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ABSTRACT

Recently, deep convolutional neural networks (CNNs) have
made remarkable progress on single image super-resolution
(SISR). However, many of these methods use very deep
or wide convolutional layers to achieve good performance,
which treat all feature channels indiscriminately and neglect
the difference among the contribution of each channel to the
output results. In this paper, we propose a low complex-
ity solution based on channel splitting and fusion network
(CSFN) to address this problem. Our method uses channel
splitting and channel fusion to enhance feature maps and
make full use of valuable information, and then multiple
residual channel splitting and fusion blocks (CSFB) are cas-
caded to continuously extract more important information for
reconstruction. To further minimize redundant parameters
and improve efficiency, we adopt group and recursive con-
volutional layer strategy in CSFB. Experiments demonstrate
that our proposed CSFN could achieve higher performance
with low computational complexity than most state-of-the-art
methods.

Index Terms— Image super-resolution, convolutional
neural networks, deep learning

1. INTRODUCTION

Single image super-resolution (SISR) is a classical computer
vision task that generates a high-resolution (HR) image from
a low-resolution (LR) one. Generally, SISR is regarded as an
ill-posed problem since there are numerous HR images cor-
responding to one LR image. Several varieties of SR meth-
ods have been proposed to solve this inverse problem, such
as interpolation-based methods, prediction-based methods [1,
2, 3], and example-based methods [4, 5, 6, 7]. In recent
years, with the rapid development of computer performance
and deep learning techniques, using deep learning to han-
dle SR task is becoming a hot topic. These data-driven ap-
proaches have been proven to be able to achieve better results
both in reconstruction accuracy and perceptual quality [8, 9].

Many previous works have proposed different efficient
network structures for SR problem. Dong et al. [7] first
propose a 3-layer CNN model named SRCNN, which has a
lightweight structure and superior accuracy compared with

Fig. 1. Qualitative comparisons of our methods with other
state-of-the-arts. our CSFN can reconstruct images more ac-
curately and less blurring.

the conventional example-based method. As stacking con-
volutional layers can increase the expressive ability of the
network, Kim et al. [10] propose a very deep CNN model
called VDSR. VDSR uses an extremely high learning rate
and residual learning to ease the training difficulty in the deep
model. FSRCNN [11] upsamples images using a deconvo-
lution layer at the end of the network, which is much faster
than the pre-upsampling method since it performs most of
the mappings in low-dimensional space. ESPCN [12] uses
sub-pixel convolution to learn the upscaling filters between
LR and HR images, which is much faster than deconvolution.
To encourage feature reuse and better propagate informa-
tion, ResNet [13] and DenseNet [14] architecture are also
widely used in SR tasks[15, 16, 17, 18], those methods can
get superior performance by using deeper or wider networks.

Although a deeper network can get better results, it is hard
to apply this huge model to practical applications due to the
heavy computational and memory costs. To control the num-
ber of network parameters, recursive convolutional layers are
used in DRCN [19], DRRN [20]. Usually, a recursive net-
work would increase the depth of the model. Thus excessive
recursive operations that saving intermediate results would
lead to running out of the GPU memory when processing
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Fig. 2. Network architecture of the proposed CSFN. The dots
in UPBlock represent multiple Conv-PixelShuffle module de-
pend on scaling factor.

large images such as the case in DRRN[20], which is not suit-
able for real-world scenarios. CARN [21] is an accurate and
lightweight deep network using the cascading mechanism to
extract features. Chu et. al. [22] propose a neural architecture
search technology to produce a lightweight model, but this
search technology is also based on a specific network struc-
ture to reduce searching space.

