
Reproducibility Companion Paper: Instance of Interest
Detection

Fan Yu1,3, Dandan Wang1, Haonan Wang1, Tongwei Ren1,3,*

Jinhui Tang2, Gangshan Wu1, Jingjing Chen4, Michael Riegler5
1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

2School of Computer Science, Nanjing University of Science and Technology, Nanjing, China
3Shenzhen Research Institute of Nanjing University, Shenzhen, China

4Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University,
Shanghai, China

5SimulaMet, Norway
yf@smail.nju.edu.cn,hedda stone@hotmail.com,527725618@qq.com,rentw@nju.edu.cn

jinhuitang@njust.edu.cn,gswu@nju.edu.cn,chenjingjing.tju@gmail.com,michael@simula.no

ABSTRACT

To support the replication of “Instance of Interest Detection”,
which was presented at MM’19, this companion paper
provides the details of the artifacts. Instance of Interest
Detection (IOID) aims to provide instance-level user interest
modeling for image semantic description. In this paper, we
explain the file structure of the source code and publish
the details of our IOID dataset, which can be used to
retrain the model with custom parameters. We also provide a
program for component analysis to help other researchers to
do experiments with alternative models that are not included
in our experiments. Moreover, we provide a demo program
for using our model easily.

CCS CONCEPTS

• Computing methodologies → Computer vision.

KEYWORDS

Instance of interest; instance of interest detection; instance of
interest annotation; instance extraction; interest estimation

ACM Reference Format:
Fan Yu1,3, Dandan Wang1, Haonan Wang1, Tongwei Ren1,3,

and Jinhui Tang2, Gangshan Wu1, Jingjing Chen4, Michael

Riegler5. 2020. Reproducibility Companion Paper: Instance of
Interest Detection. In Proceedings of the 28th ACM International

Conference on Multimedia (MM ’20), October 12–16, 2020,
Seattle, WA, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3394171.3414811

*Corresponding author.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MM ’20, October 12–16, 2020, Seattle, WA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3414811

1 ARTIFACTS DESCRIPTION

1.1 Introduction

We proposed a novel task named Instance of Interest
Detection (IOID) [9] to provide instance-level user interest
modeling for image semantic description. IOID focuses on
extracting the instances which are beneficial to represent
image content, while other related tasks such as saliency
analysis and instance segmentation extract the regions
attracting visual attention or with a predefined category.
The output result of IOID is named as Instance of Interest
(IOI). To this end, we proposed a Cross-influential Network
(CIN) for IOID, which integrates both visual saliency and
semantic context.

The artifacts include the IOID dataset and the source
code of the CIN model. The source code is available
at https://github.com/yfraquelle/IOID, and the related
download links are provided in the README file.

1.2 Dataset

We construct the first dataset for IOID based on the training
set of MSCOCO 2017, which contains manually labelled
captions and panoptic segmentation. The IOID dataset
contains 45,000 images with IOIs in 133 categories, the same
as the panoptic information in MSCOCO 2017, including
80 thing categories, such as person, ball and cow, and 53
stuff categories, such as wall, tree and mountain. The IOID
dataset is split into the training set and the test set that
contain 36,000 images and 9,000 images, respectively. The
link for downloading the IOID dataset is provided in the
README file. The data of images and annotations are stored
in three json files, “class dict.json”, “train images dict.json”
and “val images dict.json”. The “train images dict.json” file
and the “val images dict.json” file are in the same format
and an example is shown in Figure 1(a). The format of
the “class dict.json” file is shown in Figure 1(b). It should
be noted that the “category id” is not contiguous in the
category information provided by MSCOCO. Thus we give a
contiguous “class id” to each category.

Reproducibility Session MM '20, October 12–16, 2020, Seattle, WA, USA

4435

https://doi.org/10.1145/3394171.3414811
https://doi.org/10.1145/3394171.3414811
https://doi.org/10.1145/3394171.3414811
https://www.acm.org/publications/policies/artifact-review-badging#reproduced

Figure 1: Data format in the json files. (a)
The format of the “train images dict.json” and
“val images dict.json” file, where the <image id>,
which represents the id of an image, and the
<instance id>, which represents the id of an
instance, are both string values. (b) The format
of the “class dict.json” file, where the <class id>,
representing the “class id” of an object category, is
a string value.

