) is further designed for effec-
tively modeling the high-level correlations between action
and the auxiliary knowledge of human and scene.

e With the enhanced context knowledge of human and
scene, the proposed KINet obtains the state-of-the-art per-
formance with a top-1 accuracy of 77.8% on Kinetics-400
(Carreira and Zisserman 2017), and also demonstrates
strong transfer ability to UCF-101 dataset (Soomro, Za-
mir, and Shah 2012), by achieving a top-1 accuracy of
97.8%.

2 Related Work

We briefly review recent work on video action recognition
and action recognition with external knowledge.

Various CNN architectures have been developed for ac-
tion recognition, which can be roughly categorized into three
groups. First, a two-stream architecture was introduced in
(Simonyan and Zisserman 2014), where one stream is used
for learning from RGB images, and the other one is ap-
plied for modeling optical flow. The results produced by the
two CNN streams are then fused at later stages, yielding
the final prediction. Two-stream CNNs and its extensions

have achieved impressive results on various video recog-
nition tasks. Second, 3D CNNs have recently been pro-
posed in (Tran et al. 2015} (Carreira and Zisserman 2017),
by considering a video as a stack of frames. The spatio-
temporal features of action can be learned by 3D convo-
Iution kernels. However, 3D CNNs often explore a larger
number of model parameters, which require more training
data to achieve high performance. Recent results on Kinet-
ics dataset, as reported in (Xie et al. 2018;Wang et al. 2018bj
Feichtenhofer et al. 2018]), show that 3D CNNs can obtain
competitive performance on action recognition. Third, re-
current networks, such as LSTM (Ng et al. 2015;|Donahue et
al. 2015)), have been explored for temporal modeling, where
a video is considered as a temporal sequence of 2d frames. .

Recently, Xu et al. created an A2D dataset (Xu et al.
2015), where pixel-wise annotations on actors and actions
were provided. In (Xu and Corso 2016), the authors at-
tempted to handle a similar problem by using probabilistic
graphical models. A number of deep learning approaches
have been developed for actor-action learning on the A2D
databaset (Kalogeiton et al. 2017; |Dang et al. 2018; Ji et
al. 2018)), demonstrating that jointly learning actor and ac-
tion representations can improve action recognition and un-
derstanding. However, these approaches are built on dense
pixel-wise labelling on actors and actions provided in the
A2D dataset, which are highly expensive and are difficult
to obtain from a large-scale action recognition dataset, such
as Kinetics (Carreira and Zisserman 2017) and UCF-101
(Soomro, Zamir, and Shah 2012), where only video-level ac-
tion labels are provided.

An action can be defined by multiple elements, features or
context information, and it is still an open problem on how
to effectively incorporate various external knowledge into
action recognition. In (Ikizler-Cinbis and Sclaroff 2010), the
authors tried to combine object, scene and action recognition
by using multiple instance learning framework. Recently,
with deep learning approaches, Jain et al. introduced object
features to action recognition by discovering the relations of
action and objects (Ikizler-Cinbis and Sclaroff 2010), and
Wau et al. further explored the relation of object, scene and
action by designing a more advanced and robust discrimina-
tive classifier (Wu et al. 2016).

In (Wang et al. 2016b)), an external object detector was
used to provide locations of objects and persons, and the au-
thors in (Wang and Gupta 2018)) incorporated an object de-
tection network to provide object proposals, which are used
with spatio-temporal graph convolutional networks for ac-
tion recognition.

However, all these methods commonly rely on external
networks to extract semantic cues, while such external net-
works were trained independently, and were fixed when ap-
plied to action recognition. This inevitably limits their ca-
pability for learning meaningful action representation. Our
method is able to learn the additional knowledge of human
and scene via knowledge distillation, allowing us to learn
action recognition jointly with human praising and scene
recognition with a signle model, providing a more efficient
manner to encode the context knowledge for action recogni-
tion.
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Figure 2: The overall structure of Knowledge Integration Networks for video action recognition. Details of CBI Module and
AKG will be explained in following sections. Better viewed in color.

3 Knowledge Integration Networks

In this section, we describe details of the proposed
Knowledge Integration Networks (KINet) which is able to
distill the knowledge of human and scene from two teacher
networks. KINet contains three branches, and has a new
knowledge integration mechanism by introducing a Cross
Branch Integration (CBI) module for encoding the auxiliary
knowledge into the intermediate convolutional features,
and an Action Knowledge Graph (AKG) for effectively
integrating high-level context information.