However, most CNN-based methods treat all feature
channels indiscriminately and neglect the different contri-
butions of each channel to the output results. Hu et. al.
[23] adopt a squeeze-and-excitation (SE) block to explic-
itly modeling the interdependencies between the channels
of its convolutional features. RCAN [16] uses this channel
attention mechanism in SR task to enhance discriminative
learning ability, but all feature maps would flow into the next
layer without distinction, which cannot make full use of use-
ful channel features. To handle this inefficiency, we propose
a new structure to consider the channel unevenness. In spe-
cific, we propose a deep residual channel splitting and fusion
network (CSFN), which splits the channels to guide some
features to generate more features in order to enhance feature
maps gradually and make full use of the valuable informa-
tion. In summary, our contributions can be summarized as
follows: 1) We propose an efficient network, CSFN, for SISR
to focus on channel information and different information
fusion, which achieves high performance with low complex-
ity. 2) To further reduce parameters and calculations, we
design a new recursive CNN model (CSFN-M) to minimize
redundant parameters. 3) Extensive experiments demonstrate
that our CSFB can extract information efficiently and treat
channels unequally, and after fusing that information, CSFB
can provide more efficient feature maps for reconstruction.

2. PROPOSED METHOD

2.1. Network Architecture

As shown in Fig.2, our CSFN is divided into three parts:
shallow feature extraction block (FEBlock), residual channel
splitting and fusion blocks (CSFBlocks) and upscale block
(UPBlock). Denote by x and y the input and output of CSFN.
In FEBlock, we use one convolutional layer to extract features
from the LR image. F0 is the shallow features extracted by
FEBlock. CSFBlocks consist of multiple CSFBs and a bot-
tom convolution layer, and the output of CSFBlocks can be
expressed as

Fr = ft(HCSF,n(. . . (HCSF,1(F0)) . . . )) + F0 (1)

Fig. 3. The architecture of proposed CSFB (left) and CSFB-
M (right).

where ft is the bottom convolution function and HCSF,i rep-
resents the operation of i-th CSFB. The detail of HCSF,i can
be found in Section 2.2. The final part is UPBlock, which
does the LR-HR transforming and reconstruct the HR im-
age. We use ESPCN in our upscale module. For scale 2 and
scale 3, we use one Conv-PixelShuffle structure. Two Conv-
PixelShuffle modules are used for scale 4.

2.2. Residual Channel Splitting and Fusion Block

Our proposed CSFB (shown in Fig.3) can be roughly divided
into two pipelines. The left pipeline is a feature fusion mod-
ule based on channel split (CSFF) and the right one is a global
feature extraction (GFE) module. Let’s denote the input fea-
ture maps of i-th CSFB as Fi−1, and the total number of
channels in Fi−1 is c0. Then the feature maps Fi−1 flow into
CSFF, GFE and the other part of CSFB for residual learning.

CSFF module mainly focuses on the imbalance of channel
information. Since the information extracted from LR images
contains various information, the variance of channel features
cannot be neglected. To make a distinction between differ-
ent channel features, we adopt an asymmetric channel split
to divide the feature into two parts. As Fig.3 shows, we split
Fi−1 into two parts which contain s and c0 − s channels re-
spectively, where s is less than c0/2 in our network. We will
discuss the purpose of this asymmetric splitting in Section
3.1. We denote the feature maps after splitting operation as
Fi,s1 and Fi,s2, and the dimensions of left and right branch in
CSFF as ca and cb, subjected to ca + cb = c0. ca > s is the
restriction on ca to guide the network to extract more infor-
mation in Fi,s1, cb < c0 − s can be explained as less feature
maps in Fi,s2 would be used in this block. The operations of
CSFF can be formulated as:

Fi,s1o = τ(f(τ(f(Fi,s1, s, ca)), ca, ca)) (2)
Fi,s2o = τ(f(τ(f(Fi,s2, c0 − s, cb)), cb, cb)) (3)

where Fi,s1o, Fi,s2o denote the outputs of two branches, and
τ is the ReLU activation function, f(F, ca, cb) is the convo-
lutional operation with ca as input feature dimension and cb
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Fig. 4. The performance of different splitting on Set5 with
the scaling factor ×4.

as output feature dimension. Then the two feature maps are
fused by concatenation and the 1×1 convolution.