1.3 Source code structure

The file structure of the source code is shown in the
Figure 2. Our work is based on the implement of Mask RCN-
N at https://github.com/multimodallearning/pytorch-mask-
rcnn and PiCANet at https://github.com/Ugness/PiCANet-
Implementation.

backbone: containing the backbone of the CIN model.
configs: containing the configuration files.
data: containing the json files of the IOID dataset.
demo images: containing some images for testing and

visualization.
models: containing some pretrained models.
logs: saving model parameters during training.
nms: containing files for non-maximum suppression.
roialign: containing files for region of interest alignment.
utils: containing python files for assistance.
results: saving result files generated during testing.
ioi selection: containing the python file used in the IOI

selection module.
interest estimation: containing the python file used in

the interest estimation module.
instance extraction: containing the python files used in

the instance extraction module.
CIN.py: working as the main file for the CIN model.
config.py: working as the configuration file with default

values.
DatasetLib.py: loading data for training and validation.
demo.py: working as the main file for testing and

visualization.

Figure 2: File structure.

train.py: working as the main file for training the CIN
model.

predict.py: working as the main file for predicting the
final or intermediate results based on the CIN model.

validate.py: working as the main file for evaluating the
performance of the CIN model.

component analysis.py: working as the main file for
component analysis.

compute metric.py: computing metrics.
ioi selection binary.py: implementing a simple model

as a variant of the IOI selection module in the CIN model.
ioi selection rnn.py: implementing an rnn model as a

variant of the IOI selection module in the CIN model.
middle process.py: implementing data processing for

component analysis.
lstm 50.pkl: saving the parameters of the pretrained

model for the “ioi selection rnn.py”.
requirements.txt: listing the python dependencies of the

code.
README.md: working as the description for the source

code and related information.
The CIN model is mainly built in the “CIN.py” file, using

the “ResNet.py” file in the “backbone” folder as the backbone,
and the files in the “ioi selection”, “interest estimation”
and “instance extraction” folders work as the three modules
in our CIN model. The files in the “instance extraction”
folder depend on the files in the folders named “nms”
and “roialign”. The “train.py”, “predict.py”, “demo.py” and

Reproducibility Session MM '20, October 12–16, 2020, Seattle, WA, USA

4436

“validate.py” files perform training, inference or evaluation
mainly depending on the “CIN.py” file. The “component
analysis.py”, “ioi selection binary.py” and “ioi selection rnn.py”
files are used for component analysis. Before component
analysis, the “predict.py” and “middle process.py” should
be performed to generate required data.

2 EXPERIMENTS

2.1 Environment Installation

Our source code is tested in the following environment.
(1) Operating system Ubuntu 16.04 LTS with CPU i7-

8086K, GPU TITAN V, 64GB memory and 1TB free space.
(2)CUDA 9.0 and cuDNN 7.0.
(3)Python 3.5.6 with opencv python==3.4.3.18, numpy==

1.16.2, scikit image==0.14.2, torchvision==0.2.1, torch==0.4.1,
scipy==1.1.0, matplotlib==3.0.0, Pillow==7.0.0, skimage==
0.0, tensorboardX==2.0, PyYAML==3.13 and cffi==1.12.2.

We provide a docker image for all software dependencies,
which is available for download in the README file.

2.2 Test on the pretrained model

To visualize the result of the instance of interest detection,
the “demo.py” file can be performed with the following script:

python demo . py −−img <image path> −−c on f i g

<c on f i gu r a t i on f i l e path>

The README file provides the download link to the
pretrained parameters of our CIN model. An example of
the visualization result is shown in Figure 3

Figure 3: An Example of the visualization result of
“demo.py”.

2.3 Custom training and inference

The model parameters defined in the “config.py” file can be
adjusted by a custom configuration file, and some important
parameters as well as their description are shown in Table 1.