Overview. The proposed KINet aims to explicitly incorpo-
rate scene context and human knowledge into human action
recognition, while the annotations of scene categories or hu-
man masks are highly expensive, and thus are not available
in many existing action recognition datasets. In this work,
we attempt to tackle this problem by introducing two ex-
ternal teacher networks able to distill the extra knowledge
of human and scene, providing additional supervision for
KINet. This allows KINet to learn action, scene and human
concepts simultaneously, and enables the explicit learning of
multiple semantic concepts without additional manual anno-
tations.

Specifically, as shown in Figure[2] KINet employs two ex-
ternal teacher networks to guide the main network. The two
teacher networks aim at providing pseudo ground truth for
scene recognition and human parsing. The main network is
composed of three branches, where the fundamental branch
is used for action recognition. The other two branches are
designed for two auxiliary tasks - scene recognition and hu-
man representation, respectively. The intermediate represen-
tations of three branches are integrated by the proposed CBI

module. Finally, we aggregate the action, human and scene
features by designing an Action Knowledge Graph (AKG).
The three branches are jointly optimized during training, al-
lowing us to directly encode the knowledge of human and
scene into KINet for action recognition.

We also tried to incorporate an object branch by distil-
lation, but this leads to a performance drop with unstable
results. We conjecture that there may be two main reasons:
(1) Due to low resolution and motion blur, it is very hard
to identify the exact object in the video. (2) The categories
of object detection/segmentation are usually rather limited,
while for action recognition, the objects involved are much
more diverse. Although object proposals are used by (Wang
and Gupta 2018) to overcome these problems, it is very hard
to distill these noisy proposals. So we just use the ImageNet
(Deng et al. 2009) pretrained model to initialize the frame-
work instead of forcing it to “remember” everything from
it.

3.1 The Teacher Networks

We explore two teacher networks pre-trained for human
parsing and scene recognition.

Human parsing network. We use LIP (Gong et al. 2017)
dataset to train the human parsing network. LIP is a hu-
man parsing dataset, which was created specifically for se-
mantic segmentation of multiple parts of human body. We
choose this dataset because it provides training data where
only some certain parts of human body, such as hand, are
available, and these body parts are commonly presented in
video actions.

Furthermore, the original LIP dataset contains 19 seman-
tic parts. Due to the relatively low resolution of the frames,
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the generated pseudo labels may contain a certain amount of
noisy pixel labels for fine-grained human parsing. Thus we
merge all 19 human parts into a single human segmentation,
which leads to much stronger robustness on segmentation
results. Finally, we employ PSPNet (Zhao et al. 2017) with
DenseNet-121 (Huang et al. 2017) as its backbone for hu-
man parsing teacher network.

Scene recognition network. We use a large-scale scene
recognition dataset, Places365 (Zhou et al. 2017), to train the
scene recognition teacher network. Places365 contains 365
scene categories. We employ ResNet152 (He et al. 2016) as
the backbone of the teacher network.

3.2 The Main Networks

The proposed KINet has three branches - one main branch
for action recognition and the other two branches for auxil-
iary tasks of scene recognition and human parsing guided by
the teacher networks. We use Temporal Segment Network
(TSN) structure (Wang et al. 2016a)) as the action recognition
branch, where a 2D network is used as backbone. TSN is
able to model long-range temporal information by sparsely
sampling a number of segments along the whole video, and
then average the representation of all segments. In addition,
TSN can also be applied in two-stream architecture, with the
second stream for modelling motion information by utilizing
optical flow. We set the number of segments for training as
Ngeg = 3 in our experiments for an efficient training, and
also for a fair comparison against previous state-of-the-art
methods.

The three branches of KINet share low-level layers in the
backbone. There are two reasons for such design. First, low-
level features are generalized over three tasks, and sharing
features allow the three tasks to be trained more collabora-
tively with fewer parameters used.

The higher level layers are three individual branches,
not sharing the parameters, but still exchange information
through various integration mechanism, which will be intro-
duced in following sections.