The main purpose of GFE module (the right pipeline) is to
compensate for CSFF module since CSFF module only uses
partial channel information independently which leads to in-
complete global information. A channel compression and ex-
pansion unit is used to extract features and promote channel
information fusion as well as reducing the number of param-
eters. GFE is composed of 2 Conv-ReLUs and 1 Conv layer.
The feature maps dimension of i-th Conv-ReLU output are
denoted as cn, cn, and c0 respectively (cn < c0). This opera-
tion can be described as follows:
Fi,L = f(τ(f(τ(f(Fi−1, c0, cn)), cn, cn)), cn, c0) (4)

The feature maps from CSFF and GFE are then aggregated to
get the fusing features and residual learning. Thus, the output
of i-th CSFB can be formulated as:

Fi = HCSFF,i(Fi−1) +HGFE,i(Fi−1) + Fi−1 (5)
where HCSFF,i , HGFE,i denote the operation collections in
i-th CSFF and GFE modules respectively.

To further reduce parameters and enhance feature maps,
we propose a more lightweight network(CSFN-M) which re-
places CSFB with CSFB-M. As shown in Fig.3 (right), we
firstly adopt group convolutional layer in CSFF and GFE, and
then the feature maps which flow into CSFB-M would be en-
hanced for t times, This can be described as follows:

Fi = Ri(Ri(. . . Ri(Fi−1) . . . )) (6)
where Ri denotes the operation collections in i-th CSFB-M
modules, and there are t Ri in the above formula.

2.3. Implementation Details

In our proposed networks, the kernel sizes in convolutional
layers are all set to 3×3 except the specified 1×1 convolu-
tional layers. The number of channels in Fi(i = 1, 2, ..., n)
is set to 64. We use 10 CSFBs in our proposed CSFN and 5
for CSFN-M. In each CSFB, c0, s, ca, cb and cn are set to 64,
16, 32, 32 and 16 respectively. For our proposed CSFB-M,
we use the same setting with CSFB but the number of groups
is set to 2, t is set to 3 for each CSFB-M.

During the training process, for each batch, 16 LR RGB
patches with the size of 48×48 are randomly selected from
DIV2K dataset(800 training images). Then data augmenta-
tion is applied by flipping horizontally or vertically or rotat-
ing 90◦. The proposed network is implemented with PyTorch

Table 1. Experiments in the ablation study. All models are
trained in 1×105 iterations with the scaling factor ×4.

CSFF GFE Params Set5 Set14 BSD100 Urban100 Average
× × 484K 31.40 28.11 27.23 25.15 26.43
X × 496K 31.44 28.13 27.24 25.18 26.45
× X 435K 31.39 28.08 27.21 25.09 26.39
X X 559K 31.58 28.20 27.28 25.26 26.51

and optimized using Adam with β1 = 0.9, β2 = 0.999, and
ε = 10−8. The initial learning rate is set to 10−4 and de-
creases by a factor of 2 for every 2×105 iterations during the
total 106 iterations. The loss function we used is L1 loss. We
use Set5, Set14, BSD100, and Urban100 for test and bench-
mark. The degradation operator we used is bicubic downscal-
ing and the scaling factors are set to ×2, ×3, and ×4. We use
two commonly used evaluation metrics in SR task to com-
pare the rebuild quality: peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM).

3. EXPERIMENTS

3.1. Network Analysis

The effect of CSFB. To investigate the effect of asymmetric
splitting, we train our model roughly with different s in CSFF
for total 4× 105 iterations. Specifically, we set the values of
s to 8, 16, 24, and 32 respectively, and 5 CSFBs are used in
this experiments, thus the four models have the same num-
ber of parameters, other settings are the same with Section
2.3. Fig.4 shows that appropriate asymmetric splitting can
generate 0.07dB improvements compare with the symmetric
splitting. We then adopt the ablation study to investigate the
effects of CSFF and GFE in our CSFN. For better compar-
ison and minimize the performance impact of rising param-
eter quantities, we only use 3 CSFBs to build a very shal-
low network. A ReLU-Conv module is used to replace the
block in CSFB when there are no CSFF and GFE blocks in
the network. Table 1 presents CSFF has slight improvement
since it can not get global information from channels, GFE
has worse performance with fewer parameters. After com-
bining the CSFF and GFE, the performance would increase a
lot compared with only using CSFF or GFE.