To train the CIN model, we use the pretrained Mask
R-CNN model, which works well for the instance seg-
mentation task. We divide the training process into four

steps: “semantic” (stuff extraction), “p interest” (interest
estimation), “selection” (IOI selection) and “all” (the whole
model). The first three steps train the parameters in different
modules with the same backbone parameters. These steps
can be performed in custom order, but we suggest to
perform them in the recommended order. To specify the
training order and the related attributes, we use a sequence
as a parameter, containing the training steps with the
corresponding learning rate and the number of epochs, such as
“semantic,0.01,34,p interest,0.01,44,selection,0.01,100”. The
“train.py” file can be performed with the following script:

python t r a i n . py −−s e t t i n g <s e t t i n g sequence>

−−c on f i g <c on f i gu r a t i on f i l e path>

During inference, the three modules can also be separated
and generate the corresponding intermediate results. In this
case, the three modules can be replaced with other models for
component analysis. To extract the intermediate results of
different modules in the CIN model, the “predict.py” file
can be performed with the following script in a custom
mode: “instance” (generating results of instance extraction),
“p interest” (generating results of interest estimation), “insttr”
(generating results of instance extraction and interest estima-
tion) or “selection” (generating results of IOI selection):

python p r ed i c t . py −−mode <mode> −−subset

<per forming on which dataset> −−c on f i g

<c on f i gu r a t i on f i l e path>

2.4 Experiments in the original paper

The “validate.py” file can be performed with the following
script to evaluate the performance of the CIN model:

python va l i d a t e . py −−c on f i g <c on f i gu r a t i on

f i l e path>

For component analysis, the three modules can be replaced
with some related models. Taking advantage of the flexible
intermediate results extraction, the outputs of the instance
extraction module and the interest estimation module can be
extracted and work as the input of the alternative to the IOI
selection module. Meanwhile, the results of these two modules
can also be replaced with the results of the related models to
work as the inputs of the IOI selection module. We use the
“component analysis.py” file to perform component analysis.
The folder name of the panoptic segmentation results, the
semantic segmentation results and the interest estimation
results should be provided. Those results should be similar
to the intermediate results of the first two modules. We
provide the intermediate results generated by some related
models [1–8] in our experiments, and the download link is
provided in the README file. As the alternative to the
IOI selection module, two simple models are implemented in
the “ioi selection binary.py” file and the “ioi selection rnn.py”
file, and their alias “binary” and “rnn” work as the optional
values for the “sel ext” parameter.

python component analys i s . py −− i n s e x t

Reproducibility Session MM '20, October 12–16, 2020, Seattle, WA, USA

4437

Table 1: Important parameters that can be customized.

Parameter Description Default Value

GPU COUNT The number of GPUs. 1
IMAGES PER GPU The number of images to train with on each GPU. 1
STEPS PER EPOCH The number of training steps per epoch. 1000
NUM CLASSES The number of classification classes (including background). 134
LEARNING RATE Learning rate. 0.001
LEARNING MOMENTUM Learning momentum. 0.9
IMAGE PATH The path of the images related files. ../data/
JSON PATH The path of the json files. data
WEIGHT PATH The path of the default model weights. models/CIN ooi all.pth
IMAGE SIZE The size of image after resizing and padding. 1024
MAP IOU The iou threshold when mapping prediction to the ground truth. 0.5
STUFF THRESHOLD The threshold when filtering small stuff. 1000
THING NUM CLASSES The number of things (including background). 81
STUFF NUM CLASSES The number of stuff. 53
SELECTION THRESHOLD The threshold when selecting IOIs. 0.4

<panopt ic segmentat ion path> −−sem ext

<semantic segmentat ion path> −−p i n t r e x t

< i n t e r e s t e s t imat ion path> −−s e l e x t

<IOI s e l e c t i o n method> −−c on f i g

<c on f i gu r a t i on f i l e path>

3 REPRODUCIBILITY EFFORTS

In the original paper, the connections among different files
were not clearly described, and when the reviewers tried to
run the scripts for the experiments, they found that some
of the software dependencies such as “PyYAML” and “cffi”
were missing in the given list and the “import” sentences
were not updated in the original code. The authors quickly
fixed the problems by offering a detailed explanation at the
end of the Section 1.3. The missing dependencies also have
been added in the Section 2.1 and the README file in the
code repository has been updated. Moreover, a docker image
containing all the software dependencies has been provided
in response to the reviewers’ advice, making it more feasible
for researchers in the area.