3.3 Knowledge Integration Mechanism

Our goal is to develop an efficient feature integration method
able to encode context knowledge of different levels. . We
propose a two-level Knowledge Integration mechanism in-
cluding a Cross Branch Integration (CBI) module and an
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Figure 4: Action Knowledge Graph. We only utilize the out-
come of action recognition nodes.

Action Knowledge Graph (AKG) method for encoding the
knowledge of human and scene into different levels of the
features learned for action recognition.

Cross Branch Integration (CBI) The proposed CBI
module aims to aggregate the intermediate features learned
from two auxiliary branches into action recognition branch,
which enables the model to encode the knowledge of human
and scene. Specifically, we use the feature maps of auxiliary
branches as gated modulation of the main action features,
by implementing element-wise multiplication on them, as
shown in Figure[3] We apply a residual-like connection with
batch normalization (Ioffe and Szegedy 2015) and ReL.U ac-
tivation (Nair and Hinton 2010) so that the feature maps of
auxiliary branches can directly interact with the action fea-
tures.

Finally the features maps from three branches are con-
catenated along the channel dimension, followed by a 1 x 1
convolution layer for reducing the number of channels. In
this way, the input channel and output channel are guaran-
teed to be identical, so that the CBI module can be applied
at any stage in the network.

Action Knowledge Graph (AKG) In the final stages, we
apply global average pooling individually on each branch,
obtaining three groups of representation vectors with the
same size. Each group contains V., feature vectors, cor-
responding to the N, input frames, where N, means the
number of segments in TSN (Wang et al. 2016a)). We then
construct an Action Knowledge Graph to explicitly model
the pair-wise correlation among these representations. To
this end, we build an Action Knowledge Graph on the high-
level features of three tasks, and apply the recent Graph Con-
volutional Networks (Kipf and Welling 2017) on the AKG
for further integrating high-level semantic knowledge.

Graph Definition. The goal of our knowledge graph is to
model the relationship among action, scene and human seg-
ments. Specifically, there are N = 3 X N4 total nodes in
the graph, denoted as X = {zgction gpscene ghuman|j —
1,...,Ngeq}, where the nodes :z:fc”‘m,xfce”e,z?“m“” S
R?, with d indicating the channel dimension of the last con-
volutional layer in the backbone. The graph G € RN*N
represents the pair-wise relationship among the nodes, with
edge G, indicating the relationship between node x; and
node x.

For the proposed KINet framework, our goal is to build
the correlations between the main action recognition and



auxiliary scene recognition and human parsing tasks. There-
fore, it is not necessary to construct a fully-connected knowl-
edge graph. We only activate the edges which are directly
connected to an action node :1:‘;0”0”, and set the others to 0.
We implement AKG by computing element-wise product of
G and an edge mask matrix I, ;. The mask 1,455 is a 0 or
1 matrix with the same size as GG, where the edges between
human nodes and scene nodes are set to 0, and otherwise 1.

Relation function. We describe different forms of the re-
lation function f for computing the relationship between
knowledge nodes.

(1) Dot product and embedded dot product. Dot prod-
uct is a frequently-used function for modelling the simi-
larity between two vectors. It is simple but effective and
parameter-free. Another extension of dot product is the em-
bedded dot product, which projects the input vectors onto
a subspace, and then applies dot product, by utilizing two
learnable weight matrices,

f(@asa) = gy, M

f(@a,xp) = O(xg ) pla). 2)

(2) Concatenation. We simply adopt the relation mod-

ule by concatenation which was proposed in (Santoro et al.
2017):

f(@a,xp) = ReLU(W[0(4), ¢(x)]), ©)
where [+, -] denotes the concatenation operation, and W rep-
resents the learnable weight matrix that projects the concate-
nated vector into a scalar.

Normalization. The sum of all edges pointing to the same
node must be normalized to 1, and then the graph convolu-
tion can be applied to the normalized knowledge graph. In
this work, we apply the softmax function for implementing
normalization,

ef (Ta,xp)

Zévzl ef (zam)’
This normalization function essentially casts dot product

into Gaussian function, thus we do not use Gaussian or em-
bedded Gaussian function directly for learning the relations.