Since CSFF in our proposed CSFB plays a key role in
the whole model, we then inspect the weights of the last 1x1
Conv layer in CSFF to explore the channel fusion of the two
branches. The model we used is a trained ×2 model. Note
that c0 = 64 and ca = cb = 32, that is one output chan-
nel in CSFF is generated by left part of CSFF(CSFF-L, ca)
and right part of CSFF(CSFF-R, cb), we than calculate the
average weight(absolute value) of CSFF-L and CSFF-R and
compute the weight ratio of CSFF-L to all channels. Fig. 5
shows that the first 16 channels use CSFF-L features more in
all blocks because those feature maps would be used in the
next CSFF-L, thus some feature map channels are constantly
being strengthened during this process by using those features
to build more features. Fig. 6 is the average(absolute value)
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Table 2. Average PSNR/SSIMs for scale ×2, ×3 and ×4. Red/blue text: best/second-best, underline text: best result below
500K parameters.

Scale Dataset/Params DRRN[20] CARN-M[21] SRFBN-S[24] CSFN-M VDSR[10] Memnet[25] IDN[26] CARN[21] CSFN

x2

Params/FLOPs 297K/6802.9G 412K/91.2G 282K/679.7G 298K/147.1G 665K/613.7G 677K/623.9G 551K/123.5G 1592K/222.8G 845K/195.9G
Set5 37.74/0.9591 37.53/0.9583 37.78/0.9597 37.72/0.9596 37.53/0.9587 37.78/0.9597 37.83/0.9600 37.76/0.9590 37.85/0.9600

Set14 33.23/0.9136 33.26/0.9141 33.35/0.9156 33.32/0.9155 33.03/0.9124 33.28/0.9143 33.30/0.9148 33.52/0.9166 33.54/0.9187
BSD100 32.05/0.8973 31.92/0.8960 32.00/0.8970 32.01/0.8980 31.90/0.8960 32.08/0.8978 32.08/0.8985 32.09/0.8978 32.10/0.8990

Urban100 31.23/0.9188 31.23/0.9193 31.41/0.9207 31.47/0.9221 30.76/0.9140 31.31/0.9195 31.27/0.9196 31.92/0.9256 31.88/0.9257

x3

Params/FLOPs 297K/6802.9G 412K/46.6G 376K/828.1G 391K/75.6G 665K/613.7G 677K/623.9G 553K/54.8G 1592K/119.1G 1030K/106.7G
Set5 34.03/0.9244 33.99/0.9236 34.20/0.9255 34.11/0.9250 33.66/0.9213 34.09/0.9248 34.11/0.9253 34.29/0.9255 34.31/0.9267

Set14 29.96/0.8349 30.08/0.8367 30.10/0.8372 30.13/0.8383 29.77/0.8314 30.00/0.8350 29.99/0.8354 30.29/0.8407 30.28/0.8406
BSD100 28.95/0.8004 28.91/0.8000 28.96/0.8010 28.96/0.8018 28.82/0.7976 28.96/0.8001 28.95/0.8013 29.06/0.8034 29.08/0.8043

Urban100 27.53/0.8378 27.55/0.8385 27.66/0.8415 27.69/0.8420 27.14/0.8279 27.56/0.8376 27.42/0.8359 28.06/0.8493 28.06/0.8497

x4

Params/FLOPs 297K/6802.9G 412K/32.9G 483K/1037.3G 372K/55.0G 665K/613.7G 677K/623.9G 555K/30.9G 1592K/91.2G 993K/84.2G
Set5 31.68/0.8888 31.92/0.8903 31.98/0.8923 31.90/0.8912 31.35/0.8838 31.74/0.8893 31.82/0.8903 32.13/0.8937 32.10/0.8935