The reviewers acknowledge the efforts of the original
authors to provide necessary corrections during the reviewing
process, including simplifying the format of scripts param-
eters and fixing minor bugs in the code, as well as careful
proofreading.

In conclusion, two reviewers and the authors worked
together for this companion paper. The revised code now
enables third-party researchers to reproduce the experiments
in the original paper and is customizable for further research
on visual relation detection.

4 CONCLUSION

In this paper, we provided the details of the artifacts of the
paper “Instance of Interest Detection” for replication. The
artifacts contain the IOID dataset and the source code for

experiments in the paper. Taking advantage of the source
code, the experiments can be operated and customized.

ACKNOWLEDGEMENT

This work is supported by Natural Science Foundation of
Jiangsu Province (BK20191248), National Science Founda-
tion of China (61732007), Science, Technology and Innovation
Commission of Shenzhen Municipality (JCYJ20180307151516166),
and Collaborative Innovation Center of Novel Software
Technology and Industrialization.

REFERENCES
[1] Liangchieh Chen, George Papandreou, Iasonas Kokkinos, Kevin P

Murphy, and Alan L Yuille. 2018. DeepLab: Semantic
Image Segmentation with Deep Convolutional Nets and Atrous
Convolution and and Fully Connected CRFs. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2018), 843–848.

[2] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross B Girshick.
2017. Mask R-CNN. IEEE Conference on Computer Vision and
Pattern Recognition.

[3] Qibin Hou, Mingming Cheng, Xiaowei Hu, Ali Borji, Zhuowen
Tu, and Philip H S Torr. 2017. Deeply Supervised Salient Object
Detection with Short Connections. IEEE Conference on Computer
Vision and Pattern Recognition.

[4] Guanbin Li, Yuan Xie, Liang Lin, and Yizhou Yu. 2017. Instance-
Level Salient Object Segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition.

[5] Nian Liu, Junwei Han, and Minghsuan Yang. 2018. PiCANet:
Learning Pixel-Wise Contextual Attention for Saliency Detection.
IEEE Conference on Computer Vision and Pattern Recognition.

[6] Zhiming Luo, Akshaya Kumar Mishra, Andrew Achkar, Justin A
Eichel, Shaozi Li, and Pierremarc Jodoin. 2017. Non-local Deep
Features for Salient Object Detection. IEEE Conference on
Computer Vision and Pattern Recognition.

[7] Junting Pan, Cristian Cantonferrer, Kevin Mcguinness, Noel E
Oconnor, Jordi Torres, Elisa Sayrol, and Xavier Giro I Nieto. 2017.
SalGAN: Visual Saliency Prediction with Generative Adversarial
Networks. IEEE Conference on Computer Vision and Pattern
Recognition.

[8] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio.
2015. Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention. International Conference on Machine
Learning.

[9] Fan Yu, Haonan Wang, Tongwei Ren, Jinhui Tang, and Gangshan
Wu. 2019. Instance of Interest Detection. ACM International
Conference on Multimedia.

Reproducibility Session MM '20, October 12–16, 2020, Seattle, WA, USA

4438

	Abstract
	1 Artifacts Description
	1.1 Introduction
	1.2 Dataset
	1.3 Source code structure

	2 Experiments
	2.1 Environment Installation
	2.2 Test on the pretrained model
	2.3 Custom training and inference
	2.4 Experiments in the original paper

	3 Reproducibility Efforts
	4 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 374.52, 741.78 Width 208.18 Height 19.88 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 374.5213 741.7849 208.1837 19.8768

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 4
 0
 1

 1

 HistoryList_V1
 qi2base