Gap = “

3.4 Relation Reasoning on the Graph

We apply recent Graph Convolutional Network (GCN) (Kipf
and Welling 2017) on the constructed Action Knowledge
Graph for aggregating high-level sematic knowledge of hu-
man and scene into action recognition branch. Formally, the
behavior of a graph convolution layer can be formulated as,

Z = o0(Inask © GXW), 4)
where I,,qs% is the edge mask matrix mentioned, G €
RN*N is the matrix of the constructed knowledge graph.
X € RNXd ig the input to the GCN, W € R*4 g the
learnable weight matrix for GCN, and ¢ is the activation
function. In practice, we found that applying a deeper GCN
was not helpful for improving the performance, and thus we
only apply one graph convolution layer, which has proved
to be enough for modelling rich high-level context informa-
tion. The output of GCN, Z € RN*d has the same size
as the input X. We only use the N,., vectors from action
branch for final classification.

3.5 Joint Learning

The proposed three-branch architecture enables an end-to-
end joint learning of action recognition, human parsing and
scene recognition. The multi-task loss function is computed
as,

L= AlLaction + >\2Lhuman + >\3Lscene7 (6)

where Lgction and Lgcen are cross-entropy losses for clas-
sification, Lpyman 1S @ cross-entropy loss for semantic seg-
mentation. For scene recognition and human parsing, the
loss of each segment is calculated individually and then av-
eraged.

The ground truth for action recognition is provided by the
training dataset, while the ground truth of scene recognition
and human parsing is provided by the two teacher networks
as pseudo labels for knowledge distillation. We empirically
set Ay = 1 for main tasks, Ao = 0.01 and A3 = 0.01 for the
two auxiliary tasks.

Learnable parameters for auxiliary tasks. Notice that
previous works, such as (Wu et al. 2016; [Heilbron et al.
2017; Wang et al. 2016b), encode the extra knowledge
by directly using the teacher networks whose parameters
are fixed, while our proposed three-branch framework with
knowledge distillation enables a joint learning of three tasks.
This allows for training three tasks more collaboratively,
providing a more principled approach for knowledge inte-
gration. Our experiments presented in next section verify
this claim.

4 Experiments
4.1 Datasets

To verify the effectiveness of our KINet, we conduct exper-
iments on a large-scale action recognition dataset Kinetics-
400 (Carreira and Zisserman 2017)), which contains 400 ac-
tion categories, with about 240k videos for training and 20k
videos for validation. We then examine the generalization
ability of our KINet by transferring the learned representa-
tion to a small dataset UCF-101 (Soomro, Zamir, and Shah
2012)), containing 101 action categories with 13,320 videos
in total. Following previous standard criterion, we divide the
total videos into 3 training/testing splits and the results of the
three splits are averaged as the final result.

4.2 Implementation Details

Training. We use ImageNet pretrained weights to initialize
the framework. Following the sampling strategy in (Wang et
al. 2016a) we uniformly divide the video into N,., = 3 seg-
ments, and randomly select a frame out of each segment. We
first resize every frame to size 256 x 340 and then we apply
multiscale cropping for data augmentation. For Kinetics, we
utilize SGD optimizer with initial learning rate set to 0.01,
which drops by 10 at epoch 20, 40 and 60. The model is to-
tally trained for 70 epochs. We set the weight decay to be
1075 and the momentum to be 0.9. For UCF-101, we follow
(Wang et al. 2016a)) to fine tune the pretrained weights on
Kinetics, where we have all but the first batch normalization
layer frozen and the model is trained for 80 epochs.

Inference. For fair comparison, we also follow (Wang et al.
2016a)) by uniformly sampling 25 segments from each video



Method Settings top-1 | gain
Baseline TSN-ResNet50 69.5 -

Baseline+human 70.3 +0.8

KD+Multitask Baseline+scene 70.0 +0.5

Baseline+human+scene 70.6 +1.1

1 CBI@Qres4 71.1 +1.6

. 2 CBI@Qres4 71.2 +1.7

CBI+Multitask | | CB@resd+1 CBI@resS | 71.8 | +2.3

2 CBI@res4+1 CBIQres5 | 71.5 +2.0

AKG + dot product 71.7 | +2.2

AKG+Multitask | AKG + E-dot product 716 | +2.1

AKG + concatenation 71.2 +1.7

KINet KINet-ResNet50 724 | 429

Table 1: Ablation study for each components of KINet on
Kinetics-400.