Set14 28.21/0.7720 28.42/0.7762 28.45/0.7779 28.42/0.7773 28.01/0.7674 28.26/0.7723 28.25/0.7730 28.60/0.7806 28.61/0.7806
BSD100 27.38/0.7284 27.44/0.7304 27.44/0.7313 27.45/0.7316 27.29/0.7251 27.40/0.7281 27.41/0.7297 27.58/0.7349 27.60/0.7367

Urban100 25.44/0.7638 25.62/0.7694 25.71/0.7719 25.68/0.7718 25.18/0.7524 25.50/0.7630 25.41/0.7632 26.07/0.7837 26.10/0.7866

Table 3. Performance of ×4 SR by CSFB and RCAB in terms
of PSNR(dB). All models are trained in 4×105 iterations.

Model Params Set5 Set14 BSD100 Urban100 Average
Baseline 742K 31.81 28.42 27.43 25.65 26.78
RCAB 745K 31.91 28.40 27.42 25.69 26.80
CSFB 743K 31.95 28.46 27.46 25.73 26.84

output feature map, the features in CSFF-L have much clear
outline than CSFF-R whether in the shallow or deep layer,
which proves the CSFF module takes full use of the input
channel by splitting channels and enhances the area which
is difficult to rebuild. Fig. 6 also shows that feature maps
in GFE are smoother than CSFF despite the network depth,
and the element-wise ”Add” results (last col) have more clear
contour profile than CSFF and GFE, which indicates that the
GFE module can enhance the final results. So those can ver-
ify the capability of CSFB for extracting useful features to
reconstruct images.

Comparison with channel attention. To validate the
effectiveness of our CSFB, we compare it with RCAN’s
RCAB[16], which is the typical channel attention (CA)
mechanism used in SR task. The baseline model we used
is EDSR’s residual block with 64 channels. For a fair com-
parison, we set cn = 25 to ensure that CSFB and residual
block have similar parameter quantities. 5 CSFBs are used
in this experiment. Table 3 shows that our proposed CSFB
could obtain higher performance with fewer parameters than
RCAB for SR tasks.

3.2. Comparison with State-of-the-Art Models

We compare our method with some state-of-the-art methods:
VDSR [10], DRRN [20], MemNet [25], IDN [26], CARN
[21] and SRFBN [24]. For a fair comparison, the heavy net-
work such as EDSR, DBPN, RDN, RCAN is excluded. To
better reveal the computational complexity of each model, we
calculate the floating-point operations (FLOPs) under the as-
sumption that the size of the output image is 1280×720. Table
2 shows our CSFN has better performance with fewer param-
eters and FLOPs than CARN, note that CARN uses larger
patch sizes in training time and multi-scale training strategy
to improve the final result which would significantly increase

Fig. 5. The weight ratio of CSFF-L in output channels.

Fig. 6. The average feature map in different layer.

the training time. For a more lightweight model, our CSFN-
M can achieve higher performance compared with DRRN,
CARN-M, and similar or better performance than SRFBN-
S, but SRFBN-S has larger FLOPs. Fig. 1 shows the visual
comparisons. The proposed CSFN and CSFN-M rebuild the
grass edge more accurately while other models only smoothes
the area in ”img076” from Urban100. The results on image
”barbara” show that other models generate the wrong texture
when our CSFN can predict the texture of this spotted cloth
correctly, and CSFN-M can correctly predict partial structures
with fewer parameters. In ”img092” from Urban100, all other
methods infer the wrong black line, but our CSFN can make
full use of the information in low-resolution images to accu-
rately estimate the direction of the line.

4. CONCLUSION

In this paper, we propose a novel low complexity residual
channel splitting and fusing network (CSFN) architecture
which takes into account the unevenness in feature map chan-
nels and can extract features more efficiently for SISR task.
Our proposed method can reconstruct complex objects ac-
curately and show superior results considering the PSNR
and the SSIM. This network will be meaningful for practical
application. In the future, this work will be used to image
restoration and video super-resolution tasks.
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