methods top-1 | Parameters
TSN-ResNet5S0 | 69.5 | 24.4M
TSN-ResNet200 | 70.7 | 64.5M
KINet-ResNet50 | 72.4 | 56.9M

Table 2: The performance of the proposed KINet, with com-
parison on parameters.

and select one frame out of each segment. We crop the 4 cor-
ners and the center of each frame and then flip them so that
10 images are obtained. Totally, there are 25 x 10 = 250 im-
ages for each video. We use a sliding window of N,y = 3
on the 25 test segments. The results are averaged finally to
produce the video-level prediction. Note that during infer-
ence, the decoder of the human parsing branch and the clas-
sifier( fully connected layer) of scene recognition branch can
be removed, since our main task is action recognition. This
makes it extremely efficient to transfer the learned represen-
tation to other datasets.

4.3 Ablation Study on Kinetics

In this subsection, we conduct extensive experiments on
large scale dataset Kinetics to study our framework. In this
study, we use TSN-ResNet50 (Wang et al. 2016a) as base-
line.

Multitask Learning with Knowledge Distillation. First,
in order to show that distilling external knowledge does
help with action recognition, we incorporate human pars-
ing and scene recognition into action recognition network,
by jointly learning these three tasks via knowledge distil-
lation, yet without applying CBI module or Action Knowl-
edge Graph here. As shown in Table[I] the multitask learning
with knowledge distillation outperforms the baseline. When
action recognition and human parsing are jointly trained, the
top-1 accuracy increases 0.8%. When action recognition and
scene recognition are jointly trained, the top-1 accuracy in-
creases 0.5%. When three tasks are jointly trained, the top-1
accuracy increases 1.1%.

Cross Branch Integration Module. Instead of simple
multitask learning, we apply CBI Module to enable inter-
mediate feature exchange. As shown in Table|[I] aggregating
human and scene knowledge into action branch strengthens

Backbones | TSN top-1 | KINet top-1 | Gain
ResNet50 69.5 72.4 +2.9
BN-Inception | 69.1 71.8 +2.7
Inception V3 | 72.5 74.1 +1.6

Table 3: KINet consistently improve the performance with
different backbones.

methods | top-1
Baseline TSN-ResNet50 | 69.5
Fixed auxiliary branches KINet-ResNet50 70.5

Learnable auxiliary branches KInet-ResNet50 | 72.4

Table 4: Learnable auxiliary branches is better than pre-
trained fixed ones for action recognition.

the learning ability of action branch. We further employ mul-
tiple CBI Modules at different stages, showing that higher
accuracy can be obtained. According to experiment results,
we finally apply 1 CBI at res4 and 1 CBI at res5 for a balance
between accuracy and efficiency.

Action Knowledge Graph. The AKG is applied at the
late stage of the framework, with 3 possible relation function
as mentioned in section We compare their performance
in Tabldl] The AKG boosts performance by aggregating
multiple branches and models the relation among action, hu-
man and scene representations. We find that dot product and
embedded dot product are comparable, which are slightly
better than ReLU concatenation. We simply choose to use
dot product as the relation function in the remaining experi-
ments.

Entire KINet Framework. We combine all previ-
ous mentioned components into the baseline, i.e. TSN
ResNet50, for RGB-based action recognition with entire
Knowledge Integration Networks. As shown in Table[I] we
find that the top-1 accuracy has been boosted to 72.4%,
while the baseline is 69.5%. This significant improvement
of 2.9% on video action recognition benchmark proves the
effectiveness of our proposed framework.

Effective Parameters. As shown in Table[2] although our
method introduces more parameters due to the multi-branch
setting, the overall amount of parameters is still less than that
of TSN-ResNet200 (Ghanem et al. 2017)), yet with higher
accuracy. This comparison proves that the functionality of
our framework contributes vitally to action recognition, not
just because of the extra parameters introduced.

Different Backbones. We implement KINet with differ-
ent backbones, to verify the generalization ability. The re-
sults in Table [3] show that our KINet can consistently im-
prove the performance with different backbones.

Learnable parameters. To verify the impact of joint
learning, we directly use the two teacher networks to provide
auxiliary information, with their weights fixed. The results
are shown in Table 4] The KINet outperforms the fixed way
significantly. We explain this phenomenon by stressing the
importance of pseudo label guided learning. With KINet, the
auxiliary branches are jointly trained with the action recog-
nition branch using the pseudo label, so that the interme-



Model Backbone top-1 | top-5
TSN (Wang et al. 2016al)) ResNet50 69.5 | 88.9
TSN (Ghanem et al. 2017) ResNet200 70.7 | 89.2
TSN (Wang et al. 2016 BNInception 69.1 88.7
TSN (Wang et al. 201 gegii: Inception V3 72.5 | 90.2
2D Backbones | g\t (e e al. 2010 ResNet50 699 | -
He et al. 2019, ResNet101 714 | -
ResNet50 70.1 89.3
Inception V3 76.6 | 924
ARTNet (Wang et al. 2018a) ARTNet ResNet18 + TSN 70.7 | 89.3
ECO (Zolfaghari, Singh, and Brox 2018) ECO 2D+3D 70.0 | 89.4
S3D-G (Xie et al. 2018 S3D Inception 74.7 | 934
3D Backbones Nonlocﬁlmﬂm I3D ResNet101 717 | 933
SlowFast (Feichtenhofer et al. 2018) SlowFast 3D ResNet101+NL | 79.8 | 93.9
I3D (Carreira and Zisserman 2017) I3D Inception 71.1 | 89.3
Two-stream I3D (Carreira and Zisserman 2017) | I3D Inception 74.2 | 913
KINet(Ours) BN-Inception 71.8 89.7
2D Backbones | KINet(Ours) ResNet50 72.4 90.3
KINet(Ours) Inception V3 74.1 91.0
Two-stream KINet(Ours) Inception V3 77.8 93.1

Table 5: Comparison with state-of-the-art on Kinetics.

Model Backbone top-1
TS TSN (Wang et al. 2016 BNInception 97.0
TS TSN (Wang et al. 201 Inception V3 97.3
TS I3D (Carreira at al. 7) | 13D Inception | 98.0
StNet-RGB (He et al. 2019 ResNet50 93.5
StNet-RGB (He et al. 2019 ResNet101 94.3
TS KINet Inception V3 97.8

Table 6: Comparison with state-of-the-art on UCF-101.
“TS” indicates “Two-stream”.

diate features of scene and human can be finetuned to suit
action recognition better. Yet for the fixed way in previous
works, the auxiliary representation cannot be finetuned. Al-
though the fixed auxiliary networks provide more accurate
scene recognition and human parsing results compared to
the KINet, their improvement on main task, action recogni-
tion, is less than that of KINet (1.9%).

4.4 Comparison with State-of-the-Art Methods

Here we compare our 2D KINet with state-of-the-art meth-
ods for action recognition, including 2D and 3D methods, on
action recognition benchmark Kinetics-400. We also include
two-stream CNNs for KINet, where the RGB stream CNN
is our KINet and the optical flow stream CNN is normal
TSN structure. As shown in Table [5} our method achieves
state-of- the-art results on Kinetics. Although our network
is based on 2D backbones, the performance is even on par
with state-of- the-art 3D CNN methods.

4.5 Transfer Learning on UCF-101

We further transfer the learned representation on Kinetics to
smaller dataset UCF-101 to check the generalization ability
of our framework. Following the standard TSN protocol, we
report the average of three train/test splits in Table [6] The
results show that our framework pretrained on Kinetics has

strong transfer learning ability. Our model also obtain state-
of- the-art result on UCF-101.

4.6 Visualization

As shown in Figure[5] our KINet has more clear understand-
ing of human and scene concepts, compared with baseline
TSN. This integration of multiple domain specific knowl-
edge enables our KINet to recognize complex action involv-
ing with various high-level semantic cues.

Figure 5: Visualization of playing basketball. Top: the ac-
tivation maps from TSN-ResNet50, Bottom: the activation
maps from KINet-ResNet50.

5 Conclusion

We have presented new Knowledge Integration Networks
(KINet) able to incorporate external semantic cues into ac-
tion recognition via knowledge distillation. Furthermore, a
two-level knowledge encoding mechanism is proposed by
introducing a Cross Branch Integration (CBI) module for in-
tergrading the extra knowledge into medium-level convolu-
tional features, and an Action Knowledge Graph (AKG) for
learning meaningful high-level context information.
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